Skip to main content
Log in

Block coherence: a method for measuring the interdependence between two blocks of neurobiological time series

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Multisensor recordings are becoming commonplace. When studying functional connectivity between different brain areas using such recordings, one defines regions of interest, and each region of interest is often characterized by a set (block) of time series. Presently, for two such regions, the interdependence is typically computed by estimating the ordinary coherence for each pair of individual time series and then summing or averaging the results over all such pairs of channels (one from block 1 and other from block 2). The aim of this paper is to generalize the concept of coherence so that it can be computed for two blocks of non-overlapping time series. This quantity, called block coherence, is first shown mathematically to have properties similar to that of ordinary coherence, and then applied to analyze local field potential recordings from a monkey performing a visuomotor task. It is found that an increase in block coherence between the channels from V4 region and the channels from prefrontal region in beta band leads to a decrease in response time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albo Z, Viana Di Prisco G, Chen Y, Rangarajan G, Truccolo W, Feng J, Vertes RP, Ding M (2004) Is partial coherence a viable technique for identifying generators of neural oscillations. Biol Cybern 90: 318–326

    Article  PubMed  Google Scholar 

  • Baccala LA, Sameshima K (2001) Partial directed coherence: a new concept in neural structure determination. Biol Cybern 84: 463–474

    Article  PubMed  CAS  Google Scholar 

  • Bernasconi C, Konig P (1999) On the directionality of cortical interactions studied by structural analysis of electrophysiological recordings. Biol Cybern 81: 199–210

    Article  PubMed  CAS  Google Scholar 

  • Boudjellaba H, Dufour J, Roy R (1992) Testing causality between two vectors in multivariate autoregressive moving average models. J Am Stat Assoc 87: 1082–1090

    Article  Google Scholar 

  • Bressler SL, Coppola R, Nakamura R (1993) Episodic multiregional cortical coherence at multiple frequencies during visual task performance. Nature 366: 153–156

    Article  PubMed  CAS  Google Scholar 

  • Brillinger D, Guha A (2007) Mutual information in the frequency domain. J Stat Plan Inference 137(3): 1076–1084

    Article  Google Scholar 

  • Brovelli A, Ding MZ, Ledberg A, Chen YH, Nakamura R, Bressler SL (2004) Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality. Proc Natl Acad Sci USA 101: 9849–9854

    Article  PubMed  CAS  Google Scholar 

  • Brown EN, Kass RE, Mitra PP (2004) Multiple neural spike train data analysis: state-of-the-art and future challenges. Nat Neurosci 7: 456–461

    Article  PubMed  CAS  Google Scholar 

  • Chen YH, Rangarajan G, Feng JF, Ding MZ (2004) Analyzing multiple nonlinear time series with extended Granger causality. Phys Lett A 324: 26–35

    Article  CAS  Google Scholar 

  • Chen Y, Bressler SL, Knuth KH, Truccolo WA, Ding M (2006a) Stochastic modeling of neurobiological time series: power, coherence, Granger causality, and separation of evoked responses from ongoing activity. Chaos 16: 026113

    Article  PubMed  Google Scholar 

  • Chen Y, Bressler SL, Ding M (2006b) Frequency decomposition of conditional Granger causality and application to multivariate neural field potential data. J Neurosci Methods 150: 228–237

    Article  PubMed  Google Scholar 

  • Dhamala M, Rangarajan G, Ding M (2008a) Estimating Granger causality from Fourier and wavelet transforms of time series data. Phys Rev Lett 100(1–4): 018701

    Article  PubMed  Google Scholar 

  • Dhamala M, Rangarajan G, Ding M (2008b) Analyzing information flow in brain networks with nonparametric Granger causality. NeuroImage 41: 354–362

    Article  PubMed  Google Scholar 

  • Ding M, Bressler SL, Yang W, Liang H (2000) Short-window spectral analysis of cortical event-related potentials by adaptive multivariate autoregressive modeling: data preprocessing, model validation, and variability assessment. Biol Cybern 83: 35–45

    Article  PubMed  CAS  Google Scholar 

  • Ding M, Chen Y, Bressler SL (2006) Granger causality: basic theory and applications to neuroscience. In: Schelter B, Winterhalder M, Timmer J (eds) Handbook of time series analysis. Wiley-VCH Verlag, pp 437–460

  • Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman and Hall/CRC, London

    Google Scholar 

  • Friedland S (1975) Generalised Hadamard inequality and its application. Linear Multilinear Algebra 2: 327–333

    Article  Google Scholar 

  • Friston KJ, Harrison L, Penny W (2003) Dynamic causal modeling. NeuroImage 19: 1273–1302

    Article  PubMed  CAS  Google Scholar 

  • Gel’fand IM, Yaglom AM (1959) Calculation of the amount of information about a random function contained in another such function. Am Math Soc Transl Series 2 12: 199–246

    Google Scholar 

  • Geweke J (1982) Measurement of linear dependence and feedback between multiple time series. J Am Stat Assoc 77: 304–324

    Article  Google Scholar 

  • Geweke J (1984) Measures of conditional linear dependence and feedback between time series. J Am Stat Assoc 79: 907–915

    Article  Google Scholar 

  • Granger C (1969) Measures of conditional linear dependence and feedback between time series. Econometrica 37: 424–438

    Article  Google Scholar 

  • Harrison L, Penny WD, Friston KJ (2003) Multivariate autoregressive modeling of fMRI time series. NeuroImage 19: 1477–1491

    Article  PubMed  CAS  Google Scholar 

  • Hesse W, Moller E, Arnold M, Schack B (2003) The use of time-variant EEG Granger causality for inspecting directed interdependencies of neural assemblies. J Neurosci Methods 124: 27–44

    Article  PubMed  Google Scholar 

  • Hoffman KM, Kunze R (1971) Linear algebra. Prentice Hall, Englewood Cliffs, NJ, USA

    Google Scholar 

  • Horn RA, Johnson CR (1990) Matrix analysis. Cambridge University Press, London

    Google Scholar 

  • Jain N, Qi H-X, Kaas JH (2001) Longterm chronic multichannel recordings from sensorimotor cortex and thalamus of primates. Prog Brain Res 130: 63–72

    Article  Google Scholar 

  • Jarvis MR, Mitra PP (2001) Sampling properties of the spectrum and coherency of sequences of action potentials. Neural Comput 13: 717–749

    Article  PubMed  CAS  Google Scholar 

  • Kaminski MJ, Blinowska KJ (1991) A new method of the description of the information flow in the brain structures by a modified directed transfer function (dDTF). Biol Cybern 65: 203–210

    Article  PubMed  CAS  Google Scholar 

  • Kaminski M, Ding M, Truccolo WA, Bressler SL (2001) Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance. Biol Cybern 85: 145–157

    Article  PubMed  CAS  Google Scholar 

  • Korzeniewska A, Manczak M, Kaminski M, Blinowska KJ, Kasicki S (2003) Determination of information flow direction among brain structures by a modified directed transfer function (dDTF)method. J Neurosci Methods 125: 195–207

    Article  PubMed  Google Scholar 

  • Kus R, Kaminski M, Blinowska KJ (2004) Determination of EEG activity propagation: pairwise versus multichannel estimate. IEEE Trans Bio-Med Eng 51: 1501–1510

    Article  Google Scholar 

  • Ladroue C, Guo S, Kendrick K, Feng J (2009) Beyond element-wise interactions: identifying complex interactions in biological processes. PLoS ONE 4(9): e6899

    Article  PubMed  Google Scholar 

  • Liang H, Bressler SL, Ding M, Truccolo WA, Nakamura R (2002) Synchronized activity in prefrontal cortex during anticipation of visuomotor processing. Neuroreport 13: 2011–2015

    Article  PubMed  Google Scholar 

  • Lungarella M, Sporns O (2006) Mapping information flow in sensorimotor networks. PLoS Comput Biol 2: 1301–1312

    Article  CAS  Google Scholar 

  • Lutkepohl H (1991) Introduction to multiple timeseries analysis. Springer-Verlag, Berlin

    Google Scholar 

  • Mitrinovic DS, Pecaric JE, Fink AM (1993) Classical and new inequalities in analysis. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Morf M et al (1978) Recursive multichannel maximum entropy spectral estimation. IEEE Trans GeoSci Elec, GE-16 (2), 85–94

    Google Scholar 

  • Pascual-Marqui RD (2007) Coherence and phase synchronisation: Generalisation to pairs of multivariate time-series and removal of zero led correlations. ArXiv:0706.1776v3

  • Percival DB, Walden AT (1998) Analysis for physical applications. Cambridge University Press, London, UK

    Google Scholar 

  • Prichard D, Theiler J (1994) Generating surrogate data for time series with several simultaneously measured variables. Phys Rev Lett 73: 951–954

    Article  PubMed  Google Scholar 

  • Roebroeck A, Formisano E, Goebel R (2005) Mapping directed influence over the brain using Granger causality and fMRI. Neuroimage 25: 230–242

    Article  PubMed  Google Scholar 

  • Rosenberg JR, Halliday DM, Breeze P, Conway BA (1998) Identification of patterns of neuronal connectivity—partial spectra, partial coherence, and neuronal interactions. J Neurosci Methods 83: 57–72

    Article  PubMed  CAS  Google Scholar 

  • Rozanov YA (1967) Stationary random process. Holden Day, San Francisco

    Google Scholar 

  • Sayed AH, Kailath T (2001) A survey of spectral factorization methods. Numer Linear Algebra Appl 8: 467–496

    Article  Google Scholar 

  • Schelter B, Dahlhaus R, Leistritz L, Hesse W, Schack B, Kurths J, Timmer J, Witte H (2008) Multivariate time series analysis. In: Dahlhaus R, Kurths J, Maass P, Timmer J (eds) Mathematical methods in time series analysis and digital image processing. Springer, New York, pp 1–40

    Chapter  Google Scholar 

  • Tang A, Jackson D, Hobbs J, Chen W, Smith JL, Patel H, Prieto A, Petrusca D, Grivich MI, Sher A, Hottowy P, Dabrowski W, Litke AM, Beggs JM (2008) A maximum entropy model applied to spatial and temporal correlations from cortical networks in vitro. J Neurosci 28(2): 505–518

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Chen Y, Bressler SL, Ding M (2007) Granger causality between multiple interdependent neurobiological time series: blockwise versus pairwise methods. Int J Neural Syst 17: 71–78

    Article  PubMed  CAS  Google Scholar 

  • Wu JH, Liu XG, Feng JF (2008) Detecting causality between different frequencies. J Neurosci Methods 167: 367–375

    Article  PubMed  Google Scholar 

  • Zhang Y, Chen Y, Bressler SL, Ding M (2008) Response preparation and inhibition: the role of cortical sensorimotor beta rhythm. Neuroscience 156: 238–246

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Govindan Rangarajan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nedungadi, A.G., Ding, M. & Rangarajan, G. Block coherence: a method for measuring the interdependence between two blocks of neurobiological time series. Biol Cybern 104, 197–207 (2011). https://doi.org/10.1007/s00422-011-0429-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-011-0429-7

Keywords

Navigation