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Abstract Simulation results of bistable perception due to
ambiguous visual stimuli are presented which are obtained
with a behavioral nonlinear dynamics model using percep-
tion–attention–memory coupling. This model provides an
explanation of recent experimental results of Gao et al. (Cogn
Process 7:105–112, 2006a) and it supports their specula-
tion that the fractal character of perceptual dominance time
series may be understood in terms of nonlinear and reentrant
dynamics of brain processing. Percept reversals are induced
by attention fatigue and noise, with an attention bias which
balances the relative percept duration. Dynamical coupling
of the attention bias to the perception state introduces mem-
ory effects leading to significant long range correlations of
perceptual duration times as quantified by the Hurst param-
eter H > 0.5 (Mandelbrot, The fractal geometry of nature,
1991), in agreement with Gao et al. (Cogn Process 7:105–
112, 2006a).
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1 Introduction

1.1 Bistable perception

Bistable perception is the spontaneous involuntary switch-
ing of conscious awareness between the different percepts of
an ambiguous stimulus. It is excited with different methods
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and stimuli, such as binocular rivalry (Blake and Logothetis
2002), perspective reversal, e.g., with the famous Necker
cube (e.g., Orbach et al. 1963; Borsellino et al. 1972; Gao
et al. 2006a), and apparent motion displays (Hock et al.
1993, 1997). Tristable perception was investigated by Ito
et al. (2003). Investigation of multistability provides a unique
approach to fundamental questions of perception and con-
sciousness, e.g., the contributions of bottom-up and top-down
processing, because it allows for the direct measurement of
the switching of subjective perception under constant exter-
nal stimulus (e.g., Engel et al. 1999; Srinavasan et al. 1999;
Edelman 2004). Some experimental results and theoretical
considerations indicate that cognitive multistability is not an
irrelevant laboratory curiosity, but that it is a product of func-
tional adaptation and the mechanisms underlying multistable
perception might be important also for more general aspects
of perceptual dynamics (Richards et al. 1994; Arnold et al.
2007). A better understanding of the thalamocortical and
behavioral dynamics of cognitive bistability is also of practi-
cal relevance due to its reported occurrence during usage of
monocular head-worn displays providing flight information
to pilots in advanced augmented vision systems (Patterson
et al. 2007).

1.2 Formal modeling approaches

Formal mathematical models of multistability usually rely
on neural dynamics (Wilson 1999; Deco and Marti 2007),
take a neural network perspective (e.g., Natsuki et al. 2000)
or use a mesoscopic approach (Schuster and Wagner 1990).
The latter authors derived within the framework of a mean
field theory a phase shift between the coupled self-oscillating
neuronal columns, with phase locking formalized by means
of the circle (sin−) map. That is, the system state (e.g.,
phase difference) at time t + dt depends nonlinearly (sine

123



176 Biol Cybern (2010) 103:175–198

function) on the state at time t . A sine map was also derived by
Haken (2002) for pulse coupled neural ensembles. Aspects
of the nonlinear system dynamics on the level of neural pop-
ulations were taken into account by several authors (Hock
et al. 2003; Noest et al. 2007; Deco and Marti 2007). The
latter authors formalized the interaction between two popula-
tions of neurons by Wilson-Cowen type first-order nonlinear
stochastic differential equations including additive Gauss-
ian noise, however without explicitly regarding attention
fatigue.

To the best of our knowledge, Ditzinger and Haken (1989)
were the first who transferred the dynamics to the macro-
scopic behavioral level of perception state, attention, and
memory control parameters using the so-called slaving prin-
ciple of synergetics (theory of self-organizing dynamical
systems): macroscopic-order parameters are created through
the nonlinear interaction of the neural microsystems and,
in turn, slave the microscopic behavior into coherent syn-
chronous activity (Haken 1978). Within the framework of
synergetics, the dynamics of complex systems are often gov-
erned by a few macroscopic-order parameters only. The order
parameter principle leads to the picture of perception states
moving as particles within an energy potential landscape,
with energy minima determining stationary states. The syn-
ergetic-order parameter approach was used recently by Frank
et al. (2008) for modeling differential learning within the
framework of self-organizing dynamical systems. Within this
physical framework of cognitive dynamics, Einstein’s fluctu-
ation–dissipation theorem prescribes noise to play a central
role in the dynamical evolution via coupling of the dissipa-
tive (energy loss) parameters with the noise power (Haken
1978). The importance of noise has been recognized also
in recent experiments (Braskamp et al. 2006) and modeling
approaches of Noest et al. (2007). In the present approach,
it is taken care of within a nonlinear Langevin force dif-
ferential-delay equation for the attention control parameter.
Another possibility would be a Fokker–Planck equation for
the time evolution of the probability distribution of the atten-
tion parameter (Haken 1978).

Complimentary to the mechanical particle metaphor phys-
iologically based continuum models (Robinson 2005) arrive
at macroscopic neural excitation fields, such as formalized
by the earlier Jirza–Haken–Nunez (JHN) equation (Jirsa and
Haken 1996, 1997) based on pulse coupling within the neural
nets (Haken 2002), and on corresponding wave equations of
the dendritic current fields. Haken (2002) demonstrated that
the field equations can be used to bridge the gap between
the neuronal level and phenomena at the behavioral level.
The continuum approach yields explanations for a number
of EEG characteristics of the modular thalamocortical system
(Robinson 2005) and it provides a possible explanation for
binocular rivalry via soliton (particle like) dynamics within
visual area V1 (Loxley and Robinson 2009).

During the recent years, an increasing number of experi-
mental and theoretical results indicate the chaotic and fractal
character of brain functioning (Richards et al. 1994; Lutzen-
berger et al. 1995; Dafilis et al. 2001; Burke and de Paor
2004; Freeman 2000; Gao et al. 2006a). This appears not sur-
prising, considering the 1011 neurons with nonlinear transfer
characteristic constituting the brain hardware, each one cou-
pled with 103–104 others so that the dynamics of a massive
nonlinear delayed feedback system has to be taken into con-
sideration.

1.3 The behavioral dynamics picture

Recently, Gao et al. (2006a) presented experimental evidence
for the fractal and chaotic character of brain dynamics. It
was obtained from analysis of perceptual dwell time series
of ambiguous stimuli, such as the Necker cube and binocular
rivalry via determination of the self-similarity (Hurst) param-
eter H (Mandelbrot 1991; Beran 1992). They concluded that
nonlinear brain dynamics can be assumed as origin of the
corresponding long range correlations.

The present theoretical work supports this conclusion. It
predicts long range correlations, i.e., the fractal character
of the perceptual duration time series using nonlinear time
series analysis applied to results of computer experiments
with the formal perception–attention–memory (PAM) model
described in Sect. 2. Following ideas proposed by von der
Malsburg (1997) and Engel et al. (2001), and motivated by
the above-mentioned field theoretical approaches (Jirsa and
Haken 1996, 1997) in the present model perception states
Pi , i = 1, 2, are assumed to arise from superimposed coher-
ent fields of synchronously firing neuronal assemblies as
excited by the ambiguous stimulus.

Like in Ditzinger and Haken (1989), the basic model
couples the dynamics of a macroscopic (behavioral) percep-
tion-state-order parameter with an adaptive attention (feed-
back gain) control parameter with additive noise (Fürstenau
2003, 2004). The order parameter dynamics is derived from
a radically simplified field equation with phase feedback of
superimposed fields which formalize the potential percepts.
The perception state-order parameter is represented by the
dynamical phase difference between the two superimposed
waves with sufficient degree of coherence. Superimposition
yields a recursive nonlinear mapping function which is sim-
ilar to the phase oscillator equation (sine or circle map)
describing the coupling of two (groups of) periodically spik-
ing neurons (Haken 2002) and to coupled nonlinear oscilla-
tors, in general (Anishchenko et al. 2003). A similar mapping
function which is closely related to the perception state equa-
tion of our model was derived by Haken et al. (1985; HKB
or phase attractive circle map), and deGuzman and Kelso
(1991). It describes the order parameter dynamics of a special
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sensory motor feedback loop. For an overview with further
references, see Haken (2002) and Kelso et al. (1995).

The mapping function also shows some similarity to the
perception state equation of Atmanspacher et al. (2004)
which was derived by means of a so-called weak quan-
tum mechanical approach. In particular, three different time
scales of 30–40 ms (feedback delay), 150–200 ms (onset of
conscious perception), and 1–3 s (percept duration) of the
present model are in agreement with those of the Atmansp-
acher model. However, in contrast to Atmanspacher et al.
(2004) and in agreement with Ditzinger and Haken (1989,
1995), the present model utilizes explicit perception–atten-
tion coupling. Like in Ditzinger and Haken (1989, 1995), a
perception bias balances the preference between alternative
percepts, which in turn is adaptively coupled with the per-
ception state for generating a memory and learning function.
The adaptive bias is the origin of the observed long range
correlations, leading to self-similar fractal dwell time series.

Multiplicative stimulus strength and adaptive feedback
gain (attention parameter) also contrast with the dynami-
cal model of Hock et al. (2003). These authors use an addi-
tive stimulus and nonlinearity only present in the coupling
between the alternative percepts. Within the present model,
the experimentally observed difference of the perceptual
duration time statistics between binocular rivalry and per-
ception reversal with regard to the stochastic and determin-
istic character (Richards et al. 1994; Gao et al. 2006a) can be
explained via different memory time constants of the dynam-
ical attention bias which determines the long range correla-
tions.

1.4 Time series analysis of computer experiments

Concerning the interpretation of experimental results of
bistable perception, there is an ongoing controversial dis-
cussion on the possible deterministic, even chaotic or fractal
dynamics of cognitive bistability (Poston and Stewart 1978;
Ditzinger and Haken 1989; Wilson 1999; Richards et al.
1994; Fürstenau 2004; Noest et al. 2007) versus dominance
of stochastic properties (De Marco et al. 1977; Lehky 1995;
Merk and Schnakenberg 2002), as derived from statistical
analysis of reversal time series. From the above given over-
view, it appears reasonable to assume that both deterministic
and stochastic contributions to the cognitive system dynam-
ics have to be considered. The Hurst parameter H as used by
Gao et al. (2006a) is a convenient parameter to quantify the
relative importance of deterministic and stochastic dynam-
ics. For example, H = 0.5 describes a completely stochastic
(random walk) system governed by the laws of Brownian
motion without any memory effects, whereas a system with
H = 1 is completely deterministic and the initial conditions
completely determine the future development. Difficulties
arise from the requirements on the amount and quality of the

data to be evaluated by sophisticated methods of nonlinear
time series analysis for the quantification of the deterministic
content (Gao et al. 2006b,c, 2007).

Many formal models of multistability restrict their com-
parison with experimental results to the relative frequencies
of the perceptual dwell time statistics which usually yields
the density of a two-parametric �-distribution as reasonable
fitting function. It turns out, however, that quite different
approaches (e.g., macroscopic as well as microscopic) yield
the �-density, so that this does not appear sufficient for dis-
criminating between different models. That is why the recent
results of Gao et al. (2006a) with regard to the self-similar,
i.e., fractal characteristics of the dwell time series, i.e., long
range correlations or memory effects, appear as a very inter-
esting additional necessary condition for cognitive bistability
models. The self-similarity or Hurst parameter H of percept
reversal time series can be determined by different methods,
and the reliability of the results depends on the underlying
dynamical system which often is unknown like in the case
of cognitive systems (Gao et al. 2007). That is why the com-
parison of results obtained by different methods have to be
critically discussed. The so-called variance-time method and
the evaluation of the 1/ f α-noise characteristic of the spec-
tral power density as discussed by (Beran 1992) and used by
(Gao et al. 2006a) is employed also in this study and com-
pared with a method proposed by Kettani and Gubner (2006).
I will discuss the results obtained with these three methods
and compare it with the direct evaluation of the autocor-
relation function of the numerically determined dwell time
series.

In Sect. 2, I describe the theoretical approach, including
quantitative estimates of the stationary and oscillatory behav-
ior. Results of computer experiments with simulated percep-
tion time series and the statistical analysis of the reversal time
series for determining the Hurst Parameter H are presented
in Sect. 3, followed by the discussion of the results in Sect. 4
and a conclusion and outlook in Sect. 5.

2 Theory

2.1 The phase oscillator model

As a kind of minimum architecture allowing for the emer-
gence of fast quasi-discontinuous state transitions, reen-
trant perception–attention dynamics with attention fatigue
(Orbach et al. 1963; Ditzinger and Haken 1989) and delayed
feedback is employed (Fürstenau 2004, 2006), with delay
T and feedback gain g. In the present model, a macro-
scopic behavioral approach is used with a dynamical percep-
tion-state-order parameter v, an adaptive attention control
parameter G ∼ g, and a dynamical perception bias param-
eter vb representing short term memory and learning. I will
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motivate this architecture by relating the three dynamical
model parameters to thalamocortical reentrant loops as pro-
posed by Tononi and Edelman (1998) and to the bottom-up
and top-down aspects of visual attention (Itti and Koch 2001).
Figure 1 depicts within a block diagram important modules
of the attentionally modulated visual perception system.

The diagram is based on simplified brain circuit schemat-
ics (e.g., Robinson 1998) including the attentional top-down
modulation of the dorsal (“where”) and ventral (“what”) bot-
tom-up streams of information. It is assumed that as a first
approximation for modeling bistable switching between con-
scious percepts, feedforward preprocessing of the stimulus
up to the Primary Visual Cortex V1 (stimulus–V1 delay ca.
40 ms; Lamme 2003) can be neglected, the relevant process-
ing steps taking place within a recurrent perception–attention
loop (150–200 ms total processing time until conscious per-
ception) of the association cortex (e.g., Tononi and Edelman
1998; Itti and Koch 2001; Lamme 2003) and a thalamocorti-
cal loop via Hippocampus and limbic system. The latter taken
into account memory and learning effects which are assumed
to determine the dynamical attention/perception bias or per-
cept preference. For the stationary stimuli under consider-
ation, here, the loop via the superior colliculi (SC) for control
of eye movements, i.e., overt attention is neglected. On the
other hand, recent experimental results indicate that binocu-
lar rivalry involves a more automatic, stimulus-driven form
of competition than ambiguous figure reversal, and is less
easily biased by selective attention (Meng and Tong 2004).
This difference between rivalry and ambiguous figure rever-
sal is experimentally expressed in a different ratio of stochas-
tic versus deterministic character of reversal time series (e.g.,
Richards et al. 1994). I will demonstrate how this observation
can be explained within the present model via the memory
time constant τM.

Without explicitly considering early feedforward process-
ing, in the present approach, selective attention (i.e., pref-
erence of one of the two percepts) may be modeled by
the dynamic bias parameter vb(t) which determines relative
percept duration times and long range correlations via the
vb-memory time constant τM (see below; Fürstenau 2007).
Because the model architecture is suggested to basically rep-
resent the ventral (“what”) V4–InferoTemporal (IT)–Prae-
Frontal (PF)–V4 loop and the thalamocortical hippocampal
(memory) loop as representative target structures it conse-
quently favors a top-down view assuming the usage of prior
knowledge (memory) according to Hamker (2004). For sim-
plicity in its present form, it neglects possible early spatial
attention modulation of perception reversals, although the
latter effect is indicated by recent neurophysiological mea-
surements (Pitts et al. 2007). The model also neglects eye
movements and saccades which possibly influence the per-
ception dynamics, e.g., via the thalamocortical loop PF–SC–
Eye–LGN, and via basal ganglia back to the cortex. On the

other hand, it has the potential for explaining microsaccad-
ic and tremor oscillations as a top-down effect through the
SC via thalamocortical limit cycle oscillations (see Sect. 2.2,
Fig. 5 and Sect. 3.1, Fig. 6).

Experimental evidence on perception–attention coupling
with ambiguous stimuli as assumed here was presented by
Nakatani and van Leeuwen (2005) using EEG recording of
frontal theta and occipital alpha bands and eye blink rate
measurement (Ito et al. 2003). Furthermore, according to
Hillyard et al. (1999), stimulus-evoked neuronal activity can
be modified by an attentionally induced additive bias or by a
true gain modulation (present model parameters vb(v) and
G(v, vb) ∼ g). Increase of gain g(t) is correlated with
increased blood flow through the respective cortical areas.
Consequently, in the present model, the feedback gain serves
as adaptive control parameter which induces the rapid tran-
sitions between the alternative stationary perception states
P1 and P2 through attention fatigue (Orbach et al. 1963),
which is modeled according to Ditzinger and Haken (1989)
via coupling to the perception state v.

For deriving the formal behavioral model on the level
of macroscopic order and control parameters v(G), a very
simple field theoretical approach is used. It is motivated
by the successful use of field equations (Jirsa and Haken
1996, 1997) for deriving a correspondence to the phenome-
nological-order parameter equation employed for modeling
a movement control experiment (periodic finger response to
acoustic stimuli) of Kelso et al. (1992). The present simpli-
fication is based on the hypothesis that the relative phase of
superimposed electric fields of sufficient degree of coherence
captures the relevant dynamics of perception-state-order
parameter(s). Consequently, as a first approximation, the
superimposition of plane waves as idealized representations
of possible perception states is assumed to yield the actual
percept after recurrent processing between the thalamocorti-
cal modules of Fig. 1 with feedback gain g ∼ G and delay
time T .

An ambiguous stimulus with strength I ∼ G and differ-
ence-of-meaning μ of the two possible percepts P1, P2 as
stimulus parameter (0 ≤ μ ≤ 1) excites two corresponding
fields a(�1), b(�2) ∼ exp{ j (ωt + �)}, with phase differ-
ence �� = �1 − �2 = πvt . The difference-of-meaning
parameter is proportional to contrast μ = 2a0b0/(a2

0 + b2
0)

of (coherent) electromagnetic fields with field amplitudes
a0, b0. The degree of coherence depends on the spectral
distribution of the fields as detailed in Appendix A1. The
nonlinear right-hand side of Eq. 1 (see below) describes the
conventional interference J = |a + b|2 between two super-
imposed coherent fields (see Appendix A1).

A recurrent process is established by feedback of the out-
put J after amplification (feedback gain g) with delay T
into �� via a hypothetical phase modulation mechanism
�� = �t + �B and �t = π Jt/Jπ = πvt , with Jπ =
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Fig. 1 Schematic representation of essential contributions of visual
information flow within the thalamocortical system. Indication of feed-
forward bottom-up stream (40 ms) up to V1 and recurrent processing
(150–200 ms) within the association cortex with ventral (“what”) and
dorsal (“where”) pathways including attentional top-down modulation
[black arrows; based on Robinson (1998), Itti and Koch (2001), and

Lamme (2003)]. Perception-state order parameter v, attention control
parameter G, and attention bias or preference parameter vb are placed at
neurobiologically relevant positions. Shadowed is main reentrant loop
through ventral pathway used as target structure in present model. For
details, see text

output strength required for phase change �t = π or vt =
1 (Watts and Fürstenau 1989).

As a quantitative estimate for T the stimulus-visual cortex
response delay (≈ 40 ms) was suggested (Fürstenau 2004)
which also represents typical recurrent delay times within
the association cortex (Lamme 2003). Formally for v(G) an
overdamped feedback system (time constant τ ) is obtained
with a first-order dynamical equation (see Appendix A1).
This equation is well-known and extensively discussed in
the physical and mathematical literature as an example for
complex limit cycle and chaotic behavior in complex sys-
tems (e.g., Ikeda and Matsumoto 1987; Busenberg and Mar-
tinelli 1991). The phase variable may be compared with the
phase shift between the coupled self-oscillating neuronal col-
umns of the mean field theory (Schuster and Wagner 1990)
where phase locking between different groups of neurons
is described by means of the circle (sin-) map, like that
one derived in Haken (2002). In contrast to the standard
form of a sine-map (e.g., Anishchenko et al. 2003), how-
ever, the basic dynamics of the present model is more com-
plex and described by three coupled equations: one each for
the perception-state-order parameter (phase difference v(G)

between two superimposed fields), for the adaptive attention
control parameter G(v, vb) (∼ feedback gain g(t) modulat-
ingv(G)with delay T ) modeling the attention fatigue, and for
the attention bias or preference vb(v). The latter represents
a memory and learning function with memory time constant

τM and learning time constant τL, respectively, via coupling
to the low pass filtered perception state v for allowing adap-
tive modulation of the bias through the active perception and
recognition of initially weakly associated percepts:

τ v̇t+T + vt+T = G [1 + μ cos (π (vt + vB))] (1)

Ġ t = (vb − vt)/γ + (Gmean − G t)/τG + L t (2)

v̇bt = (
vt − v̄bt

)
/τM + (

vbe − vbt

)
M/τL (3)

In what follows I assume the phase bias in Eq. 1 vB = 0
mod 2. The diagram in Fig. 2 represents the highest level
(hiding the detailed subprograms) of an implementation of
the perception–attention–memory (PAM) equations with the
dynamical systems tool Matlab–Simulink.

In agreement with Itti and Koch (2001), the attention
parameter G(v) ∼ κ I0g(v), with detection coefficient κ,

is the product of input (stimulus) strength I0 (=1 in what
follows) and feedback gain g(v). G is coupled with v via
fatigue time constant γ and recovery time constant τG .
The latter parameter models exponential recovery toward
Gmean = 0.5(3 − μ)/(1 − μ2) = 1.875 for μ = 0.6 which
is the center between the turning points of the S-shaped sta-
tionary hysteresis curve v∗(G) = G[1+μ cos{π(v∗ +vB)}]
(Fürstenau 2004, 2006; see next section, Fig. 3, and Appendix
A1). The basic perception–attention dynamics is determined
by Eqs. 1 and 2 with fatigue and recovery time constants γ

and τG , respectively, feedback delay T and low pass filter
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Fig. 2 Simulink implementation of the perception–attention–memory
(PAM) Eqs. 1–3. Subroutines (blocks) of the reentrant loops (from top
to bottom): perception circuit representing phase oscillator equation
dv(t)/dt , attention circuit representing fatigue equation dG(t)/dt with
Fatigue and Recovery component, and Preference circuit dvb(t)/dt rep-
resenting adaptive bias with Memory and Learning components. Stimu-
lus of strength I and difference-of-meaning mu (= μ) are fed as control

parameters into perception circuit with nonlinear (cosinuidal) interfer-
ence term and feedback gain (g ∼ G) loop with delay T and time
constant τ . Attention circuit G(t) with satiation (fatigue) (vb−v(t))/γ
and recovery term (Gman − G(t))/τG controls as adaptive gain factor
the perception dynamics. The Preference (Memory) circuit is coupled
with the perception state and modulates attention as a dynamic bias
vb(t)

time constant τ . Following Ditzinger and Haken (1989), the
random noise due to physically required dissipative processes
(Fluctuation–Dissipation Theorem, e.g., Haken 2002) and
coupling of the v–G–vb loops to the rest of the brain is added
to the attention equation G(t) as a stochastic Langevin force
L(t). Within Matlab–Simulink, it is realized by the subpro-
gram (block) “Noise” (Fig. 2) with band limited white noise
power Jω and sampling time tc( covariance s2 = Jω/tc).

The dynamic attention bias vb(v) determines the relative
preference of P1 and P2. The dynamics dvb/dt is modeled as
the sum of a learning function M(vt, vb, vbe) (vbe − vb)/τL ,

and a short term memory component (<vt>−vb)/τM which
couples vb to the perception state v(<> = low pass filter).
Learning is active only (M(vt, vb, vbe) = 0 → 1) if one
of the two percepts dominates whereas the other is ini-
tially weakly associated (initial bias vb0 �= vbe, with vbe =
equilibrium bias, and |<vt> − vbe|>|<vt> − vbt|), and a
fluctuation-induced jump (due to stochastic noise and high
frequency limit cycle and chaotic oscillations, see Figs. 5

and 6) into the weak perception state occurs, switching M
from 0 to 1 for the duration of the weak state until |<vbt> −
v∗(P1)| ≈ |<vbt> − v∗(P2)| at which time M is switched
back: M = 1 → M = 0. This feature will gradually move
the dynamic bias vb(t) into the more symmetric equilibrium
position vbe ≈ (v∗(P1) + v∗(P2))/2 (see Sect. 3, Fig. 7).

Although it has been shown in previous publications
(Fürstenau 2006, 2007) that this minimum version of the
model correctly predicts a number of experimental results
(e.g., �-distribution of percept dwell times), it clearly has
certain limitations, such as the asymmetry of the pitchfork
bifurcations on the P1 and P2 levels of the v∗(G)-topol-
ogy (see Fig. 3b below) which results in different oscilla-
tion amplitudes superimposed to the stationary P1, P2 states.
Consequences of the present simplification and a method to
overcome the limitations will be discussed in Sect. 4. Here,
I will follow this parsimonious approach making use of the
reduced number of parameters with correspondingly reduced
complexity and simulation time.
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Fig. 3 a Stationary solution v∗ of perception state equation (1) in the
form of a phase parametric diagram as dependent on attention con-
trol parameter (feedback gain) G and difference-of-meaning (interfer-
ence contrast) μ of percepts P1, P2. Node bifurcation at μn ≈ 0.18
defines transition from unambiguous to ambiguous solution ((μ <

μn) = stimulus-off → (μ > μn) = stimulus-on ) with positive
slope regions v∗(G) representing stationary perception states P1 (lower
level v∗ ≈ 1), P2 (higher level v∗ ≈ 2.5−3). Dark gray: instable
regions. b 2D-cross section through stationary 3D-plot a at stimulus
parameter position μ = 0.6, exhibiting hysteresis (with v∗(G) ambi-
guity between G = 1.2 and G = 2.6) as first-order stationary solution
and higher order periodical stationary solutions (period doubling bifur-
cations) vi ∗, i = 1, 2, 4, 8

2.2 Stationary solutions, bifurcations, and oscillations

In what follows I will first discuss the stationary solution of
the perception state equation (1) (the derivation is given in
Appendix A1). It will be followed by an analysis of two kinds
of oscillations observed in the simulations: (a) bifurcations
into low amplitude high frequency limit cycle, period dou-
bling, and chaotic oscillations superimposed on the station-
ary solutions, with periods of the order T ; (b) low frequency
self-oscillations (percept switching) between the stationary
perception states P1, P2 due to attention fatigue G(t) with

time constant γ . The time series analysis of numerical
simulations in Sect. 3 will reveal that the limit cycle and cha-
otic oscillations exhibit only weak influence on the percept
dwell time statistics. It will be shown that the latter is deter-
mined primarily by the time constant γ and the dynamic bias
vb(t) of Eq. 3 together with the additive attention noise L t

(Langevin force) of Eq. 2 with power spectral density Jω.
Low frequency quasiperiodic switching between two sta-

tionary perception states v∗(P1) and v∗(P2) (self-oscillat-
ing percept reversals) of some seconds dwell time emerges
after a node bifurcation of the stationary v∗(G, μ) graph as
depicted in Fig. 3a, at the stimulus value (bifurcation param-
eter) μ = μn ≈ 0.18. v∗(G) evolves from a monotonous
function (for μ < μn) into a hysteresis S-shaped ambig-
uous one with increasing μ (Fürstenau 2003, 2004, 2006).
Figure 3a depicts the first-order stationary solutions v∗(G, μ)

(obtained by setting dv/dt = 0, vt+T = vt = v∗, see Appen-
dix A1).

At μ = μn ≈ 0.18, the slope of the stationary system
state dv∗/dG becomes infinite with (Gn, vn) ≈ (1.5, 1.5).
For μ < μn both percepts are fused into a single meaning
corresponding to an unambiguous stimulus. For μ > μn, the
stationary solution v∗(G) becomes multivalued, correspond-
ing to switching-on of the ambiguous stimulus. For maxi-
mum contrast μ = 1, the horizontal slope (dG/dv)−1 = 0
yields v∞

i = 2i − 1, i = 1, 2, 3, . . . as stationary percep-
tion levels in the limit G → ∞. The node bifurcation and
hysteresis agrees with the qualitative deterministic catastro-
phe theoretical model of cognitive bistability as proposed by
Poston and Stewart (1978). It is of interest to note that, like
in the model of Noest et al. (2007) with additive stimulus,
the present model with multiplicative stimulus parameter μ

exhibits the same qualitative difference between transition
into perception states via a choice process (i.e., unambigu-
ous to ambiguous transition, mathematically represented by
a node bifurcation μ < μn ⇒ μ > μn), and via the fatigue
G(t)-driven percept reversal in the ambiguous G-range with
μ > μn (self-oscillation P1 ⇔ P2, see below). In Sect. 3, we
will exclusively concentrate on quasiperiodic reversal pro-
cesses P1 ⇔ P2, where the periodicity of the self-oscilla-
tions are disturbed by the attention noise L t of the feedback
gain (attention parameter) Eq. 2.

Superimposed on the stationary levels v1 ∗ (P1), v2 ∗ (P2)

is the attention noise L t as characterized by power spec-
tral density Jω, and additionally the high frequency limit
cycle and chaotic oscillations (up to some 10 Hz) originat-
ing from the feedback delay T . The latter contribution is
illustrated in Fig. 3b which shows for fixed μ = 0.6 higher
order stationary solutions (v(t + 2iT ) = v(t) = vi∗, i =
0, 1, 2, 3 . . .) exhibiting period doubling pitchfork bifurca-
tions on both positive slope regions of the hysteresis curve.
The bifurcation points seem to converge at a chaotic bound-
ary following the same universal law as that one discovered
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Fig. 4 Plot of Lyapunov exponent according to Eq. (4) with damping
time constant τ = 0 (discrete map, no damping). Positive λ values cor-
respond to chaotic dynamics, observed as superimposed oscillations on
stationary levels in Fig. 3b within three control parameter (G) ranges.
Stationary level 1: G ≈ 1.1−1.2; level 2: G ≈ 1.5−1.8; level 3 (not
shown in Fig. 3): G > 2.6. λ = 0 corresponds to bifurcation points in
the stationary solutions of Fig. 3b

by Feigenbaum (1979) for the quadratic map (see Appen-
dix A2 for a quantitative evaluation). The bifurcation points
Gn of the attention control parameter G and the G-ranges of
chaotic regimes in the bifurcation graph may be determined
either directly from the data of Fig. 3b or by numerical evalu-
ation of the Lyapunov exponent λ which is given by (Schuster
and Just 2005)

λ (v0) = lim
N→∞

1

N

N−1∑

i=0

ln
(∣∣ f ′ (vi)

∣∣) (4)

with v0 = start value of iteration, N = number of iteration
steps and f ′(vi) = derivative of the right-hand side of the dis-
crete version of Eq. 1: vt+T = f (vt), where dv/dt is replaced
by (vt+T − vt)/T (see Appendix A2). λ measures the expo-
nential separation of neighboring initial states v0 during the
iteration process under the action of the mapping vt → vt+T.
It corresponds to the average loss of information per itera-
tion. Figure 4 shows λ for N = 1,000 iterates with τ = 0
as plotted versus G. Coming from negative values, λ touches
the λ = 0 axis at bifurcation points Gn (period doubling)
with decreasing distance Gn − Gn−1 until it crosses λ = 0 at
the boundary to chaotic regimes, characterized by positive λ.

For finite low pass filter time τ > 0, chaotic regions and
amplitudes of limit cycle oscillations decrease. This can be
quantified by a linear stability analysis of perception equation
(1); (e.g., Fürstenau (2003), see also Appendix A3) which
yields Eigenfrequencies β = 2π f via

βτ = − tan (βT ) . (5)

The numerical solution for τ = 1TS, T = 2TS, with simula-
tion time steps TS = T/2 = 20 ms (Fürstenau 2006, 2007)
yields for the lowest frequencies f/Hz = 9.1, 20.2, 32.2,

and 44.5. For i < 10, and dependent on τ/T , the spectrum
lies well within the range of typical EEG frequency bands
as well as those of microsaccades (3–4 Hz) and tremor (30–
150 Hz) of fixational eye movements. This demonstrates that
also the oscillatory characteristics of the stationary states pos-
sibly reflects observable physiological brain activities as well
as eye movement. The computer experiments (simulations)
in Sect. 3 seem to show the expected chaotic behavior on
the higher stationary level (P2-state) as depicted in the inset
of Fig. 6a, whereas on the lower (P1) level the predicted
limit cycle oscillations around 10 Hz dominate. This differ-
ence can be explained by the relatively high low pass filter
time constant τ/T > 0.1 [see Appendix A3 and Fürstenau
(2003)].

The limit cycle and chaotic characteristics of the fast per-
ception state oscillations as revealed in the plot of the Lyapu-
nov exponent (Fig. 4) is supported by the v(t + T ) versus
v(t) phase space plots of Fig. 5a and b for one period of
percept reversal. They are obtained by numerical solutions
of the PAM equations (1)–(3) for two different values of the
time constants τ and γ (in units TS = 20 ms) and with zero
noise (L t = 0).

Both figures clearly exhibit separated phase space regions
for the P1 (bottom left: v(t), v(t + T ) <≈ 1) and P2
(v(t), v(t + T ) >≈ 1) states. It can be seen that even with-
out noise (L t = 0), the areas are increasingly filled by the
trajectories with decreasing damping time constant (Fig. 5a:
τ = 1, Fig. 5b: τ = 0.1) and with increasing fatigue time
constant γ (increasing percept dwell time) which determines
the percept trajectory length in phase space per dwell time
period. Besides the transition to a positive valued Lyapu-
nov exponent as depicted in Fig. 4, the filling of the phase
space (ergodic trajectories) is another indication of chaotic
behavior (Schuster and Just 2005). The chaotic behavior of
idealized technical systems with time-delayed feedback and
zero noise as described by our perception state equation
(1) was investigated in detail both theoretically (Ikeda and
Matsumoto 1987) and experimentally with electro-optical
devices (Derstine et al. 1987), so that we refer to these pub-
lications for further details. An advanced method for distin-
guishing chaos from noise by the scale-dependent Lyapunov
exponent which is suitable also for short time series was pre-
sented by Gao et al. (2006c). In our case, it would be useful,
e.g., for analysis of stationary perception states with noise
term L t �= 0 which might become relevant if we include
in the simulation feedforward processing and the loop via
SC and LGN for modeling (fixational) eye movement (see
Fig. 1). This is, however, neglected within the present context
as mentioned before.

An estimate of the expected low frequency perceptual self-
oscillations between the stationary states v∗(P1) ⇔ v∗(P2)

due to the v−G coupling and attention fatigue G(v) with
time constant γ = 1.2 s may be obtained by combination

123



Biol Cybern (2010) 103:175–198 183

0 0.5 1 1.5 2 2.5 3 3.5 4
0.5

1

1.5

2

2.5

3

3.5

4(a)

v(t)

)
T

+t(v

1 Period P1 − P2 Phase Space
T = 2
tau = 1
gamma = 60
t = 0 − 300 Ts

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

v(t)

)
T

+t(v

1−Period P1−P2 Phase Space
T = 2
tau = 0.1
gamma = 100
t = 0 − 500 Ts

(b)

Fig. 5 Phase space plot of perception states P1 (lower left area, vt <≈
1), P2 (upper right region, vt >≈ 1) with zero noise for one P1–P2
period. a Time series t = 0−300Ts = 6 s, with large damping time
constant τ = 1, fatigue γ = 60, exhibiting damped limit cycle oscil-
lations of P1 and filling up of P2 phase space area. b Time series t =
0−500Ts = 10 s, with decreased damping time τ = 0.1, increased
fatigue time constant γ = 100 (i.e., increased dwell time)

of Eqs. 1 and 2 and derivation of the eigenfrequency of the
linearized differential-delay equation (see Appendix A4):

fD = 1

2π

√
1 − D2

γ (τ + T )
= f0

√
1 − D2 (6)

with f0 = 0.59 Hz = 36 min−1 or period T0 = 1.7 s and
normalized damping D = 0.358, yielding the reversal rate
fD = 0.55 Hz = 33 min−1. Although, the very rough dwell
time estimate for a single percept �(Pi) = TD/2 = 1/2 fD

due to the low hysteresis (μ = 0.2) lies at the lower end of
the typical experimental results it nevertheless predicts the
correct order of magnitude (e.g., Orbach et al. 1963; Levelt

Fig. 6 Numerical evaluation of PAM equations (1)–(3) for time dura-
tion t = 2500TS = 50 s(TS = T/2 := 20 ms). See text for simula-
tion parameters. a Perception state v(t); Stimulus-off (μ = 0.1) during
t = 0, . . . , 500 TS, stimulus-on (μ = 0.6) during t = 500−2500Ts.

Inset shows single transition and oscillations superimposed on station-
ary levels around v ≈ 1 and v = 2.5. b Attention parameter G(t)
(Eq. 2) and dynamic attention bias or preference state vb (thick line)
with vb-dynamics (Eq. 3 governed by memory time constant τM due to
coupling of vb to v)

1967; Borsellino et al. 1972; De Marco et al. 1977; Zhou
et al. 2004).

3 Computer experiments

3.1 Simulated perception–attention–memory dynamics

In this section, numerical evaluations of the coupled PAM
differential-delay equations (1)–(3) are performed with the
Matlab–Simulink code of Fig. 2 using the Runge–Kutta
solver “ode23tb” for stiff problems, i.e., fast changing
dynamics. As an example, Fig. 6a and b shows time series
v(t) and G(t) as obtained with the following parameter
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values ( time units = simulation intervall TS = T/2):
reentrant delay time T = 2TS = 40 ms, corresponding to
Lamme (2003), stimulus parameter (difference-of-meaning
of percepts) μ = 0.6, τ = 0.5, γ = 60, τG = 500, equi-
librium perception bias vbe = 1.5, Langevin force L t with
noise power Jω = 0.001 and sample time tc = 0.1 (=noise
correlation time), memory time constant τM = 1, 000, learn-
ing time constant τL = 100, 000 (i.e., learning negligi-
ble). A stimulus-off interval (μoff = 0.1, Goff = 1.5) is
selected at the beginning of the time series, with initial bias
vb0 = vb(t = 0) = 1.5.

After stimulus-on at simulation time 500TS, the v(t)
dynamics in Fig. 6a immediately starts the quasiperiodic tran-
sitions between stationary perception states P1 (near v∗ ≈ 1)
and P2 (near v∗ ≈ 2.5) with the expected superimposed mix-
ture of fast limit cycle and chaotic oscillations and noise. The
inset in Fig. 6a shows that the transition time between P1 and
P2 is of the order of 8–10TS ≈ 150−200 ms, in reasonable
agreement with the time interval between stimulus onset and
conscious perception (Lamme 2003). The superimposed fast
oscillations exhibit a damped characteristic and the domi-
nating component on the P1 state can be seen to agree with
the ca. 10 Hz estimate (dominating Eigenfrequency of Eq. 5)
obtained from the linear stability analysis.

For determining percept dwell time statistics and long
range correlations in Sect. 3.2 100 time series like in Fig. 6a
(however without stimulus-off phase) with simulation length
of 5000 TS (=100 s) and each with different noise seed and
initial values v0 = v(t = 0), G(t = 0) = G(v∗

0)(v0 =
1.5000 . . . 1.5099), were evaluated per fixed set of parame-
ters after concatenation by setting bias (memory) parameter
vb(t = 0 TS) of time series n + 1 equal to vb(t = 5000 TS)

of time series n(n = 1, . . . , 100). In this way, effective
simulation length per fixed parameter run corresponded to
ca. 160 min, yielding typically 1,300 perception intervals P1
and P2. The limitation of time series length was selected
due to computer memory requirements under Matlab ver-
sion 5.2 and for avoidance of excessive computation time
(computer hardware: Pentium (R) Dual Core, 3.2 GHz, 2 GB
RAM, Windows XP).

The attention control parameter G(t)(∼adaptive feedback
gain, sawtooth graph in Fig. 6b) exhibits the slow fatigue
dynamics which induces the fast quasiperiodic P1 ⇔ P2
transitions at the G-extrema according to the stationary hys-
teresis curve of Fig. 3a and 3b. The relative P1/P2-duration
is modulated by the adaptive attention bias vb(t) (thick line,
starting at vb0 = 1.5). vb induces a memory effect due to
coupling to the low-pass filtered perception state <v(t)>.

The mean P1–P2 reversal frequency is determined by stimu-
lus-on contrast parameter μ = 0.6 (difference-of-meaning),
the fatigue time constant γ (=1/c in Ditzinger and Haken
(1989)), damping time τ, and delay T . A typical full period
of � = �(P1) + �(P2) ≈ 300TS = 6 s is observed in

Fig. 7 Simulation with strong initial bias toward percept P2: vb0 =
2.0, v(t = 0) = 2.0. Learning dynamics activated by selecting small
learning time constant τL = 400 TS. Figure shows three time series
v(t), vb(t), μ(t). Fluctuations induce jumps from P2 into P1 starting
at t ≈ 3500TS (initial perception of P1) gradually force adaptive bias
(memory) parameter vb to the equilibrium value (preprogrammed mem-
ory value) vbe = 1.5 with onset of percept reversals due to coupling of
vb to v via τL and additional memory effect with time constant τM

Fig. 6 which corresponds to the typical experimental obser-
vations reported in the literature. It also agrees with the order
of magnitude of the linearized analytical estimate (Eq. 6)
which for small μ(= 0.2) and zero noise (Eq. 2: L t = 0)
yields � = 1.8 s in reasonable agreement with the corre-
sponding simulation result of �(P1 + P2) = 1.3 s for zero
noise and μ = 0.23, i.e., nearly vanishing v∗−G∗ hysteresis
(see Fig. 3a). The significant influence of noise in agreement
with Braskamp et al. (2006) is demonstrated through the fact
that the simulation with small stimulus parameter (hystere-
sis) μ = 0.2 and noise L t �= 0 (power Jω = 0.004, sampling
time tc = 0.1TS) yields the full period �(P1 + P2) ≈ 2.8 s,
still half the value obtained with μ = 0.6, but doubled as
compared to the simulation without noise (Jω = 0).

The fatigue dynamics dG/dt due to coupling to (vb − v)

with time constant γ is inhibited by the exponential-recovery
process (Gmean − G) with time constant τG . With the time
constant values used in the present simulations (γ /τG ≈ 10),
the inhibition of fatigue due to the recovery is small.

As a second example for the numerical solution of the
PAM equations, Fig. 7 shows a simulation with strong bias
toward percept P2 by selecting initial value vb0 = 2 and
activating learning dynamics by selecting a small learning
time constant τL = 400TS. Three superimposed curves are
shown representing the perception state v(t) and perception
bias vb(t), together with the contrast function μ (stimulus
parameter: difference-of-meaning) which switches fromμ =
0.1 (stimulus-off) to μ = 0.6 (stimulus-on) at 500 TS. The
curves show how the initial P2-state with high frequency
oscillations around the first-order stationary v-level near v =
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2.5 (corresponding to a situation with an initially unknown
P1-state) eventually starts low frequency v(t)-self-oscilla-
tions P2 ⇔ P1 at time t ≈ 3500 TS = 70 s under gradual
change of vb toward the equilibrium state vbe = 1.5. This
is due to the indirect coupling of v(t) to the perception bias
vb(t) via attention control parameter G(t). The onset of self-
oscillations (P2 ⇔ P1) with significant vb-deviation from
the equilibrium value vbe ≈ 1.5 is possible only due to large
v-fluctuations now and then originating from the stochastic
attention component (Langevin force L t realized by band
limited white attention noise Jω). Noise continuously mod-
ulates vb and from time to time together with the chaotic
and limit cycle oscillations leads to large enough P2-fluc-
tuations allowing for switches into P1. In the example of
Fig. 7, this happens for the first time around t = 3500 TS,
representing the onset of quasiperiodic self-oscillations. It
should be mentioned that the details of the v(t) pattern of
the learning phase and P1 ⇔ P2 self-oscillations can change
drastically with the slightest change of the noise seed value
used for the random number noise generator (creating sto-
chastic Langevin force L t in Eq. 2), although the dwell time
mean values �m, and standard deviations σ (see Sect. 3.2)
remain unchanged.

For comparison with experimental results of Zhou et al.
(2004) and Gao et al. (2006a,b,c) only simulations like those
of Fig. 6, however without initial stimulus-off (μ = 0) phase
are evaluated. The reported experiments were performed with
subjects viewing an ambiguous display, e.g., with a Necker
cube, and pressing a button for indicating the time of con-
scious percept reversals P1 ⇔ P2.

A typical time series of simulated dwell times is shown in
Fig. 8, indicating percept switching P1 ⇒ P2.

In order to obtain a sufficiently large number of dwell
time intervals all evaluations are based on 100 successive
simulations of 5000 TS = 100 s (nominal simulation time
interval TS = 20 ms). Dwell times were reliably determined
by evaluating zero crossings between P1 and P2 stationary
v-levels after subtraction of a threshold value v = 1.7
from the smoothed time series, using a self-written Matlab
code. For smoothing, the high frequency limit cycle and cha-
otic oscillations (e.g., eigenfrequency spectrum according
to Eq. 5), low pass filtering of original time series was per-
formed by applying three iterations of a standard digital filter
(Matlab function “filter(b, a, X)”, with feedforward coeffi-
cient vector b of dimension (windowsize) 80, feedback coef-
ficient a = 1, X = data vector containing all (>500,000)
v-values of the simulated time series). The small number
of incorrectly determined P1–P2 reversals due to remain-
ing large P2 fluctuations were eliminated by ignoring dwell
times <10 sample intervals TS(� < 200 ms). This procedure
ensured that no significant deviation of the dwell time sta-
tistics (relative frequency) from the �-density (see Sects. 1.4
and 3.2) at small perceptual duration times was created by

Fig. 8 Time series of percept duration intervals (dwell times) �(P2).
a Simulated are the experimental button presses in natural order for tran-
sition between perceived (stationary) states P1 ⇒ P2 in Fig. 3. b Ran-
domized order of time interval values exhibiting white noise (random
walk process) with the same variance s2 as in a

the high frequency high amplitude fluctuations as depicted
in Fig. 6a.

The simulated �(P2)-duration time series in Fig. 8a as
well as the randomized version in Fig. 8b reproduce qual-
itatively the experimentally obtained results of Gao et al.
(2006a,b,c). Whereas Fig. 8a clearly exhibits some kind
of structure within the time series, the randomized data in
Fig. 8b show white noise with the same variance, however
constant power spectral density. Only �(P2)-intervals are
shown due to the P1–P2 asymmetry (mean values �m(P1) �=
�m(P2)) mentioned before, and discussed as follows.

3.2 Dwell time distribution and long range correlations

The numerical simulations are analyzed with respect to the
relative frequency of perceptual duration times�(P1),�(P2)

and to long range correlations. The dwell time statistics (rela-
tive frequencies) was shown in numerous experimental inves-
tigations (e.g., Levelt 1967; Borsellino et al. 1972; Zhou et al.
2004; Nakatani and van Leeuwen 2005, 2006) and theoret-
ical modeling approaches (e.g., Ditzinger and Haken 1989;
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Kelso et al. 1995; Natsuki et al. 2000; Fürstenau 2006) to
correspond to the density of a gamma (�)-distribution as a
reasonable approximation with shape parameter α and scal-
ing parameter λ.

f (�) = λα �α−1

� (α)
exp {−λ�} (7)

with gamma function �(α). Mean and variance are given by
�m = α/λ and σ 2 = α/λ2, respectively, and coefficient of
variation cv = σ/�m = 1/

√
α which is independent of the

mean (e.g., Dodson and Scharcanski 2003).
As mentioned in the Sect. 1.4, the nonlinear time series

analysis in this study is based on the determination of the
self-similarity or Hurst parameter H(=0 . . . 1) which is an
established indicator of the fractal content or long range cor-
relations (Mandelbrot 1991; Beran 1992). H = 0.5 repre-
sents the random process (random walk or Brownian motion).
Because all of the usually employed methods require very
long time series for determination of reliable H -value which
very often are not available, different methods have been
developed which may be used for critical comparison and
consistency checks of the resulting H -estimates. Here, we
use three different methods which after critical discussion in
Sect. 4 lead to a value in good agreement with the experi-
mental results of Gao et al. (2006a).

3.2.1 Relative frequency of perceptual dwell times

A theoretical motivation for focusing on the �-density as fit-
ting function for the relative frequencies of dwell times is
provided by recent study of Dodson and Scharcanski (2003).
They outline an information theoretic differential geome-
try of the two-parametric family of �-distributions which
contains the exponential distribution (α = 1) as a special
case. The results indicate this family to have a natural role
in representing departures from a random process. α = 1
represents the Poisson process with maximum information
entropy which was often used to model waiting times in
distributed communication networks. Larger α-values corre-
spond to smoothing or temporal dispersion of events having
a lower variance than Poisson. A gamma-density with inte-
ger α is the α-fold convolution of the exponential. Because
in experiments often (approximately) integer α-values (typ-
ically 2, 3, 4) are observed several authors assume this as an
indicator for a discrete stochastic multistep process with α

successive discrete cognitive states (e.g., Murata et al. 2003).
The experimental literature as well as theoretical consider-

ations (Levelt 1967) often yield cv = σ/�m = 1/
√

α ≈ 0.5,
however, with large experimental inter-individual scattering
of mean values of α between 2 and 5 s (e.g., Borsellino
et al. 1972). Of course, this also depends on the detailed
experimental conditions. For the present theoretical model,

Table 1 �-distribution parameters of simulated percept duration time
series �(P2) as obtained with vb0 = vbe and different memory/learning
time constants τM, τL for μ = 0.6, γ = 60, τG = 500, T = 2, τ =
0.5, Jω = 0.004 : listed are shape parameter α, P2-duration mean �m
(in seconds), and relative standard deviation of �-distribution fit to rel-
ative �m frequencies

τM τL α(±δα) �m/s σ/�m

1,000 2,000 3.5(0.2) 2.7 0.53

1,000 100,000 2.2(0.2) 2.7 0.67

2,000 100,000 3.1(0.2) 2.5 0.57

3,000 100,000 3.6(0.3) 2.4 0.53

10,000 100,000 4.3(0.3) 2.4 0.48

50,000 100,000 4.4(0.3) 2.6 0.48

δα = 95% confidence intervals

these observations were reproduced in previous publications
(Fürstenau 2004, 2006, 2007).

As a new result Table 1 lists the data of a series of simula-
tions with varying memory time constant τM. Initial results
were provided already in Fürstenau (2007). Average shape
parameters α and average perceptual duration times �m are
listed of 100 simulation runs with N = 5000 time steps TS

each (=100 s for TS = T/2 = 20 ms) and parameters as
those used for Fig. 6 (Sect. 3.1). For the stochastic Langevin
force L t in Eq. 2, a noise power spectral density Jω = 0.004
is required to match the ratio σ/�m ≈ 0.5, with the given
delay and time constants.

For a simulation run with averaging over 100 time series
mean values �m(P2) = 2 − 3 s and coefficient of varia-
tion cv = σ/�m = 1/

√
α ≈ 0.5−0.6 are observed which

are within the range of the above-mentioned experimen-
tal findings. The magnitude of �m for μ = 0.6 is about
2–3 times the analytical estimate of Eq. 6 with μ = 0.2,

near the node bifurcation threshold μ = 0.18. Simulation
with low contrast value μ = 0.23 without noise yields per-
cept reversal frequency f = 48 min−1(�m(Pi) = 0.6 s)
in reasonable agreement with the analytical estimate for
μ = 0.2, fD = 33 min−1(�D = 0.9 s) as obtained via Eq. 6
with zero noise. While mean values �m decrease with con-
trast parameter μ and are determined basically by the fatigue
time constant γ = 60 TS = 1.2 s, the ratio σ/�m ≈ 0.5
requires a suitable choice of the Langevin force L t with
attention noise spectrum Jω and noise sample time tc, which
may be compared with the speed of attention-parameter
variation �G/�t (typically 1.5/250TS ≈ 0.3 s−1). This has
the same order of magnitude as the standard deviation s esti-
mated via the covariance Jω/tc = s2 = 0.04. With zero
noise (Jω = 0, all other parameters unchanged) simulations
yield periodic P1–P2 self-oscillations with purely determin-
istic superimposed limit cycle oscillation exhibiting a percept
reversal frequency f = 20 min−1(�m(Pi) = 1.5 s) which
increases to the above-mentioned 48 min−1 for μ = 0.23. A
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purely periodic P1 ⇔ P2 self-oscillation for the zero noise
case (Jω = 0) was shown already with the dynamical models
of Ditzinger and Haken (1989) and Wilson (1999).

For τM,L > 50, 000, the shape parameters α, mean per-
cept durations �m, and standard deviations σ converge to
those of the previously reported simulations without mem-
ory and learning (Fürstenau 2006, 2007), i.e., with constant
perception bias vb. Large τL,M reduces the memory and
learning effects and represents quasi static preference ratio.
Table 1 indicates a slightly increasing coefficient of vari-
ation with decreasing time constant τM, starting at cv =
σ/�m ≈ 0.5(α = 4) for the memoryless condition (large
τM). This corresponds to increasing long range correlations
due to growing influence of deterministic as compared to
stochastic (attention noise) contributions (see below).

3.2.2 Long range correlations

Figure 9a and b shows the autocorrelation functions (ACF)
obtained from a time series like that one of Fig. 8 for τM =
3, 000 TS and for τM = 100, 000 (i.e., negligible influence
of memory effects), respectively.

While the mean ACF of Fig. 9a appears significantly
shifted toward positive values with indication of weak oscil-
lation, the randomized case of Fig. 9b exhibits the expected
zero correlation corresponding to white gaussian noise. The
weak shift of the original reversal time series ACF is a
first indication of long range correlations (see next section,
Fig. 13). This was shown by Gao et al. (2006a) with the same
kind of ACF for their experimental data resulting in a quanti-
tatively surprising agreement with our simulation, even with
regard to the oscillatory features.

For second-order self-similar or fractal time series X =
(Xi , i = 0, 1, 2, . . .), the autocorrelation function is inde-
pendent on the time ti and depends only on the time difference
(Gao et al. 2007). Second-order stationarity was verified for
the time series underlying Fig. 9 by calculating ACF’s for 10
non-overlapping data blocks and checking for the indepen-
dence on time, in this way indicating dependence on time lag
k = i − j only.

In what follows, it will be shown that with the present
model the coupling of the preference parameter (attention
bias) vb to the perception state leads to the long range corre-
lations via memory effects. They are quantified by the Hurst
parameter H . Values within the range 0.5 < H < 1 char-
acterize so-called second-order self-similar processes with
persistent correlation. Quantitative estimates of H may be
obtained in different ways. Gao et al. (2006a) used the popu-
lar dependence of the variance of the dwell-time time series
{�i , i = 1, 2, . . . , n} on the number of data points m used
for averaging non-overlapping blocks of size m of the original
data (variance–time (VT) method; e.g., Beran 1992; Gao et al.
2006b), via

Fig. 9 Autocorrelation functions calculated from P2-dwell times of
reversal time series of Fig. 6a. Simulation parameters μ = 0.6, vbe =
1.5, T = 2, τ = 0.5, γ = 60, τG = 500, Jω = 0.004 with sample time
tc = 0.1 (time units TS = T/2 = 20 ms). Thick and thin lines repre-
senting mean and standard deviation respectively of 10 autocorrelation
functions using succeeding sections of length 5000 TS of the whole time
series. a Simulation with memory time constant τM = 3000TS indicat-
ing long range dependence (average value of ACF > 0). b Simulation
with τM = 100, 000TS indicating zero correlation

var
(
�

(m)
t

)
= σ 2m2H−2 (8)

with variance σ 2 = var(�(1)
t ). This relationship is valid for

exactly second-order self-similar processes and for lim m →
∞. In Gao et al. (2006b), the authors investigate multifractal
processes and show the equivalence of Eq. 8 with the fluctu-
ation analysis (FA) of a random walk process derived from a
zero mean fractional Gaussian noise process. They discuss,
in detail, the validity range of this and related methods which
is particularly important near H = 0 and 1. These aspects
of the analysis will be discussed in Sect. 4. Equation 8 pro-
vides an estimate of H via the slope β of the log(variance
(�, m)) versus log(sample size m) plot through the relation

123



188 Biol Cybern (2010) 103:175–198

Fig. 10 Variance–time analysis. Plot of log(variance) versus log(sam-
ple size m) of �(P2) for P2-dwell times as obtained from simulations
with 100 runs of 5000 TS each. Simulation parameters like in Fig. 8a.
Linear fit (straight line; dotted lines = 95% confidence intervals for pre-
dicted responses of single observations) for estimating H via the slope
of the log(variance)–log(time) plot. a Attention bias (preference) time
constants τM = 3000, τL = 100, 000, evaluation of 1,276 discrete per-
cept intervals. b No significant memory and learning effect (H ≈ 0.5,

corresponding to random walk) with τM = 100, 000, τL = 100, 000,

evaluation of 1,608 discrete percept intervals

H = 1 − β/2. Figure 10a and b depicts this VT plot with a
sample size range m = 1−7 as used by Gao et al. (2006a).
Simulations are evaluated for the two cases with and without
significant memory effect, expressed by the memory time
constants τM = 3, 000 and τM = 100, 000, respectively.

In Fig. 10a, the variance (�, m) of the series of 1,276 per-
ceptual duration times �, splitted into sections of length m
for averaging, is plotted versus the sample size m in double
logarithmic scale. The H parameter is determined from the
slope β by fitting a straight regression line to the data (with
log2(m) ≤ 7) using the sample range log2(m) ≤ 4, yielding
H = 0.85(±0.01). The fit (solid line) includes 95% con-
fidence intervals (dotted line) of parameter estimates. Only
variance values up to averaging sample size log2(m) = 4 was
used due to the decreasing statistical reliability with decreas-
ing number of averaged time series data with increasing m.
For memory time constant τM = 3000 TS = 60 s and learn-
ing time constant τL = 100, 000 (which is sufficiently large
to show no significant effect), a significant long range cor-
relation is observed due to the (short term) memory effect.

Table 2 Hurst parameters of simulated perceptual duration time series
�(P2) as obtained with initial value vb0 = vbe = 1.5 and different
memory / learning time constants τM, τL for μ = 0.6, γ = 60, τG =
500, T = 2, τ = 0.5, Jω = 0.004. δH = 95% confidence intervals

τM τL HKG(±δH) Hvar(±δH)

1,000 2,000 0.65(0.07) 0.79(0.02)

1,000 100,000 0.75(0.08) 0.86(0.02)

2,000 100,000 0.71(0.07) 0.88(0.02)

3,000 100,000 0.68(0.07) 0.85(0.02)

10,000 100,000 0.58(0.07) 0.73(0.02)

50,000 100,000 0.51(0.06) 0.58(0.02)

100,000 100,000 0.49(0.06) 0.56(0.02)

In addition to the statistical uncertainty of δH ≈ 0.02 corre-
sponding to the 95%-confidence interval of parameter esti-
mates, a systematic error of the H -values obtained from the
slope within the log2(m) = 1−4 range has to be assumed.
Reason is the limes condition (large m) for the validity of
Eq. 8 which suggests to use the larger m-range for determin-
ing the slope value β. For estimating the order of magni-
tude of this systematic error, also the range log2(m) = 3−6
was used for fitting a straight line to the data, yielding H =
0.93 ± 0.02 due to the lower slope value, as can be guessed
from Fig. 10a.

The memory time constant τM as origin of long range cor-
relations is demonstrated with Fig. 10b where τM = 100, 000
is selected (vanishing memory effect), yielding H ≈ 0.5
within the given uncertainties, i.e., a random walk process.
A set of H -values for memory time constants τM between
τM = 1000 TS = 20 s and 100, 000 TS = 33 min is shown in
the last column of Table 2.

For constant learning time constant τL = 100, 000 TS, it
indicates the increasing long range correlations with decreas-
ing τM, starting from a random noise process for τM >

50, 000 TS = 16 min. The magnitude of the systematic error
to be considered with the VT method is indicated using the
log2(m) = 3−6 range for the linear regression. Compared to
the values of Table 2, the first value Hvar(τM = 1, 000, τL =
2, 000) is smaller (0.69), the next two values are the same
(within the standard error), whereas the last four values are
significantly larger than those with the log2(m) = 1−4
range.

As an alternative for estimating H , the method of Kettani
and Gubner (2006) (KG-method) is employed which also
applies to second-order self-similar or fractional Gaussian
processes. It estimates H via the lag-1 ACF ρ(1) = 22H−1−1
and for sample size n also provides an upper boundary of the
95% confidence interval

Ĥn ± δ Ĥn = 0.5
[
1 + log2

(
ρ̂n (1)

)] ± 5/
√

n. (9)
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The authors show that for second-order self-similar or
fractional ARIMA processes their method yields more reli-
able results (smaller confidence interval) as compared to the
widely used wavelet method (e.g., Gao et al. 2007). Table 2
lists in column 3, the HKG values of the �(P2) time series
for memory and learning time constants τM, τL between
1, 000 TS and 100, 000 TS. For constant τL = 100, 000,
the HKG-values increase from 0.5 (random noise) to 0.75
with τM decreasing from 16 min to 20 s, again indicating
significant long range correlations, although significantly
smaller than those obtained with the VT method. Large
τL,M values >10,000 again reduce the memory and learn-
ing effects approaching quasi static preference parameter
vb(dvb/dt ≈ 0) with increasing time constant. Correspond-
ingly, the last rows of the table exhibits vanishing long range
correlations (H ≈ 0.5). All simulations, however, confirm
significant long range correlations with H increasing when
τM decreases (memory effect increases). The learning effect
(τL) exhibits only weak influence on H , compared to τM

because the former only acts in the beginning of the time
series.

For both methods, significant long range correlations
(H > 0.5) are observed due to the attention bias dynam-
ics if the memory time constant τM < 50, 000 TS = 100 s.
In addition the learning component of dvb/dt influences the
dynamics in the initial phase if |vbe − vb(t = 0)| > 0 (M
can switch from 0 to 1), but only for sufficiently small τL,

typically <2,000. If vbe = vb0 = vb(t = 0) the bias vb

corresponds to its preset equilibrium value vbe and learning
stops whereas the dynamic memory variation continues due
to coupling to vt.

The third method used to derive an estimate of the Hurst
parameter uses the power spectral density of the dwell time
series which is related to the variance–time method (Eq. 8)
via the Wiener–Khinchine theorem (Beran 1992; Gao et al.
2007). A 1/ f α characteristic is predicted in the limit of low
frequencies f

PSD = f 1−2H. (10)

Figure 11a and b shows in double-logarithmic scale the fre-
quency characteristics for τM = 3, 000 (significant memory
effects) and τM = 100, 000 (negligible memory effects),
respectively, (τL = 100, 000 in both cases) obtained by
evaluating a single long time series of 50, 000 TS yielding
about 850 percept reversals as automatically determined with
the threshold detection code mentioned above (Sect. 3.1).
The dwell-time series for spectral analysis is derived by
equidistant sampling of the percept series at time intervals
�t = 5 TS = 100 ms yielding 10, 000�t samples for cal-
culating the power spectral density (PSD) via fast Fourier
transform (using Mathematica 5.2 time series toolbox). Min-
imum and maximum frequencies are ωmin = 210−4 rad/�t
and π rad/�t, corresponding to a full wave extending over

Fig. 11 Power spectral densities up to ω = π/�t, with sampling inter-
val �t = 5TS, of percept duration time series for a τM = 3000 and
b τM = 100, 000. Global reversal rate maximum due to deterministic
dynamics of Eq. 1–3 at ω = 0.1 rad/�t

the whole time series N = 10, 000�t and a minimum period
of 2�t , respectively. The spectrum exhibits four character-
istic sections which may be attributed to different origin.

The PSD’s in Fig. 11a and b exhibit significant differences
in the low frequency range ω < 0.01 rad/�t. A more or less
linearly decreasing section in the double log scale, represent-
ing roughly 1/ f α characteristic, can be seen between 0.003
and 0.03 rad/�t in Fig. 11 a. The difference between the
two spectra a and b for ω < 0.02 rad/�t may be attrib-
uted to the memory effect-induced through the short time
constant τM = 3, 000. A broad global frequency peak with
several local maxima is observed around 0.1 rad/�t, with a
decrease with roughly 1/ f characteristic up to the high fre-
quency limit at π rad/�t which is not of interest here. The
peaks at ω ≈ 0.06 and 0.1 rad/�t correspond to the full peri-
ods of percept reversals 2�m(P1) ≈ 2π0.1 s/0.07 = 9 s and
2�m(P2) ≈ 6 s. As expected mean reversal rates of 1/�m =
13 . . . 20 transitions P1 ⇔ P2 min−1 (�m = 3 − 4.5 s) are
observed which again appear to be consistent with the analyt-
ical approximation of Eq. 6, and which are reasonable agree-
ment with the usual experimental findings (e.g., Borsellino
et al. 1972; De Marco et al. 1977; Zhou et al. 2004).

From the PSD’s of Fig. 11, only the range between
0.003 rad/�t (corresponding to a time interval of 200 s or
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Fig. 12 Log–log plots of power spectral density of percept duration
time series from frequency interval ω = 0.003−0.012 rad/�t of Fig.
11. a τM = 3000: PSD exhibits decreasing general trend which is fit-
ted via linear regression corresponding to 1/ f α-characteristic (Eq. 11)
yielding Hurst parameter H ≈ 0.8. Dotted lines indicate 95% confi-
dence intervals of predicted responses of single observations. b Negli-
gible memory effect with τM = 100, 000 yielding H ≈ 0.5 (random
walk)

ca. 50 average percept intervals �m) and 0.012 rad/�t (or
ca. 5 �m) is evaluated for determining the long range corre-
lations via Eq. 10 using H = (1 − β)/2, with β = slope in
the double-logarithmic plot of the selected part of the PSD.
Like Gao et al. (2006a), we take a linear fit to the log–log plot
of this PSD interval as indicative of the 1/ f α noise charac-
teristic of the process and obtain the results shown in Fig. 12
a and b.

Equation 10 is valid in the limit of low frequencies (Beran
1992; corresponding to the large sample size limit of the
variance–time method; Eq. 8). Due to the long time series of
50000 TS this condition more or less appears to be fulfilled, so
that the H -estimate as obtained via the slope of the linear fit to
the data (−0.29±15% standard error) does not suffer the sys-
tematic error of the VT-method. On the other hand, the fit cov-
ers only a the small frequency range, and it probably is a lower
limit because the slope obtained by the linear regression is
increased by the rather broad frequency peak of the self-
oscillator reversal rate 1/�m in the PSD shown in Fig. 11.
The H -value obtained via the PSD (H = 0.77 ± 15%) for
τM = 3, 000; H = 0.44 for τM = 100, 000 lies between the

corresponding values HKG, Hvar in Table 2, and is in good
agreement with the experimental values presented by Gao
et al. (2006a,b,c). Their spectral range for the dwell times
between switches ln( f ) = −3.4, . . . ,+0.6, corresponding
to full reversal periods (between P2-percepts in our case)
ln(ω) ≈ ln( f ) + ln(2π) − ln(2) = (−3.4, . . . ,+0.6) +
1.84 − 0.7 = −2.3, . . . ,+1.7 covers a larger interval than
ours. The range in our simulations extends to lower frequency
values (−6.25) due to the long time series of 50000 TS =
17 min, however, is clipped also at a lower high frequency
value (−4.5 instead of +1.7) to prevent any distortion from
the large 2�m-peak with �m ≈ 2.5−3 s.

4 Discussion

The present minimum architecture of a nonlinear dynam-
ics model for simulating bistable perception via mapping to
basic thalamocortical reentrant loops yields a number of time
series characteristics in good quantitative agreement with
experimental results (for references see Sect. 1).The linear-
ized analytical approximation (Eq. 6) reveals the self-oscil-
lator dynamics as basic mechanism by deriving the correct
order of magnitude of the percept reversal eigenfrequency
for small stimulus parameter value (difference-of-meaning)
μ, with fatigue time constant γ = 60 TS = 1.2 s, feedback
delay T = 2 TS = 40 ms, and low-pass filter time constant
τ = 1 TS.

Previous modeling approaches reported in the literature
often focused on reproducing the two-parametric gamma
density of the dwell-time time series. As mentioned in
Sect. 3.2, this is motivated by its statistical properties as
detailed in recent study of Dodson and Scharcanski (2003). It
shows the shape parameter α to measure the deviation from
the random (Poisson) process (α = 1) with maximum infor-
mation entropy. Experiments of Murata et al. (2003) provided
support for the early proposal of integer shape parameter
values (e.g., α = 4; Levelt 1967), indicating a multi-step
(α = 2, 3, 4) cognitive process. It corresponds to a stochas-
tic clock generating exponentially distributed pulses and per-
cept switches after each αth pulse (De Marco et al. 1977).
Although, the α-values of the present results are in good
agreement with the typical values published in the literature
(a = 2−4.5), they give no indication of integer values.

The present evaluation goes beyond the modeling of dwell
time distributions by applying nonlinear time series analy-
sis to the stochastic sequence of dwell times. It provides a
new approach for evaluating and quantifying deviations from
the random case (i.e., Poisson process with shape parame-
ter α = 1) which were found experimentally by Gao et al.
(2006a). The focus here is on the long range correlations or
fractal character of time series as characterized by the self-
similarity or Hurst parameter H which is shown to be explic-
itly dependent on the memory time constant τM of the PAM
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(perception–attention–memory) equations used for formal-
izing the model. The three methods used in this analysis for
determining H -values provide consistent results concerning
the H dependence on memory time constant τM. They differ,
however, with regard to the magnitude of the effect and have
to be discussed with regard to problems mentioned in Gao
et al. (2006b).

The Hurst parameter HKG = 0.6−0.75 (for tM ≤ 3000)
as obtained with the Kettani–Gubner method is systemati-
cally smaller as compared to Hvar(0.7−0.85) obtained with
the variance–time (VT) method which was also used by Gao
et al. (2006a) for the evaluation of their bistability exper-
iments. The evaluation of the f α-process after equidistant
sampling and Fourier transform of the dwell time series pro-
vides H -values in between the two other methods. As men-
tioned before the H -values obtained by the VT-method suffer
a systematic error because they are valid only for the limit of
large sample size m whereas for reason of sufficient statistics
the linear regression procedure was limited to log2(m) = 4.

No such problem exists for the evaluation of the f α-process
because, in this case, large sample size corresponds to the
low frequency limit. The power spectrum of the dwell time
series could in fact be (only) evaluated in a low frequency
range, providing significantly lower H -values. In the present
analysis, I follow the recommendation of Gao et al. (2006b)
and use the spectral method not alone but for cross-check-
ing only. The results can be treated as upper limit due to the
distortion of the spectrum by the broad mean reversal rate
(1/�m) frequency peak originating from the self-oscillator
dynamics. The lowest values with H ≈ 0.7 (memory time
constant τM = 60 s) are obtained with the method based on
the lag-1 ACF (Kettani and Gubner 2006).

As an evaluation of ACF’s of simulated perceptual dura-
tion time series revealed no significant time dependence (see
Fig. 9), stationarity appears to be fulfilled as one condition
for the applicability of the algorithms. However, all three
methods are derived for second-order self-similar processes
which might not be exactly fulfilled for the PAM-model time
series. Therefore, it is of interest to also compare the autocor-
relation functions obtained from the computer experiments
with the ideal one for the long range-dependent process or
fractional Gaussian noise which is the necessary and suffi-
cient condition for the validity of the three methods used for
determining H (e.g., Gao et al. 2006b):

r(k) = 1

2

[
(k + 1)2H − 2k2H + |k − 1|2H

]
(11)

Figure 13 depicts this ACF (lag k) for H values between
0.5 (Brownian motion or random walk process) and 1 (100%
correlation).

By comparison with Fig. 9a, it can be seen that a H -value
between 0.65 and 0.7 exhibits the best agreement with the
simulation results. A formal estimate may be obtained by

Fig. 13 Autocorrelation function of fractional Gaussian noise (Eq. 11)
for different values of Hurst parameter H , as necessary and sufficient
condition for the validity of the variance-time method (Eq. 8). Curves
may be compared with simulation results of Fig. 9 for a H estimate:
H ≈ 0.65−0.7

means of a nonlinear least squares fit and utilizing the approx-
imation to Eq. 11 for large k (Gao et al. 2007):

r (k) = H (2H − 1) k2H−2. (12)

Using the Matlab function nonlinear fit (X, y, fun, b0) (with
y = vector of dependent variables (i.e., k = 1−25 AC val-
ues), X = design matrix of independent variables (i.e., k =
1−25), fun = model function (Eq. 12), b0 = initial estimate
of the parameter vector (i.e., H0)), we obtain H = 0.65 ±
0.03 (with a 95%-confidence interval δH/H = 5%) which
appears to be an additional confirmation of our HKG-result.
This means that HKG of the Kettani–Gubner method (column
3 of Table 2) should be taken as the most reliable value of the
present analysis. The corresponding memory time constant
as obtained from Table 2 (column 2) for HKG = 0.6−0.7 is
τM = 2000−10, 000 TS ≈ 1−3 min.

Gao et al. (2006a, 2007) provide a critical analysis of the
methods used in the present study which are related to the
fluctuation analysis (FA) method of a random walk process
derived from the fractional Gaussian noise process. FA, in
turn, is discussed as a special case within the multifractal
formalism which shows that H -values can be trusted if they
do not take values near H = 0 and H = 1, a condition which
is fulfilled in the analysis of the present study. The same con-
clusion was drawn already by Gao et al. (2006a) for their
analysis of the experimental results.

The general agreement of the simulations with the exper-
imental results in Gao et al. (2006a) (Hvar = 0.6−0.84,

obtained for different subjects with binocular rivalry and
Necker cube perspective reversal experiments) supports the
fractal character of the simulated reversal time series. This
finding again fits into the proposed picture of underlying
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nonlinear brain dynamics as proposed by Gao et al. (2006a)
and as derived from analysis and theoretical modeling of
EEG time series (e.g., Lutzenberger et al. 1995; Dafilis et al.
2001; Burke and de Paor 2004).

The prediction of the high frequency (>5 Hz) limit cycle
and chaotic oscillations of the perception state variable of
Eq. 1 (Figs. 4, 5, 6, and 7; Appendix A2 and A3; see also
Ikeda and Matsumoto 1987; Derstine et al. 1987) due to the
nonlinear feedback with delay T = 40 ms, superimposed on
the low frequency self-oscillations between the metastable
stationary perception states (P1 ⇔ P2) is consistent with
recent research of these and other authors in the analysis and
modeling of EEG time series. It supports the relevance of the
chaotic and fractal character of brain dynamics, with addi-
tional stochastic noise components. It contradicts, however,
the assumption of a purely stochastic (e.g., Poisson) process
(e.g., De Marco et al. 1977; Merk and Schnakenberg 2002)
as origin of the dwell time statistics.

In contrast to these authors, with the present dynamical
systems approach the order of magnitude of the reversal rate
(mean reversal rate 1/�m) can be derived from a simple
Thalamocortical self-oscillator model via analytical approx-
imation (Eq. 6, Appendix A4). Without noise (L t = 0) purely
periodic P1–P2 alternations between the stationary percepts
are obtained via integration of the PAM equations, like in
Ditzinger and Haken (1989). This means that the limit cycle
and chaotic oscillations superimposed on the stationary states
P1, P2 as depicted in Fig. 5, 6, and 7 is not the main origin of
the dwell time statistics. The variance of the gamma-density
of dwell times as reasonable fitting curve is determined by
the stochastic noise power (L t �= 0), i.e., dissipative effects
(e.g., Haken 2002), however, modified by memory effects
(via vb(t)) which are quantified by the Hurst parameter.

It may be speculated that limit cycle and chaotic oscil-
lations become important for understanding fixational eye
movements (tremor and microsaccades) due to coupling of
the Thalamocortical loops to the eye movement loop via
SC and LGN in Fig. 1, which is neglected within the pres-
ent model.

The advantage of parametric parsimony of the present
scalar model of cognitive bistability with only one percept
variable v is paid for with the problem of non-symme-
try between P1- and P2-dynamics, as mentioned already in
Sect. 2.1 and depicted, e.g., in the phase space plots of Fig. 5a
and b. This may be understood by inspection of the hysteresis
curve in Fig. 3. Both the first-order S-shaped hysteresis curve
and the pitchfork period doubling bifurcations show some-
what different behavior for the P1 (lower) and P2 (upper)
v-state, giving rise to differences in limit cycle and chaotic
oscillation amplitudes and mean perceptual duration times.
Although, this certainly influences the exact numerical val-
ues of the statistical parameters of the numerical simulations
(e.g., different mean and variance of P1 vs. P2 gamma-den-

sities of perceptual duration times; Fürstenau 2004), it does
not change the general conclusions.

The asymmetry may be eliminated at the cost of dou-
bling the model complexity (doubling of number of model
parameters) by means of attributing a set of PAM equa-
tions {(1)(2)(3)}i to each percept vi , i = 1, 2, and
adding an inhibitory coupling phase term cijvj to the cos-
argument, with typically ci j ≈ 0.1, yielding a vector
model {v1(t), v2(t); G1(t), G2(t); vb1(t), vb2(t)}. An exam-
ple simulation is presented in Fürstenau (2009). This is com-
parable to Ditzinger and Haken (1989) and similar models
such as proposed recently by Wilson (1999), Hock et al.
(2003), and Noest et al. (2007). With the vector model the
perception state P1 (v∗ ≈ 1) of the present reduced model
corresponds to the perception ground state P0 of each percept
Pi (= upper level of the hysteresis curves v∗

i (Gi ), like that
one of Fig. 3) which may be characterized by its own set of
parameters (μ, τ, γ, τG, τM, τL)i .

Similar to Haken’s synergetic order and control param-
eter equations some of the other authors use two pairs of
coupled perception state and adaptation equations. Noest
et al. (2007), like Fürstenau (2003, 2006), emphasize the dif-
ference between the quasiperiodic perception state switch-
ing under continuous stimulus presentation and the stimulus
onset dynamics (in the present model μ < μn = 0.18 ⇒
μ > 0.18) giving rise to a node bifurcation which leads to a
noise-induced biased (through vb) selection (choice) between
the alternative percepts.

With suitable coupling between v1, v2 and zero noise, v1

and v2 are in full antiphase (e.g., Ditzinger and Haken 1989;
Wilson 1999). Due to this redundancy, important properties
of the system dynamics may be obtained with the present
simplified scalar PAM-model with coupling between a single
perception state order parameter v, an adaptive feedback gain
(attention) control parameter G, and an adaptive bias (mem-
ory) parameter vb. The preliminary results obtained with
a two-component vector model {v1, G1, vb1; v2, G2, vb2}
show no significant deviations from the present ones with the
scalar model, and they will be published separately. An exam-
ple simulation of the vector model is presented in Fürstenau
(2009).

An interesting aspect of the simulation results in Table 2
concerns the comparison with experimentally observed dif-
ferences between binocular rivalry and ambiguous figure
reversal. Whereas binocular rivalry appears to involve a more
automatic, stimulus driven form of competition (Deco and
Marti 2007) and exhibits no chaotic contribution in the rever-
sal time statistics (Richards et al. 1994) (Lehky 1995), alter-
nation rates of ambiguous figure reversal, on the other hand,
show strong response to selective attention, i.e., can be vol-
untarily controlled by observers (Meng and Tong 2004).
Moreover, by means of the correlation dimension D2 (as
another indicator of self-similarity and chaotic dynamics)
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from experimental reversal time series of ambiguous figures,
Richards et al. (1994) determined a significant deterministic
contribution which was not the case for rivalry. In terms of the
present model, binocular rivalry corresponds to a large bias
time constant τM (last row of Table 2) with vanishing long
range correlations (H ≈ 0.5). Within the present model, the
reason for long range correlations are attributed to memory
effects and they vanish if the memory time constant exceeds
ca. 15 min (τM = 50000 TS), i.e., if memory changes are
slow.

5 Conclusion and outlook

Based on a previously introduced behavioral recursive non-
linear dynamics model of cognitive bistability (e.g., Fürste-
nau 2003, 2004, 2006, 2007) long range correlations within
time series of percept changes are predicted due to per-
ception–attention–memory (PAM) coupling. The present
model represents a kind of minimum architecture and can
be mapped to simplified reentrant thalamocortical circuits
within the association cortex including attentional feedback
modulation of the ventral (“what”) stream (e.g., Itti and
Koch 2001). The dynamics of the phase oscillator percep-
tion circuit is determined by reentrant adaptive gain with
delay T ≈ 40 ms (Lamme 2003) which gives rise to self-
oscillations of the order of 20 percept reversals per min-
ute due to attention fatigue, in addition to the superimposed
small delay-induced chaotic and limit cycle oscillations of
the metastable perception states which for our specific per-
ception state equation (1) was investigated in detail by Ikeda
and Matsumoto (1987). The numerical analysis is confirmed
by a linearized analytical approximation.

It was verified already in previous study (Fürstenau 2003,
2004) that like with the synergetic model of Ditzinger and
Haken (1989), simulated perceptual reversal time statistics
can be fitted by �-distributions with mean and variance cor-
responding to the experimentally observed range of some
seconds (Orbach et al. 1963) (Borsellino et al. 1972; Nakatani
and van Leeuwen 2005; Zhou et al. 2004). The analysis of the
computer experiments shows that the variance is determined
by the noise power spectral density of the attention param-
eter whereas the mean dwell time is determined mainly by
the self-oscillator characteristics with fatigue time constant
γ , damping time τ and reentrant delay T , however modified
by the stochastic noise. That is why the present model under-
lines the importance of the Fluctuation–Dissipation theorem
(which plays a fundamental role in physics) also for cogni-
tive processes (e.g., Haken 2002). The estimates of the shape
parameter α > 1 indicate the underlying stochastic process
to be smoothed (i.e., less random) as compared to the ran-
dom Poisson process characterized by maximum information
entropy (Dodson and Scharcanski 2003)

The present theoretical results on long range correlations
(memory effects) which reproduce the experiments of Gao
et al. (2006a) indicate the necessity to extend and modify
the proposed picture of a cognitive of stochastic clock with
percept switching after α discrete cognitive processing steps
(clock pulses) if integer α are assumed (e.g., Murata et al.
2003). For simulating memory effects, the dynamics of the
attention control parameter (=feedback gain) is biased by an
adaptive preference parameter which in turn is coupled to
the perception state. Reversal time series exhibit long range
correlations characterized by the Hurst (second-order self-
similarity) parameter with H > 0.5 in agreement with exper-
imental results of Gao et al. (2006a).

Consistent H -values of the simulated percept reversal
time series significantly exceeding H = 0.5 (= purely sto-
chastic process; random walk) have been derived by three
different methods. The three methods are critically reviewed
with regard to multifractal analysis methods analyzed by Gao
et al. (2006b, 2007). Several more advanced methods are pro-
posed by these authors for evaluating multifractal time series.
This, however, was not within the scope of the present anal-
ysis, and in agreement with Gao et al. (2006a), it appears
not necessary because the conditions of Gao et al. (2006b)
for valid H estimates are fulfilled: H -values are not near
H = 0 andH = 1. Within the present model, these long
range correlations decrease with increasing memory time
constant τM, with τM = 60−200 s yielding H ≈ 0.7−0.6 as
the most probable value (Kettani–Gubner method, column 3
of Table 2). This appears to provide a sound theoretical expla-
nation of the experimental findings of Gao et al. (2006a) and
confirms their conclusion that nonlinear brain dynamics can
be assumed as origin of the long range correlations. It also
agrees with their statement that a value around H = 0.7
makes most sense because it is ubiquitous in nature.

The experimentally observed differences between binoc-
ular rivalry and ambiguous figure reversal with regard to their
chaotic or fractal character (Richards et al. 1994; Meng and
Tong 2004) can be attributed to different attention bias (mem-
ory) time constants.

The present nonlinear dynamics model furthermore sup-
ports the early proposal of Poston and Stewart (1978) and of
Wilson (1999) of a deterministic catastrophe topology as the
formal basis of the perception reversal dynamics. The inclu-
sion of delayed feedback immediately leads to limit cycle and
chaotic contributions to the spectral characteristics of meta-
stable perception states which supports experimental and the-
oretical results of other authors on the chaotic character of
mesoscopic brain states (e.g., Lutzenberger et al. 1995).

The present reduced model with only one percept variable
may easily be extended into a vector model with separate sets
of PAM-equations for each percept which allows for multista-
ble perceptual switching between three and more stationary
states.
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Ongoing work (Fürstenau 2009) is focused on the
simulation of periodic (i.e., interrupted) stimulus (μ(t)),
comparable to Noest et al. (2007), for reproducing, e.g.,
the experimental results of Orbach et al. (1963). This is
an experimental condition which with the present model is
easily reproduced by periodic switching of the μ-parame-
ter between low (stimulus-off) and high values (stimulus-on;
see Figs. 6, 7: stimulus-on at t = 500 TS). Initial simulation
results under periodic stimulus switching with variation of
stimulus-off time are presented in (Fürstenau 2009) where
also an example solution of the full vector model (see above)
can be found. The presented minimum version of the recur-
sive interference model does not allow for modeling multi-
stable transitions between more than two perception states as
experimentally investigated, e.g., by Ito et al. (2003). Model-
ing of multistability requires the nonlinear vector model with
perception state vectors [v1, v2, . . . , vn] and corresponding
sets of PAM-equations.

It would be of interest to compare predictions of related
dynamical modeling approaches (Ditzinger and Haken 1989;
Noest et al. 2007; Hock et al. 2003) with the present ones
with regard to the experimentally observed long range cor-
relations. An interesting experimental task for testing the
cognitive self-oscillator hypothesis and for quantifying the
relative importance of deterministic versus stochastic dynam-
ics would be the isolation of significant peaks around 0.1–
0.5 Hz in the frequency spectrum of the dwell-time time
series.
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Appendix

A1 Perception state equation

Time-averaged superimposition of two phase shifted fields
oscillating at frequency ν = ω/2π with the (complex)
amplitudes: a(�1) = a0 exp{ j (ωt + �1)}, b(�2) =
b0 exp{ j (ωt + �2)}, yields intensity J via multiplication
of the sum amplitude with its complex conjugate

J = |a + b|2
= J0 [1 + μ cos (��)]

(A1.1)

with phase difference�� = �1−�2 = π(vt+vB), constant
phase offset πvB and contrast parameter μ = 2a0b0/(a2

0 +
b2

0) exp(k���ω/ω), with constant k ≈ 0.25 and relative
spectral width at half maximum �ω/ω. Here, a Gaussian
spectral distribution is assumed (Born and Wolf 1975). For
small spectral width �ω, the exponential ≈ 1 and the con-
trast is determined by the normalized product of amplitudes.
For a0 = b0 μ is given by the exponential as contrast func-
tion. For the present reduced model with a single perception
state equation for percepts P1, P2, μ is interpreted as differ-
ence-of-meaning of both percepts.

Phase feedback with delay T is obtained via v(t) =
K J (t) = J/Jπ , with modulation constant K = κg =
1/Jπ = modulation strength for π phase shift. Phase dif-
ference at time t is modulated by superimposed fields at time
t −T with delay T = 40 ms of the amplified feedback signal.
In turn, J (t) = Jπv(t), so that we get

v(t + T ) = f (v (t)) = G [1 + μ cos (π (v (t) + vB))]

(A1.2)

with attention parameter G = κg J0 proportional to feedback
gain and stimulus strength J0. For a more realistic percep-
tion dynamics, a differential term τ v̇(t + T ) with damping
time constant τ (typically of the order of T ) is added to the
left-hand side of Eq. A1.2, yielding the well-known differ-
ential-delay equation of bistable optical systems (Ikeda and
Matsumoto 1987; Busenberg and Martinelli 1991). For sim-
plifying the solution of the PAM Eqs. 1–3, we assume μ to
be constant (corresponding to small spectral width �ω/ω,

i.e., high degree of coherency).
The time-independent stationary state of Eq. 1 and A1.2

is defined by dv/dt = 0 and v(t + T ) = v(t) = v∗ yielding
the first-order stationary solution

v∗ = G
[
1 + μ cos

{
π

(
v∗ + vB

)}]
. (A1.3)

The corresponding hysteresis curve of Fig. 3 may be eas-
ily plotted by means of the explicit form G(v∗). Higher order
stationary solutions exhibiting so-called period doubling are
defined by v(t + 2iT ) = v(t) and v(2i∗) = f (2i∗)(v∗). For
example, the second order solution with period 2T is given
by

v∗∗ = f ( f (v∗))
= g

[
1 + μ cos

{
π

(
G

[
1 + μ cos

{
π

(
v∗ + vB

)} + vB
])}]

(A1.4)

which starts the period doubling route to chaotic behavior of
the present cos-mapping function (similar to the circle (sine)
map; Anishchenko et al. 2003). The period doubling behav-
ior was originally described by Feigenbaum (1979) for the
quadratic map (see Appendix A2 and Fig. 3b) and proven to
represent a universal behavior for a large class of nonlinear
maps.
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A2 Transition into chaos: Lyapunov exponent

The ranges of the attention control parameter G for the cha-
otic regimes in the bifurcation graph of Fig. 3 can be deter-
mined by numerical evaluation of the Lyapunov coefficient
(Schuster and Just 2005) which for Eq. 1 is given by

λ (v0) = lim
N→∞

N−1∑

i=0

ln
(∣∣ f ′ (vi)

∣∣) (A2.1)

with N = number of iteration steps and f ′(vi) = derivative
of the RHS. of the nonlinear mapping function. We derive
f ′(v) for the discrete map where the continuous time deriv-
ative dv/dt is approximated by (vt+T − vt)/T yielding

vt+T = τ/T

1 + τ/T
vt + G

1 + τ/T
(1 + μ cos [π (vt + vB)]).

(A2.2)

The derivative then is obtained as

f ′ (v) = − πGμ

1 + τ/T
sin (π (v − vB)) + τ/T

1 + τ/T
(A2.3)

λ measures the exponential separation of neighboring initial
states v0 during the iteration process under the action of the
mapping. It corresponds to the average loss of information
per iteration. Figure 4 shows λ for N = 1, 000 iterates with
τ = 0 as plotted versus G. Coming from negative values, λ

touches the λ = 0 axis at bifurcation points Gn (period dou-
bling) with decreasing distance Gn − Gn−1 until it crosses
λ = 0 at the boundary to chaotic regimes, characterized by
positive λ.

The first four Gn-values as derived from the data of the
λ(G) graph in Fig. 4 for the first (P1) and second (P2)
level of the stationary solutions in Fig. 3 are: G1,2,3,4 =
(0.535, 0.947, 1.058, 1.085) and (1.368, 1.448, 1.467,

1.4715), respectively. Within the regions around 1.1 <

G < 1.2 and 1.48 < G < 1.8, on perception levels
P1 and P2, respectively, of Fig. 3b clearly chaotic behav-
ior is observed (λ > 0). According to Feigenbaum’s Uni-
versality Theory (Feigenbaum 1979), the bifurcation points
rn of the control parameter r of a wide class of nonlinear
maps yk+1 = fr(yk) including the quadratic one converge
at the chaotic boundary governed by the universal constant
δ∞ = 4.6692 = limn→∞(rn − rn−1)/(rn+1 − rn). The Gn

values (n = 2, 3, 4) of the present circle (cos) map (Fürste-
nau 2004) yield the approximations δ̂∞ = 4.00 and 4.22
for the P1 and P2 levels respectively. The positive slope
intersections of λ(G) with the λ = 0 line as observed near
G = 1.1 and G = 1.5 in Fig. 4 for the P1 and P2 levels
of Fig. 3b, respectively, agree with the numerical estimates
Ĝ(1)∞ ≈ 1.091 andĜ(2)∞ ≈ 1.473 for the chaotic boundaries
obtained with Feigenbaum’s more exact number (by replac-
ing Gn+1 = G5 := G∞). It shows that within certain param-

eter ranges (G, μ, τ, T ) the P1-, P2-self-oscillations exhibit
transitions between limit cycle and chaotic dynamical states.

A3 Small oscillations: linear stability analysis

The stability of the perception state v(t) versus feedback
gain (attention parameter G) as dependent on low pass filter
time constant τ and feedback delay T is analysed via linear
stability analysis of Eq. 1.

For linearization as usual small deviations x = v − v∗
from the stationary values v∗ are investigated. Introducing
the ansatz x = exp{(α + iβ)t} into (1) with damping con-
stant α and frequency β two equations are obtained from the
real and imaginary part

α + 1

τ
+πGμ

τ
sin

{
π

(
v∗ + vB

)}
exp {−αT } cos {βT } = 0

(A3.1)

β − πGμ

τ
sin

{
π

(
v∗ + vB

)}
exp {−αT } sin {βT } = 0.

(A3.2)

Onset of oscillations become possible with damping con-
stant α > 0, with boundary of instable areas defined by
α = 0, yielding eigenfrequencies through combination of
(A3.1) and (A3.2):

βτ = − tan (βT ) . (A3.3)

In the simulations, we assume low damping τ < T .
Because β < 1/τ , we obtain with an analytical approx-
imation for the eigenfrequencies with βτ < βT << 1
by f = β/2π ≈ i f1/(1 + τ/T ) ≈ i f1 = i/2T =
i12.5 Hz, i = 1, 2, 3, . . ..

The explicit expression for the boundary of instability
(α = 0) is obtained through combination of the squared
Eqs. A3.1 and A3.2 for eliminating the trigonometric func-
tions of frequency β, and Taylor expansion of exp{−αT } up
to the linear term:

v∗ = 1

π
arcsin

⎧
⎨

⎩

√
(βτ)2 + 1 − τ/T

2πμG

⎫
⎬

⎭
− vB. (A3.4)

For small τ(<< T ), the areas of instability extend from
the first bifurcation point in Fig. 3b to the right (increasing
feedback gain parameter G), i.e., as expected instable areas
coincide with ranges of limit cycle and chaotic oscillations
(Fürstenau 2003).

A4 Perception switching: self-oscillator equation

The fatigue-induced self-oscillations of the reentrant percep-
tion–attention loop as described by the coupled stochastic
differential-delay Eqs. 1 and 2 can be solved in its original
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form only numerically. An estimate of the average percep-
tual dwell time and self-oscillator frequency, respectively,
may be obtained by solving the linearized system of nonlin-
ear perception state (order parameter) equation coupled with
the adaptive gain (control parameter) equation without noise.
Introduction of attention parameter Eq. 2 into the derivative
of (1) (second-order nonlinear differential equation) yields

τ v̈t+T + v̇t+T + πμG t v̇t sin (πvt)

= f (G t, vt) [1 + μ cos (πvt)] (A4.1)

with the fatigue function f (G, v) corresponding to the RHS.
of Eq. 2 without noise.

In order to obtain an analytical estimate of the self-oscil-
lation frequency of this nonlinear delay-differential equa-
tion, the delay in the differentials is eliminated according to
MacDonald (1989) for small T by means of first order Taylor
expansion about T = 0 which shifts the delay effect from the
damping term to the acceleration and from the acceleration
to a third order term: T v̈t and τT v̈t. In what follows the third
order term (variation of the acceleration) will be neglected. I
furthermore treat the case of small hysteresis μ = 0.2 << 1
near the node bifurcation threshold μ = 0.18 which shifts
the stationary solution of v(t) to v∗ ≈ 1.5, which in turn lies
near the selected perception bias vb = 1.5 for the symmetric
case, with G∗(v∗) ≈ 1.5 ≈ Gmean(μ = 0.2) = 1.46.

Because for the numerical solutions in Sect. 3, the fatigue
time constant γ = 60 TS << recovery time constant τG =
500 TS (simulation time step TS = T/2 = 20 ms) the recov-
ery term (Gmean − G)/τG in the fatigue function may be
neglected and Eq. A4.1 approximated by the linearized oscil-
lator equation (e.g., Magnus 1961) using v = v∗ + w, with
w = small deviation from v∗:

(τ + T ) ẅ + (
1 − πμG∗) ẇ ≈ −w/γ (A4.2)

with eigenfrequency

ω0 = 1/
√

γ (τ + T) = 3.73 rad s−1 (A4.3)

or f0 = 0.59 Hz = 36 min−1 and T0 = 1.7 s, respectively.
The influence of the damping term (coefficient of dw/dt) can
be derived after transformation of the timescale into Eigen-
time ϑ = ω0t (Magnus 1961):

fD = f0

√
1 − D2 (A4.4)

with normalized damping

D =
√

(1 − πμG∗)
2ω0 (τ + T )

(A4.5)

yielding the reversal rate fD = 0.55 Hz = 33 min−1.
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