Skip to main content
Log in

From neuron to behavior: dynamic equation-based prediction of biological processes in motor control

  • Prospects
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

This article presents the use of continuous dynamic models in the form of differential equations to describe and predict temporal changes in biological processes and discusses several of its important advantages over discontinuous bistable ones, exemplified on the stick insect walking system. In this system, coordinated locomotion is produced by concerted joint dynamics and interactions on different dynamical scales, which is therefore difficult to understand. Modeling using differential equations possesses, in general, the potential for the inclusion of biological detail, the suitability for simulation, and most importantly, parameter manipulation to make predictions about the system behavior. We will show in this review article how, in case of the stick insect walking system, continuous dynamical system models can help to understand coordinated locomotion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Akay T, Ludwar BCh, Göritz ML, Schmitz J, Büschges A (2007) Segment specificity of load signal processing depends on walking direction in the stick insect leg muscle control system. J Neurosci 27(12): 3285–3294

    Article  PubMed  CAS  Google Scholar 

  • Akay T, McVea DA, Tachibana A, Pearson KG (2006) Coordination of fore and hind leg stepping in cats on a transversely-split treadmill. Exp Brain Res 175: 211–222

    Article  PubMed  CAS  Google Scholar 

  • Bässler U (1983) Neural basis of elementary behavior in stick insects. Springer, Berlin

    Google Scholar 

  • Bässler U (1986a) Afferent control of walking movements in the stick insect Cuniculina impigra. J Comp Physiol A 158: 345–349

    Article  Google Scholar 

  • Bässler U (1986b) On the definition of central pattern generator and its sensory control. Biol Cybern 54: 65–69

    Article  Google Scholar 

  • Bässler U (1993) The walking- (and searching-) pattern generator of stick insects, a modular system composed of reflex chains and endogenous oscillators. Biol Cybern 69: 305–317

    Article  Google Scholar 

  • Bässler U, Büschges A (1998) Pattern generation for stick insect walking movements—multisensory control of a locomotor program. Brain Res Rev 27: 65–88

    Article  PubMed  Google Scholar 

  • Bässler U, Wegener U (1983) Motor output of the denervated thoracic ventral nerve cord in the stick insect Carausius morosus. J Exp Biol 105: 127–145

    Google Scholar 

  • Beer RD, Quinn RD, Chiel HJ, Ritzmann RE (1997) Biologically inspired approaches to robotics: what can we learn from insects?. Commun ACM 40(3): 30–38

    Article  Google Scholar 

  • Biewener AA (2003) Animal locomotion. Oxford University Press, Oxford

    Google Scholar 

  • Borgmann A, Hooper SL, Büschges A (2009) Sensory feedback induced by front-leg stepping entrains the activity of central pattern generators in caudal segments of the stick insect walking system. J Neurosci 29: 2972–2983

    Article  PubMed  CAS  Google Scholar 

  • Borgmann A, Scharstein H, Büschges A (2007) Intersegmental coordination: influence of a single walking leg on the neighboring segments in the stick insect walking system. J Neurophysiol 98: 1685–1696

    Article  PubMed  Google Scholar 

  • Brunn DE, Dean J (1994) Intersegmental and local interneurons in the metathorax of the stick insect Carausius morosus that monitor leg position. J Neurophysiol 72: 1208–1219

    PubMed  CAS  Google Scholar 

  • Büschges A (2005) Sensory control and organization of neural networks mediating coordination of multisegmented organs for locomotion. J Neurophysiol 93: 1127–1153

    Article  PubMed  Google Scholar 

  • Büschges A (1998) Inhibitory synaptic drive patterns motoneuronal activity in rhythmic preparations of isolated thoracic ganglia in the stick insect. Brain Res 783: 262–271

    Article  PubMed  Google Scholar 

  • Büschges A (1995) Role of local nonspiking interneurons in the generation of rhythmic motor activity in the stick insect. J Neurobiol 27: 488–512

    Article  PubMed  Google Scholar 

  • Büschges A (1989) Processing of sensory input from the femoral chordotonal organ by spiking interneurons of stick insects. J Exp Biol 144: 81–111

    Google Scholar 

  • Büschges A, Akay T, Gabriel JP, Schmidt J (2008) Organizing network action for locomotion: insights from studying insect walking. Brain Res Rev 57: 162–171

    Article  PubMed  Google Scholar 

  • Büschges A, Gruhn M (2008) Mechanosensory feedback in walking: from joint control to locomotor patterns. Adv Insect Physiol 34: 193–230

    Article  Google Scholar 

  • Büschges A, Kittman R, Schmitz J (1994) Identified nonspiking interneurons in leg reflexes and during walking in the stick insect. J Comp Physiol A 174: 685–700

    Article  Google Scholar 

  • Büschges A, Ludwar BC, Bucher D, Schmidt J, DiCaprio RA (2004) Synaptic drive contributing to rhythmic activation of motoneurons in the deafferented stick insect walking system. Eur J Neurosci 12: 1856–1862

    Article  Google Scholar 

  • Büschges A, Schmitz J, Bässler U (1995) Rhythmic patterns in the thoracic nerve cord of the stick insect induced by pilocarpine. J Exp Biol 198: 435–456

    Google Scholar 

  • Calabrese RL (1995) Half-center oscillators underlying rhythmic movements. In: Arbib M (ed) The handbook of brain theory and neural networks. MIT press, Cambridge, pp 444–447

    Google Scholar 

  • Cang J, Friesen WO (2000) Sensory modification of leech swimming: rhythmic activity of ventral stretch receptors can change intersegmental phase relationships. J Neurosci 20: 7822–7829

    PubMed  CAS  Google Scholar 

  • Cang J, Friesen WO (2002) Model of intersegmental coordination of leech swimming: central and sensory mechanisms. J Neurophysiol 87: 2760–2769

    PubMed  Google Scholar 

  • Cattaert D, LeRay D (2001) Adaptive motor control in crayfish. Prog Neurobiol 63: 199–240

    Article  PubMed  CAS  Google Scholar 

  • Cheng J, Stein RB, Jovanovic K, Yoshida K, Bennett DF, Han Y (1998) Identification, localization and modulation of neural networks for walking in the mudpuppy (Necturus maculatus) spinal cord. J Neurosci 18: 4295–4304

    PubMed  CAS  Google Scholar 

  • Collins J, Richmond S (1994) Hard-wired central pattern generators for quadrupedal locomotion. Biol Cybern 71: 375–385

    Article  Google Scholar 

  • Collins J, Stewart I (1992) Hexapodal gaits and coupled nonlinear oscillator models. Biol Cybern 68: 287–298

    Article  Google Scholar 

  • Cohen AH, Holmes PJ, Rand R (1982) The nature of coupling between segmented oscillations and the lamprey spinal generator for locomotion: a mathematical model. J Math Biol 13: 345–369

    Article  PubMed  CAS  Google Scholar 

  • Cruse H (1980) A quantitative model of walking incorporating central and peripheral influences. Biol Cybern 37: 136

    Google Scholar 

  • Cruse H (1985) Which parameter control the leg movement of a walking insect? I Velocity control during the stance phase. J Exp Biol 116: 343–355

    Google Scholar 

  • Cruse H (1985) Coactivating influences between neighbouring legs in walking insects. J Exp Biol 114: 513–519

    Google Scholar 

  • Cruse H (1990) What mechanisms coordinate leg movement in walking arthropods. TINS 13: 15–21

    PubMed  CAS  Google Scholar 

  • Cruse H (2002) The functional sense of central oscillations in walking. Biol Cybern 86: 271–280

    Article  PubMed  CAS  Google Scholar 

  • Cruse H, Dürr V, Schmitz J (2007) Insect walking is based on a decentralized architecture revealing a simple and robust controller. Phil Trans A 365(1850): 221–250

    Article  Google Scholar 

  • Cruse H, Bartling C, Dean J, Kindermann T, Schmitz J, Schumm M (2000) A simple neural network for the control of a six-legged walking system. In: Crago P, Winters J (eds) Biomechanics and neural control of posture and movement. Springer, New York, pp 231–239

    Google Scholar 

  • Cruse H, Kindermann T, Schumm M, Dean J, Schmitz J (1998) Walknet—a biologically inspired network to control six-legged walking. Neural Netw 1: 1435–1447

    Article  Google Scholar 

  • Cruse H, Müller U (1986) Two coupling mechanisms which determine the coordination of ipsilateral legs in the walking crayfish. J Exp Biol 121: 349–369

    Google Scholar 

  • Daun S, Rybak IA, Rubin J (2009) The response of a half-center oscillator to external drive depends on the intrinsic dynamics of its components: a mechanistic analysis. J Comput Neurosci 27: 3–36

    Article  PubMed  Google Scholar 

  • Daun-Gruhn S (2010) A mathematical modeling study of inter-segmental coordination during stick insect walking. J Comput Neurosci. doi:10.1007/s10827-010-0254-3

  • Daun-Gruhn S, Toth TI (2010) An inter-segmental network model and its use in elucidating gait-switches in the stick insect. J Comput Neurosci. doi:10.1007/s10827-010-0300-1

  • Dean J (1991) A model of leg coordination in the stick insect, Carausius morosus. III. Responses to perturbations of normal coordination. Biol Cybern 66: 335–343

    Article  Google Scholar 

  • Delcomyn F (1971) The locomotion of the cockroach Periplaneta Americana. J Exp Biol 54: 443–452

    Google Scholar 

  • Delcomyn F (1997) Foundations of neurobiology. Freeman, New York

    Google Scholar 

  • Delvolve I, Bem T, Cabelguen JM (1997) Epaxial and limb muscle activity during swimming and terrestrial stepping in the adult newt, Pleurodeles waltl. J Neurophysiol 78: 638–650

    PubMed  CAS  Google Scholar 

  • Driesang RB, Büschges A (1993) The neural basis of catalepsy in the stick insect. IV. Properties of nonspiking interneurons. J Comp Physiol A 173: 445–454

    Article  Google Scholar 

  • Dürr V, Schmitz J, Cruse H (2004) Behavior-based modelling of hexapod locomotion: linking biology and technical application. Arthropod Struct Dev 33: 1–13

    Article  Google Scholar 

  • Duysens J, Clarac F, Cruse H (2000) Load-regulating mechanisms in gait and posture: comparative aspects. Physiol Rev 80: 83–133

    PubMed  CAS  Google Scholar 

  • Ekeberg Ö, Blümel M, Büschges A (2004) Dynamic simulation of stick insect walking. Arthropod Struct Dev 33: 287–300

    Article  PubMed  Google Scholar 

  • Ekeberg Ö, Pearson KG (2005) Computer simulation of stepping in the hind legs of the cat: an examination of the mechanisms regulating the stance-to-swing transition. J Neurophysiol 94: 4256–4268

    Article  PubMed  Google Scholar 

  • Ekeberg Ö (1993) A combined neuronal and mechanical model of fish swimming. Biol Cybern 69: 363–374

    Google Scholar 

  • Ekeberg Ö, Grillner S (1999) Simulations of neuromuscular control in Lamprey swimming. Phil Trans R Soc B 354(1385): 895–902

    Article  PubMed  CAS  Google Scholar 

  • Espenschied KS, Chiel HJ, Quinn RD, Beer RD (1993) Leg coordination mechanisms in the stick insect applied to hexapod robot locomotion. Adapt Behav J 1: 455–468

    Article  Google Scholar 

  • Fischer H, Schmidt J, Büschges A (2001) Pattern generation for walking and searching movements of a stick insect leg I. Coordination of motor activity. J Neurophysiol 85: 341–353

    PubMed  CAS  Google Scholar 

  • FitzHugh R (1969) Mathematical models of excitation and propagation in nerve. In: Schwan HP (ed) Biological engineering. McGraw-Hill Book Co, New York, pp 1–85

    Google Scholar 

  • Foth E, Bässler U. (1985a) Leg movements of stick insects walking with five legs on a treadwheel and with one leg on a motor-driven belt. I. General results and 1:1-coordination. Biol Cybern 51: 313–318

    Article  PubMed  CAS  Google Scholar 

  • Foth E, Bässler U. (1985b) Leg movements of stick insects walking with five legs on a treadwheel and with one leg on a motor-driven belt. II. Leg coordination when step-frequencies differ from leg to leg. Biol Cybern 51: 319–324

    Article  PubMed  CAS  Google Scholar 

  • Friesen WO, Hocker CG (2001) Functional analyses of the leech swim oscillator. J Neurophysiol 86: 824–835

    PubMed  CAS  Google Scholar 

  • Fuchs E (2010) Inter-segmental coordination in the cockroach. Talk at the ‘9th international congress of neuroethology’, Salamanca, Spain

  • Fuchs E, Holmes P, Kiemel T, Ayali A (2010) Intersegmental coordination of cockroach locomotion: adaptive control of centrally coupled pattern generator circuits. Front Neural Circuits 4: 125

    Google Scholar 

  • Godlewska E, Grabowska M, Schmidt J, Daun-Gruhn S (2011) Stepping patterns in free walking adult stick insects—quadrupedal gaits in hexapod animals. Poster at the Meeting of the German Neuroscience Society

  • Graham D (1985) Pattern and control of walking in insects. Adv Insect Physiol 18: 31–140

    Article  Google Scholar 

  • Graham D (1972) A behavioural analysis of the temporal organisation of walking movements in the 1st instar and adult stick insect (Carausius morosus). J Comp Physiol 81: 23–52

    Article  Google Scholar 

  • Graham D (1977) Simulation of a model for the coordination of leg movement in free walking insects. Biol Cybern 26: 187–198

    Article  Google Scholar 

  • Graham D (1979) Effects of circum-oesophageal lesion on the behaviour of the stick insect Carausius morosus. II. Changes in walking co-ordination. Biol Cybern 32: 147–152

    Article  Google Scholar 

  • Graham D (1981) Walking kinetics of the stick insect using a low-inertia counter balanced, pair of independent treadwheels. Biol Cybern 40: 49–57

    Article  Google Scholar 

  • Graham D, Wendler G (1981) The reflex behaviour and innervation of the tergo-coxal retractor muscles of the stick insect Carausius morosus. J Comp Physiol 143: 81–91

    Article  Google Scholar 

  • Grillner S (1981) Control of locomotion in bipeds, tetrapods, and fish. In: Brooks VB (ed) Handbook of physiology. American Physiology Society, Bethesda, pp 1179–1236

    Google Scholar 

  • Grillner S (1985) Neurobiological bases of rhythmic motor acts in vertebrates. Science 228(4696): 143–149

    Article  PubMed  CAS  Google Scholar 

  • Grillner S (2003) The motor infrastructure: from ion channels to neuronal networks. Nat Rev 4: 573–586

    CAS  Google Scholar 

  • Grillner S, Wallen P (2002) Cellular bases of a vertebrate locomotor system—steering, intersegmental and segmental co-ordination and sensory control. Brain Res Rev 40: 92–106

    Article  PubMed  Google Scholar 

  • Grillner S, Markram H, De Schutter E, Silberberg G, LeBeau FEN (2005) Microcircuits in action from CPGs to neocortex. TINS 28: 525–533

    PubMed  CAS  Google Scholar 

  • Gruhn M, Zehl L, Büschges A (2009) Straight walking and turning on a slippery surface. J Exp Biol 212: 194–209

    Article  PubMed  Google Scholar 

  • Gruhn M, v. Uckermann G, Westmark S, Wosnitza A, Büschges A, Borgmann A (2009) Control of stepping velocity in the stick insect Carausius morosus. J Neurophysiol 102: 1180–1192

    Article  PubMed  Google Scholar 

  • Gutkin BS, Ermentrout GB, Reyes AD (2005) Phase-response curves give the responses of neurons to transient inputs. J Neurophysiol 94: 1623–1635

    Article  PubMed  Google Scholar 

  • Haridas C, Zehr EP (2003) Coordinated interlimb compensatory responses to electrical stimulation of cutaneous nerves in the hand and foot during walking. J Neurophysiol 90: 2850–2861

    Article  PubMed  Google Scholar 

  • Hellgren J, Grillner S, Lansner A (1992) Computer simulation of the segmental neural network generating locomotion in lamprey by using populations of network interneurons. Biol Cybern 68: 1–13

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117: 500–544

    PubMed  CAS  Google Scholar 

  • Holmes PJ, Full RJ, Koditschek D, Guckenheimer J (2006) The dynamics of legged locomtion: models, analysis, and challenges. SIAM Rev 48(2): 207–304

    Article  Google Scholar 

  • Hoppensteadt FC, Izhikevich EM (1997) Weakly connected neural networks. Springer, New York

    Book  Google Scholar 

  • Hustert R (1978) Segmental and interganglionic projections from primary fibres of insect mechanoreceptors. Cell Tissue Res 194: 337–351

    Article  PubMed  CAS  Google Scholar 

  • Ijspeert AJ (2001) A connectionist central pattern generator for the aquatic and terrestrial gaits of a simulated salamander. Biol Cybern 84(5): 331–348

    Article  PubMed  CAS  Google Scholar 

  • Ijspeert AJ (2008) Central pattern generators for locomotion control in animals and robots: a review (Preprint). Neural Netw 21: 642–653

    Article  PubMed  Google Scholar 

  • Ijspeert AJ, Crespi A, Cabelguen JM (2005) Simulation and robotics studies of salamander locomotion: applying neurobiological principles to the control of locomotion in robots. Neuroinformatics 3(3): 171–196

    Article  PubMed  Google Scholar 

  • Ijspeert AJ, Crespi A, Ryczko D, Cabelguen JM (2007) From swimming to walking with a salamander robot driven by a spinal cord model. Science 315: 1416–1420

    Article  PubMed  CAS  Google Scholar 

  • Izhikevich EM (2007) Dynamical systems in neuroscience: the geometry of excitability and bursting. MIT press, Cambridge

    Google Scholar 

  • Jeck T, Cruse H (2007) Walking in Aretaon asperrimus. J Insect Physiol 53(7): 724–733

    Article  PubMed  CAS  Google Scholar 

  • Johnston RM, Levine RB (2002) Thoracic leg motoneurons in the isolated CNS of adult Manduca produce patterned activity in response to pilocarpine. Invert Neurosci 4: 175–192

    Article  PubMed  CAS  Google Scholar 

  • Jones SR, Mulloney B, Kapper TJ, Kopell N (2003) Coordination of cellular pattern-generating circuits that control limb movements: the sources of stable differences in intersegmental phase. J Neurosci 23: 3457–3468

    PubMed  CAS  Google Scholar 

  • Katz PS, Hooper SL (2007) Invertebrate central pattern generators. In: North G, Greenspan RJ (eds) Invertebrate neurobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 251–280

    Google Scholar 

  • Kelso JAS, Schöner G, Scholz JP, Haken H (1987) Phase-locked modes, phase transitions and component oscillators in biological motion. Phys Scr 35: 79–87

    Article  Google Scholar 

  • Knop G, Denzer L, Büschges A (2001) A central pattern-generating network contributes to reflex-reversalLike leg motoneuron activity in the locust. J Neurophysiol 86: 3065–3068

    PubMed  CAS  Google Scholar 

  • Kopell N, Ermentrout GB, Williams TL (1991) On chains of oscillators forced to one end. SIAP 51(5): 1397–1417

    Google Scholar 

  • Kuznetsov YA (2004) Elements of applied bifurcation theory. Springer, New York

    Google Scholar 

  • Laurent G, Burrows M (1989) Distribution of intersegmental inputs to nonspiking local interneurons and motor neurons in the locust. J Neurosci 9: 3019–3029

    PubMed  CAS  Google Scholar 

  • Laurent G, Burrows M (1989) Intersegmental interneurons can control the gain of reflexes in adjacent segments of the locust by their action on nonspiking local interneurons. J Neurosci 9: 3030–3039

    PubMed  CAS  Google Scholar 

  • Lewinger WA, Rutter BL, Blumel M, Buschges A, Quinn RD (2006) Sensory coupled action switching modules generate robust, adaptive stepping in legged robots. In: International Conference on climbing and walking robots (CLAWAR’06), Brussels

  • Ludwar BC, Westmark S, Büschges A, Schmidt J (2005) Modulation of membrane potential in mesothoracic moto- and interneurons during stick insect front leg walking. J Neurophysiol 93: 1255–1265

    Article  PubMed  Google Scholar 

  • Manoonpong P, Wörgötter F, Pasemann F (2010) Biological inspiration for mechanical design and control of autonomous walking robots: towards life-like robots. IJABME 3(1): 1–12

    Google Scholar 

  • Marder E, Bucher D (2001) Central pattern generators and the control of rhythmic movements. Curr Biol 11: R986–R996

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka K (1987) Mechanisms of frequency and pattern control in the neural rhythm generators. Biol Cybern 56: 345–353

    Article  PubMed  CAS  Google Scholar 

  • Orlovsky GN, Deliagina TG, Grillner S (1999) Neuronal control of locomotion. Oxford University Press, Oxford

    Google Scholar 

  • Pearson KG (1987) Central pattern generation: a concept under scrutiny. In: McLennan H, Ledsome JR, McIntosh CHS, Jones DR (eds) Advances in physiological research. Plenum Press, New York, pp 167–185

    Google Scholar 

  • Pearson KG (1993) Common principles of motor control in vertebrates and invertebrates. Ann Rev Neurosci 16: 265–297

    Article  PubMed  CAS  Google Scholar 

  • Pearson KG (2004) Generating the walking gait: role of sensory feedback. Prog Brain Res 143: 123–129

    Article  PubMed  Google Scholar 

  • Pearson KG (2008) Role of sensory feedback in the control of stance duration in walking cats. Brain Res Rev 57: 222–227

    Article  PubMed  CAS  Google Scholar 

  • Pearson K, Ekeberg Ö, Büschges A (2006) Assessing sensory function in locomotor systems using neuro-mechanical simulations. TINS 29: 625–631

    PubMed  CAS  Google Scholar 

  • Pearson KG, Iles JF (1973) Nervous mechanisms underlying intersegmental co-ordination of leg movements during walking in the cockroach. J Exp Biol 58: 725–744

    Google Scholar 

  • Prochazka A (1996) Proprioceptive feedback and movement regulation. In: Rowell L, Sheperd JT (eds) Handbook of physiology. American Physiological Society, New York, pp 89–127

    Google Scholar 

  • Ritzmann RE, Büschges A (2007) Insect walking: from reduced preparations to natural terrain. In: North G, Greenspan R (eds) Invertebrate neurobiology. Cold Spring Harbor Press, Cold Spring Harbor, pp 229–250

    Google Scholar 

  • Rosenbaum P, Wosnitza A, Büschges A, Gruhn M (2010) Activity patterns and timing of muscle activity in the forward walking and backward walking stick insect Carausius morosus. J Neurophysiol 104: 1681–1695

    Article  PubMed  Google Scholar 

  • Rutter BL, Lewinger WA, Blümel M, Büschges A, Quinn RD (2007) Simple muscle models regularize motion in a robotic leg with neurally-based step generation. Proceedings of ICRA 2007, Rome

  • Ryckebusch S, Laurent G (1993) Rhythmic patterns evoked in locust leg motor neurons by the muscarinic agonist pilocarpine. J Neurophysiol 69(5): 1583–1595

    PubMed  CAS  Google Scholar 

  • Samara RF, Currie SN (2007) Crossed commissural pathways in the spinal hindlimb enlargement are not necessary for right left hindlimb alternation during turtle swimming. J Neurophysiol 98: 2223–2231

    Article  PubMed  Google Scholar 

  • Satterlie RA (1985) Reciprocal inhibition and postinhibitory rebound produce reverberation in a locomotor pattern generator. Science 229: 402–404

    Article  PubMed  CAS  Google Scholar 

  • Schmitz J, Haßfeld G (1989) The treading-on-tarsus reflex in stick insects: phase dependence and modifications of the motor output during walking. J Exp Biol 143: 373–388

    Google Scholar 

  • Schmitz J, Büschges A, Kittmann R (1991) Intracellular recordings from nonspiking interneurons in a semi-intact, tethered walking insect. J. Neurobiology 22: 907–921

    Article  CAS  Google Scholar 

  • Schöner G, Kelso JAS (1988) Dynamic pattern generation in behavioral and neural systems. Science 239: 1513–1520

    Article  PubMed  Google Scholar 

  • Selverston AI, Moulins M (1985) Oscillatory neural networks. Annu Rev Physiol 47: 29–48

    Article  PubMed  CAS  Google Scholar 

  • Sponberg S, Full RJ (2008) Neuromechanical response of musco-skeletal structures in cockroaches during rapid running on rough terrain. J Exp Biol 211: 446

    Article  Google Scholar 

  • Stein PSG, Victor JC, Field EC, Currie SN (1995) Bilateral control of hindlimb scratching in the spinal turtle: contralateral spinal circuitry contributes to the normal ipsilateral motor pattern of fictive rostral scratching. J Neurosci 15: 4343–4355

    PubMed  CAS  Google Scholar 

  • Steingrube S, Timme M, Wörgötter F, Manoonpong P (2010) Self-organized adaptation of a simple neural circuit enables complex robot behaviour. Nat Phys. doi:10.1038/NPHYS1508

  • Strauß R, Heisenberg M (1990) Coordination of legs during straight walking and turning in Drosophila melanogaster. J Comp Physiol A 167: 403–412

    Article  PubMed  Google Scholar 

  • Traven H, Brodin L, Lansner A, Ekeberg Ö, Wallen P, Grillner S (1993) Computer simulations of nmda and non-nmda receptors mediated synaptic drive: sensory and supraspinal modulation of neurons and small networks. J Neurophysiol 70(2): 695–709

    PubMed  CAS  Google Scholar 

  • Tunstall MJ, Roberts A (1990) NMDA applied to the spinal cord in Xenopus embryos reduces rostro-caudal delay during fictive swimming. J Physiol 425: 92

    Google Scholar 

  • Tunstall MJ, Roberts A (1994) A longitudinal gradient of synaptic drive in the spinal cord of Xenopus embryos and its role in coordination of swimming. J Physiol 474: 393–405

    PubMed  CAS  Google Scholar 

  • Turvey MT, Rosenblum LD, Schmidt RC, Kugler PN (1986) Fluctuations and phase symmetry in coordinated rhythmic movements. J Exp Psychol 12: 564–583

    CAS  Google Scholar 

  • Uckermann G, Büschges A (2009) Premotor interneurons in the local control of stepping motor output for the stick insect single middle leg. J Neurophysiol 102: 1956–1975

    Article  Google Scholar 

  • Van Drongelen W, Koch H, Elsen FP, Lee HC, Mrejeru A, Doren E et al (2006) The role of persistent sodium current in bursting activity of mouse neocortical networks in vitro. J Neurophysiol 96: 2564–2577

    Article  PubMed  CAS  Google Scholar 

  • Van der Pol B (1927) On relaxation oscillations. Lond Edinb Dublin Phil Mag J Sci 2(7): 978–992

    Google Scholar 

  • Wadden T, Hellgren J, Lansner A, Grillner S (1997) Intersegmental coordination in the lamprey: simulations using a network model without segmental boundaries. Biol Cybern 76: 1–9

    Article  Google Scholar 

  • Wendler G (1965) The co-ordination of walking movements in arthropods. Symp Soc Exp Biol 20: 229–249

    Google Scholar 

  • Wendler G (1978) Lokomotion: das ergebnis zentral-peripherer interaktion (locomotion: the result of central–peripheral interaction). Verh Dtsch Zool Ges 71: 80–96

    Google Scholar 

  • Wendler G (1968) Ein analogmodell der beinbewegung eines laufenden insekts (An analogue model of leg motion of a running insect). Kybernetik 18: 67–74

    Google Scholar 

  • Westmark S, Oliveira EE, Schmidt J (2009) Pharmacological analysis of tonic activity in motoneurons during stick insect walking. J Neurophysiol 102: 1049–1061

    Article  PubMed  CAS  Google Scholar 

  • Wolf H, Büschges A (1995) Nonspiking local interneurons in insect leg motor control. II. The role of nonspiking interneurons in the control of the swing movement during walking. J Neurophysiol 73: 1861–1875

    PubMed  CAS  Google Scholar 

  • Zhong G, Masino MA, Harris-Warrick RM (2007) Persistent sodium currents participate in fictive locomotion generation in neonatal mouse spinal cord. J Neurosci 27: 4507–4518

    Article  PubMed  CAS  Google Scholar 

  • Zill SN, Schmitz J, Büschges A (2004) Leg sensors and sensory-motor interactions. Arthropod Struct Dev 33: 273–286

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Daun-Gruhn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daun-Gruhn, S., Büschges, A. From neuron to behavior: dynamic equation-based prediction of biological processes in motor control. Biol Cybern 105, 71–88 (2011). https://doi.org/10.1007/s00422-011-0446-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-011-0446-6

Keywords

Navigation