Skip to main content
Log in

Compact internal representation of dynamic situations: neural network implementing the causality principle

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Animals for survival in complex, time-evolving environments can estimate in a “single parallel run” the fitness of different alternatives. Understanding of how the brain makes an effective compact internal representation (CIR) of such dynamic situations is a challenging problem. We propose an artificial neural network capable of creating CIRs of dynamic situations describing the behavior of a mobile agent in an environment with moving obstacles. The network exploits in a mental world model the principle of causality, which enables reduction of the time-dependent structure of real situations to compact static patterns. It is achieved through two concurrent processes. First, a wavefront representing the agent’s virtual present interacts with mobile and immobile obstacles forming static effective obstacles in the network space. The dynamics of the corresponding neurons in the virtual past is frozen. Then the diffusion-like process relaxes the remaining neurons to a stable steady state, i.e., a CIR is given by a single point in the multidimensional phase space. Such CIRs can be unfolded into real space for execution of motor actions, which allows a flexible task-dependent path planning in realistic time-evolving environments. Besides, the proposed network can also work as a part of “autonomous thinking”, i.e., some mental situations can be supplied for evaluation without direct motor execution. Finally we hypothesize the existence of a specific neuronal population responsible for detection of possible time-space coincidences of the animal and moving obstacles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aitkenhead MJ, McDonald AJS (2006) The state of play in machine/environment interactions. Artif Intell Rev 25: 247–276

    Article  Google Scholar 

  • Barry C, Lever C, Hayman R, Hartley T, Burton S, O’Keefe J, Jeffery K, Burgess N (2006) The boundary vector cell model of place cell firing and spatial memory. Rev Neurosci 17(1–2): 71–97

    PubMed  Google Scholar 

  • Berg BC (1993) Random walks in biology. Princeton University Press, Princeton

    Google Scholar 

  • Berg HC, Purcell EM (1977) Physics of chemoreception. Biophys J 20: 193–219

    Article  CAS  PubMed  Google Scholar 

  • Collett TS, Zeil J (1998) Places and landmarks: an arthropod perspective. In: Healy S (eds) Spatial representation in animals. Oxford University Press, Oxford, pp 18–53

    Google Scholar 

  • Craik K (1943) The nature of explanation. Cambridge University Press, Cambridge

    Google Scholar 

  • Cruse H (2003) The evolution of cognition—a hypothesis. Cogn Sci 27: 135–155

    Google Scholar 

  • Cruse H, Hübner D (2008) Selforganizing memory: active learning of landmarks used for navigation. Biol Cybern 99: 219–236

    Article  PubMed  Google Scholar 

  • Hafting T, Fyhn M, Molden S, Moser MB, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436(7052): 801–806

    Article  CAS  PubMed  Google Scholar 

  • Holland O, Goodman R (2003) Robots with internal models—a route to machine consciousness?. J Conscious Stud 10: 77–109

    Google Scholar 

  • Hesslow G (2002) Conscious thought as simulation of behaviour and perception. Trends Cogn Sci 6: 242–247

    Article  PubMed  Google Scholar 

  • Keymeulen D, Decuyper J (1994) The fluid dynamics applied to mobile robot motion: the stream field method. In: Proceedings of the IEEE international conference on robotics and automation, pp 378–385

  • Kuhn S, Cruse H (2005) Static mental representations in recurrent neural networks for the control of dynamic behavioural sequences. Connect Sci 17: 343–360

    Article  Google Scholar 

  • Kühn S, Cruse H (2007) Modelling memory functions with recurrent neural networks consisting of input compensation units: II. Dynamic situations. Biol Cybern 96: 471–486

    Article  PubMed  Google Scholar 

  • Kühn S, Beyn WJ, Cruse H (2007) Modelling memory functions with recurrent neural networks consisting of input compensation units: I. Static situations. Biol Cybern 96: 455–470

    Article  PubMed  Google Scholar 

  • Llinas RR (2001) I of the vortex: from neurons to self. MIT, second printing

  • Louste C, Liegeois A (2000) Near optimal robust path planning for mobile robots: the viscous fluid method with friction. J Intell Robot Syst 27: 99–112

    Article  Google Scholar 

  • Makarov VA, Song Y, Velarde MG, Hübner D, Cruse H (2008) Elements for a general memory structure: properties of recurrent neural networks used to form situation models. Biol Cybern 98: 371–395

    Article  PubMed  Google Scholar 

  • McIntyre J, Zago M, Berthoz A, Lacquaniti F (2001) Does the brain model Newton’s laws?. Nat Neurosci 4: 693–694

    Article  CAS  PubMed  Google Scholar 

  • Menzel R, Brandt R, Gumbert A, Komischke B, Kunze J (2000) Two spatial memories for honeybee navigation. Proc R Soc Lond B 267: 961–968

    Article  CAS  Google Scholar 

  • Mohan V, Morasso P (2007) Towards reasoning and coordinating action in the mental space. Int J Neural Syst 17: 329–341

    Article  PubMed  Google Scholar 

  • Moser EI, Moser MB (2008) A metric for space. Hippocampus 18(12): 1142–1156

    Article  PubMed  Google Scholar 

  • Moser EI, Kropff E, Moser MB (2008) Place cells, grid cells, and the brain’s spatial representation system. Ann Rev Neurosci 31: 69–89

    Article  CAS  PubMed  Google Scholar 

  • Nekorkin VI, Velarde MG (2002) Synergetic phenomenon in active lattices: patterns, waves, solitons, chaos. Springer-Verlag, Berlin

    Google Scholar 

  • Nekorkin VI, Makarov VA (1995) Spatial chaos in a chain of coupled bistable oscillators. Phys Rev Lett 74: 4819–4822

    Article  CAS  PubMed  Google Scholar 

  • Nekorkin VI, Makarov VA, Kazantsev VB, Velarde MG (1997) Spatial disorder and pattern formation in lattices of coupled elements. Physica D 100: 330–342

    Article  Google Scholar 

  • O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34(1): 171–175

    Article  PubMed  Google Scholar 

  • Rizzolatti G, Fogassi L, Gallese V (2001) Neurophysiological mechanisms underlying the understanding and imitation of action. Nat Rev Neurosci 2: 661–670

    Article  CAS  PubMed  Google Scholar 

  • Savelli F, Yoganarasimha D, Knierim JJ (2008) Influence of boundary removal on the spatial representations of the medial entorhinal cortex. Hippocampus 18(12): 1270–1282

    Article  PubMed  Google Scholar 

  • Schmidt GK, Azarm K (1992) Mobile robot navigation in a dynamic world using an unsteady diffusion equation strategy. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, pp 642–647

  • Sepulchre JA, MacKay RS (1997) Localized oscillations in conservative or dissipative networks of weakly coupled autonomous oscillators. Nonlinearity 10: 679–713

    Article  Google Scholar 

  • Sharma J, Dragoi V, Tenenbaum JB, Miller EK, Sur M (2003) V1 neurons signal acquisition of an internal representation of stimulus location.. Science 300: 1758–1763

    Article  CAS  PubMed  Google Scholar 

  • Solstad T, Boccara CN, Kropff E, Moser MB, Moser EI (2008) Representation of geometric borders in the entorhinal cortex. Science 322(5909): 1865–1868

    Article  CAS  PubMed  Google Scholar 

  • Steinkuhler U, Cruse H (1998) A holistic model for an internal representation to control the movement of a manipulator with redundant degrees of freedom. Biol Cybern 79: 457–466

    Article  Google Scholar 

  • Svensson H, Morse A, Ziemke T (2009) Representation as internal simulation: a minimalistic robotic model. In: Proceedings of the CogSci’09, 2890–2895

  • Taube JS, Muller RU, Ranck JB (1990a) Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J Neurosci 10: 420–435

    CAS  PubMed  Google Scholar 

  • Taube JS, Muller RU, Ranck JB (1990b) Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations. J Neurosci 10: 436–447

    CAS  PubMed  Google Scholar 

  • Toussaint M (2006) A sensorimotor map: modulating lateral interactions for anticipation and planning. Neural Comput 18: 1132–1155

    Article  PubMed  Google Scholar 

  • Umiltá MA, Kohler E, Gallese V, Fogassi L, Fadiga L, Keysers C, Rizzolatti G (2001) “I know what you are doing”: a neurophysiological study. Neuron 32: 91–101

    Google Scholar 

  • Vergassola M, Villermaux E, Shraiman B (2007) Infotaxis as a strategy for searching without gradients. Nature 445: 406–409

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeri A. Makarov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villacorta-Atienza, J.A., Velarde, M.G. & Makarov, V.A. Compact internal representation of dynamic situations: neural network implementing the causality principle. Biol Cybern 103, 285–297 (2010). https://doi.org/10.1007/s00422-010-0398-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-010-0398-2

Keywords

Navigation