Skip to main content
Log in

Stochastic modeling of the neuronal activity in the subthalamic nucleus and model parameter identification from Parkinson patient data

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Several stochastic models, with various degrees of complexity, have been proposed to model the neuronal activity from different parts of the human brain. In this article, we use a simple Ornstein–Uhlenbeck process (OUP) to model the spike activity recorded from the subthalamic nucleus of patients suffering from Parkinson’s disease at the time of implantation of the electrodes for deep brain stimulation. From the recorded data, which contains information about the spike times of a single neuron, we identify and extract the model parameters of the OUP. We then use these parameters to numerically simulate the inter-spike intervals and the voltage across the neuron membrane. We finally assess how well the proposed mathematical model fits to the measured data and compare it with other commonly adopted stochastic models. We show an excellent agreement between the computer-generated data according to the OUP model and the measured one, as well as the superiority of the OUP model when compared to the Poisson process model and the random walk model; thus, establishing the validity of the OUP as a simple yet biologically plausible model of the neuronal activity recorded from the subthalamic nucleus of Parkinson’s disease patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Albin RL, Young AB, Penney JB (1995) The functional anatomy of disorders of the basal ganglia. Trends Neurosci 18: 63–64

    Article  CAS  PubMed  Google Scholar 

  • Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13: 266–271

    Article  CAS  PubMed  Google Scholar 

  • Baltuch GH, Stern MB (2007) Deep brain stimulation for Parkinson’s disease. CRC Press, Boca Raton

    Google Scholar 

  • Bar-Gad I, Bergman H (2001) Stepping out of the box: information processing in the neural networks of the basal ganglia. Curr Opin Neurobiol 11: 689–695

    Article  CAS  PubMed  Google Scholar 

  • Brown P, Oliviero A, Mazzone P, Insola A, Tonali P, Lazzaro VD (2001) Dopamine dependency of oscillations between subthalamic nucleus and pallidum in parkinsons disease. J Neurosci 21(3): 1033–1038

    CAS  PubMed  Google Scholar 

  • Buonocore A, Nobile AG, Ricciardi LM (1987) A new integral equation for the evaluation of first-passage-time probability densities. Adv Appl Probab 19(4): 784–800

    Article  Google Scholar 

  • Burns BD, Webb AC (1976) The spontaneous activity of neurones in the cat’s cerebral cortex. Proc Roy Soc Lond B 194(1115): 211–223

    Article  CAS  Google Scholar 

  • Capocelli RM, Ricciardi LM (1971) Diffusion approximation and first passage time problem for a model neuron. Kybernetik 8(6): 214–223

    Article  CAS  PubMed  Google Scholar 

  • Cheng RCH, Amin NAK (1981) Maximum likelihood estimation of parameters in the inverse gaussian distribution, with unknown origin. Technometrics 23(3): 257–263

    Article  Google Scholar 

  • Corder GW, Foreman DI (2009) Nonparametric statistics for non-statisticians: a step-by-step approach. Wiley, New York

    Google Scholar 

  • DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13: 281–285

    Article  CAS  PubMed  Google Scholar 

  • Feng XJ, Greenwald B, Rabitz H, Shea-Brown E, Kosut R (2007) Toward closed-loop optimization of deep brain stimulation for parkinson+s disease: Concepts and lessons from a computational model. J Neuroengineering 4: L14–L21

    Article  Google Scholar 

  • Freedman D, Diaconis P (1981) On the histogram as a density estimator: L 2 theory. Prob Theory Relat Fields 57(4): 453–476

    Google Scholar 

  • Gerstein GL, Mandelbrot B (1964) Random walk models for the spike activity of a single neuron. Biophys J 4: 41–68

    Article  CAS  PubMed  Google Scholar 

  • Gluss B (1967) A model for neuron firing with exponential decay of potential resulting in diffusion equations for probability density. Bull Math Biophys 29: 233–243

    Article  CAS  PubMed  Google Scholar 

  • Graupe D (1984) Time series analysis, identification and adaptive filtering. RE Krieger Publishing, Malabar

    Google Scholar 

  • Graybiel AM, Kubota Y (2003) Understanding corticobasal ganglia networks as part of a habit formation system. Mental and Behavioral Dysfunction in Movement Disorders. Humana Press, Totowa, NJ, p 51

  • Grossman RG, Viernstein LJ (1961) Discharge patterns of neurons in cochlear nucleus. Science 134(3472): 99–101

    Article  CAS  PubMed  Google Scholar 

  • Hanson FB (2006) Applied stochastic processes and control for jump diffusions. Society of Industrial and Applied Mathematics, Philadelphia

    Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117: 500–544

    CAS  PubMed  Google Scholar 

  • Humphries MD (2002) The basal ganglia and action selection: a computational study at multiple levels of description. PhD thesis, Department of Psychology, University of Sheffield, UK

  • Humphries MD, Stewart RD, Gurney KN (2006) A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. J Neurosci 26: 12,921–12,942

    Article  CAS  Google Scholar 

  • Inoue J, Sato S, Ricciardi LM (1995) On the parameter estimation for diffusion models of single neuron’s activities. Biol Cybernet 73: 209–221

    Article  CAS  Google Scholar 

  • Kandel ER, Schwartz JH, Jessell TM (2000) Principles of neural science. McGraw-Hill/Appleton & Lange, Norwalk

    Google Scholar 

  • Kuffler SW, Fitzhugh R, Barlow HB (1957) Maintained activity in the cat’s retina in light and darkness. J Gen Physiol 40(5): 683–702

    Article  CAS  PubMed  Google Scholar 

  • Lee J (2008) A closed-loop deep brain stimulation device with a logarithmic pipeline adc. PhD thesis, University of Michigan

  • Lozano AM, Dostrovsky J, Chen R, Ashby P (2002) Deep brain stimulation for parkinson’s disease: disrupting the disruption. Lancet Neurol 1(4): 225–231

    Article  PubMed  Google Scholar 

  • Ricciardi LM, Sacerdote L (1979) The Ornstein–Uhlenbeck process as a model for neuronal activity i. mean and variance of the firing time. Biol Cybernet 35: 1–9

    Article  CAS  Google Scholar 

  • Ricciardi LM, Sato S (1988) First-passage-time density and moments of the Ornstein–Uhlenbeck process. J Appl Probab 25(1): 43–57

    Article  Google Scholar 

  • Sarma SV, Cheng M, Hu R, Williams Z, Brown EN, Eskandar E (2008) Modeling neural spiking activity in the sub-thalamic nucleus of parkinson’s patients and healthy primates. In: Proceedings of the 17th World Congress The International Federation of Automatic Control

  • Schiff SJ (2010) Towards model-based control of parkinson’s disease. Philos Trans A Math Phys Eng Sci 368(1918): 2269–2308

    Article  Google Scholar 

  • Schuss Z (2009) Diffusion and stochastic Processes. Springer, New York

    Google Scholar 

  • Shinomoto S, Sakai Y, Funahashi S (1999) The Ornstein–Uhlenbeck process does not reproduce spiking statistics of neurons in prefrontal cortex. Neural Comput 11(4): 935–951

    Article  CAS  PubMed  Google Scholar 

  • Slavin KV, Burchiel KJ (2002) Microguide microelectrode recording system. Neurosurgery 51: 275–278

    Article  PubMed  Google Scholar 

  • Smith AD, Bolam JP (1990) The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurons. Trends Neurosci 13: 259–265

    Article  CAS  PubMed  Google Scholar 

  • Tass PA (2006) Phase resetting in medicine and biology: stochastic modeling and data analysis. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Uhlenbeck GE, Ornstein LS (1930) On the theory of brownian motion. Phys Rev 36: 823–841

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ishita Basu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basu, I., Graupe, D., Tuninetti, D. et al. Stochastic modeling of the neuronal activity in the subthalamic nucleus and model parameter identification from Parkinson patient data. Biol Cybern 103, 273–283 (2010). https://doi.org/10.1007/s00422-010-0397-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-010-0397-3

Keywords

Navigation