Skip to main content
Log in

Revealing non-analytic kinematic shifts in smooth goal-directed behaviour

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

An Erratum to this article was published on 01 October 2011

Abstract

How do biological agents plan and organise a smooth accurate path to shift from one smooth mode of behaviour to another as part of graceful movement that is both plastic and controlled? This paper addresses the question in conducting a novel shape analysis of approach and adjustment phases in rapid voluntary target aiming and 2-D reaching hand actions. A number of mode changing experiments are reported that investigate these actions under a range of goals and conditions. After a typically roughly aimed approach, regular projective adjustment is observed that has height and velocity kinematic profiles that are scaled copies of one another. This empirical property is encapsulated as a novel self-similar shift function. The mathematics shows that the biological shifts consist of continual deviation from their full Taylor series everywhere throughout their interval, which is a deep form of plasticity not described before. The experimental results find the same approach and adjustment strategy to occur with behavioural trajectories over the full and varied range of tested goals and conditions. The trajectory shapes have a large degree of predictability through using the shift function to handle extensive variation in the trajectories’ adjustment across individual behaviours and subjects. We provide connections between the behavioural features and results and various neural studies to show how the methodology may be exploited. The conclusion is that a roughly aimed approach followed by a specific highly plastic shift adjustment can provide a regular basis for fast and accurate goal-directed motion in a simple and generalisable way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abend W, Bizzi E, Morasso P (1982) Human arm trajectory formation. Brain 105: 331–348

    Article  PubMed  CAS  Google Scholar 

  • Arbib M (2003) Mammalian motor control. In: Arbib M. (eds) Handbook of brain theory and neural networks. MIT Press, Cambridge, pp 110–113

    Google Scholar 

  • Arechavaleta G, Laumond JP, Hicheur H, Berthoz A (2006) The non holonomic nature of human locomotion: a modeling study. In: Proceedings of the IEEE/RAS-EMBS international conference on biomedical robots and biomechatronics. February 2006, Pisa, Italy, pp 158–163

  • Atkeson CG, Hollerbach JM (1985) Kinematic features of unrestrained vertical arm movements. J Neurosci 5: 2318–2330

    PubMed  CAS  Google Scholar 

  • Ben-Itzhak S, Karniel A (2007) Minimum acceleration criterion with constraints implies bang-bang control as an underlying principle for optimal trajectories of arm reaching movements. Neural Comput 20: 779–812

    Article  Google Scholar 

  • Bernstein N (1967) The coordination and regulation of movements. Pergamon, London

    Google Scholar 

  • Biess A, Liebermann DG, Flash T (2007) A computational model for redundant human three-dimensional pointing movements: integration of independent spatial and temporal motor plans simplifies movement dynamics. J Neurosci 27(48): 13045–13064

    Article  PubMed  CAS  Google Scholar 

  • Bhushan N, Shadmehr R (1999) Computational nature of human adaptive control during learning of reaching movements in force fields. Biol Cybern 81: 39–60

    Article  PubMed  CAS  Google Scholar 

  • Bullock D, Grossberg S (1988) Neural dynamics of planned arm movements: emergent invariants and speed-accuracy properties during trajectory formation. Psychol Rev 95: 49–90

    Article  PubMed  CAS  Google Scholar 

  • Bullock D, Grossberg S, Guenther FH (1993) A self-organizing neural model of motor equivalent reaching and tool use by a multijoint arm. J Cogn Neurosci 5: 408–435

    Article  Google Scholar 

  • Bullock D (2003) Motoneuron recruitment. In: Arbib M (eds) Handbook of brain theory and neural networks. MIT Press, Cambridge, pp 683–686

    Google Scholar 

  • Burdet E, Milner TE (1998) Quantisation of human motions and learning of accurate movements. Biol Cybern 78: 307–318

    Article  PubMed  CAS  Google Scholar 

  • Burdet E, Tee KP, Mareels I, Milner TE, Chew CM, Franklin DW, Osu R, Kawato M (2006) Stability and motor adaptation in human arm movements. Biol Cybern 94: 20–32

    Article  PubMed  CAS  Google Scholar 

  • Chillingworth DRJ (1976) Differential topology with a view to applications. Pitman Publishing, London

    Google Scholar 

  • Choset H (2005) Principles of robot motion: theory, algorithms, and implementation. MIT Press, Cambridge

    Google Scholar 

  • de ‘Sperati C, Viviani P (1997) The relationship between curvature and velocity in two-dimensional smooth pursuit eye movements. J Neurosci 17: 3932–3945

    Google Scholar 

  • Dounskaia N (2007) Kinematic invariants during cyclical arm movements. Biol Cybern 96(2): 147–163

    Article  PubMed  Google Scholar 

  • Dudek G, Jenkin M (2000) Computational principles of mobile robotics. Cambridge University Press, Cambridge

    Google Scholar 

  • Edgar GA (1990) Measure, topology and fractal geometry. Springer-Verlag, New York, NY

    Google Scholar 

  • Elliott D, Helsen WF, Chua R (2001) A century later: Woodworth’s (1899) two-component model of goal-directed aiming. Psychol Bull 127(3): 340–357

    Article  Google Scholar 

  • Falconer K (2006) Fractal geometry: mathematical foundations and applications, 2nd edn. Wiley, New York

    Google Scholar 

  • Flake GW (2000) The computational beauty of nature: computer explorations of fractals, chaos, complex systems and adaptation, Bradford book. MIT Press, Cambridge

    Google Scholar 

  • Flash T, Handzel AA (2007) Affine differential geometry analysis of human arm movements. Biol Cybern 96(6): 577–601

    Article  PubMed  Google Scholar 

  • Flash T, Hogan N (1985) The coordination of arm movements: An experimentally confirmed mathematical model. J Neurosci 5(7): 1688–1703

    PubMed  CAS  Google Scholar 

  • Georgopoulos AP, Kalaska JF, Massey JT (1981) Spatial trajectories and reaction times of aimed movements: effects of practice, uncertainty, and change in target location.. J Neurophysiol 46: 725–743

    PubMed  CAS  Google Scholar 

  • Georgopoulos AP, Kettner RE, Schwartz AB (1988) Primate motor cortex and free arm movements to visual targets in three-dimensional space. ii coding of the direction of movement by a neuronal population. J Neurosci 8: 2928–2937

    PubMed  CAS  Google Scholar 

  • Gielen CC, Houk JC, Marcus SL, Miller LE (1984) Viscoelastic properties of the wrist motor servo in man. Ann Biomed Eng 12: 599–620

    Article  PubMed  CAS  Google Scholar 

  • Gordon J, Ghilardi MF, Ghez C (1994) Accuracy of planar reaching movements. I. Independence of direction and extent variability. Exp Brain Res 99: 97–111

    Article  PubMed  CAS  Google Scholar 

  • Harris CM, Wolpert DM (1998) Signal-dependent noise determines motor planning. Nature 394: 780–784

    Article  PubMed  CAS  Google Scholar 

  • Hermens F, Gielen S (2004) Posture-based or trajectory-based movement planning: a comparison of direct and indirect pointing movements. Exp Brain Res 159(3): 340–348

    Article  PubMed  Google Scholar 

  • Hicheur H, Vieilledent S, Richardson MJE, Flash T (2005) Velocity and curvature in human locomotion along complex curved paths: a comparison with hand movements. Exp Brain Res 162(2): 145–154

    Article  PubMed  CAS  Google Scholar 

  • Hogan N (1984) An organizing principle for a class of voluntary movements. J Neurosci 4: 2745–2754

    PubMed  CAS  Google Scholar 

  • Jeffrey A (1996) Mathematics for engineers and scientists. Chapman & Hall, London

    Google Scholar 

  • Jordan MI (1990) Motor learning and the degrees of freedom problem. In: Jeannerod M, Hillsdale NJ (eds) Attention and performance XIII. Erlbaum, Mahwah, pp 796–836

    Google Scholar 

  • Karniel A, Mussa-Ivaldi FA (2003) Sequence, time, or state representation: how does the motor control system adapt to variable environments?. Biol Cybern 89: 10–21

    PubMed  Google Scholar 

  • Kawato M, Maeda T, Uno Y, Suzuki R (1990) Trajectory formation of arm movements by cascade neural network model based on minimum torque-change criterion. Biol Cybern 62: 275–288

    Article  PubMed  CAS  Google Scholar 

  • Kawato M (1996) Trajectory formation in arm movements. In: Zelaznik HN (eds) Advances in motor learning and control.. Human Kinetics, Champaign

    Google Scholar 

  • Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9: 718–727

    Article  PubMed  CAS  Google Scholar 

  • Zelaznik HN (1996) Behavioral analysis of trajectory formation: the speed-accuracy trade-off as a tool to understand strategies of motor-control. In: Zelaznik HN (eds) Advances in motor learning and control.. Human Kinetics, Champaign

    Google Scholar 

  • Kirk DE (1970) Optimal control theory: an introduction. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Klein Breteler MD, Gielen SC, Meulenbroek RG (2001) End-point constraints in aiming movements: effects of approach angle and speed. Biol Cybern 85(1): 65–75

    Article  PubMed  CAS  Google Scholar 

  • Kraizlis RJ, Stone SL (2003) Pursuit eye movements. In: The handbook of brain theory and neural networks, MIT Press, Cambridge, pp 929–934

  • Lacquaniti F, Terzuolo CA, Viviani P (1983) The law relating kinematic and figural aspects of drawing movements. Acta Psychologica 54: 115–130

    Article  PubMed  CAS  Google Scholar 

  • Lee N, Erickson M, Cherveny P (2002) Measurement of the behavior of a golf club during the golf swing. In: Routledge E (ed) Science and golf IV. Proceedings of the world scientific congress of golf

  • Lewis FL (1992) Applied optimal control and extimation. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Liebermann DG, Biess A, Friedman J, Gielen CCAM, Flash T (2006) Intrinsic joint kinematic planning. I: Reassessing the Listing’s law constraint in the control of three-dimensional arm movements, experimental brain research, vol 171, number 2. Springer, Berlin/Heidelberg

  • Macki J, Strauss A (1982) An introduction to optimal control theory. Springer Verlag, New York

    Book  Google Scholar 

  • Mandelbrot B (1967) How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science (New Series) 156(3775): 636–638

    Article  CAS  Google Scholar 

  • Merryfield KG (1992) A nowhere analytic C function. Missouri J Math Sci 4(3)(Fall 1992):132–138

    Google Scholar 

  • Meyer DE, Abrams RA, Kornblum S, Wright CE, Smith JEK (1988) Optimality in human motor performance: Ideal control of rapid aimed movements. Psychol Rev 95: 340–370

    Article  PubMed  CAS  Google Scholar 

  • Milner TE (1992) A model for the generation of movements requiring endpoint precision. Neuroscience 49(2): 487–496

    Article  PubMed  CAS  Google Scholar 

  • Morasso P (1981) Spatial control of arm movements. Exp Brain Res 42: 223–227

    Article  PubMed  CAS  Google Scholar 

  • Nakano E, Imamizu H, Osu R, Uno Y, Gomi H, Yoshioka T, Kawato M (1999) Quantitative examinations of internal representations for arm trajectory planning: minimum commanded torque change model. J Neurophysiol 81(5): 2140–2155

    PubMed  CAS  Google Scholar 

  • Nelson W (1983) Physical principles for economies of skilled movements. Biol Cybern 46: 135–147

    Article  PubMed  CAS  Google Scholar 

  • Novak KE, Miller LE, Houk JC (2000) Kinematic properties of rapid hand movements in a knob turning task. Exp Brain Res 132: 419–433

    Article  PubMed  CAS  Google Scholar 

  • Novak KE, Miller LE, Houk JC (2002) The use of overlapping submovements in the control of rapid hand movements. Exp Brain Res 144: 351–364

    Article  PubMed  CAS  Google Scholar 

  • Novak KE, Miller LE, Houk JC (2003) Features of motor performance that drive adaptation in rapid hand movements. Exp Brain Res 148: 388–400

    PubMed  CAS  Google Scholar 

  • Patton JL, Mussa-Ivaldi FA (2004) Robot-assisted adaptive training: custom force fields for teaching movement patterns. IEEE Trans Biomed Eng 51: 636–646

    Article  PubMed  Google Scholar 

  • Paul R (1981) Robot manipulators, mathematics, programming, and control. MIT Press, Cambridge MA

    Google Scholar 

  • Pellionisz A, Llinas R (1980) Tensorial approach to the geometry of brain function: cerebellar coordination via a metric tensor. Neuroscience 5: 1125–1136

    Article  PubMed  CAS  Google Scholar 

  • Prunescu M (2009) Self-similar carpets over finite fields. Eur J Comb 866–878

  • Richardson MJ, Flash T (2002) Comparing smooth arm movements with the two-thirds power law and the related segmented-control hypothesis. J Neurosci 22(18): 8201–8211

    PubMed  CAS  Google Scholar 

  • Rizzolatti G, Luppino G (2003) Grasping movements: visuomotor transformations. In: Arbib M. (eds) Handbook of brain theory and neural networks. MIT Press, Cambridge, pp 501–504

    Google Scholar 

  • Saltzman EL (1979) Levels of sensorimotor representation. J Math Psychol 20: 91–163

    Article  Google Scholar 

  • Schaal S, Sternad D (2001) Origins and violations of the 2/3 power law in rhythmic 3D movements. Exp Brain Res 136: 60–72

    Article  PubMed  CAS  Google Scholar 

  • Schaal S (2003) Arm and hand movement control. In: Arbib MA (eds) The handbook of brain theory and neural networks, 2nd edn. MIT Press, Cambridge, MA, pp 110–113

    Google Scholar 

  • Schubert H (1968) Topology. Macdonald & Co, London

    Google Scholar 

  • Schwartz AB (1993) Primate motor cortex and free arm motor cortical activity during drawing movements: population response during sinusoid tracing. J Neurophysiol 70: 28–36

    PubMed  CAS  Google Scholar 

  • Schwartz AB (1994) Direct cortical representation of drawing. Science 265: 540–542

    Article  PubMed  CAS  Google Scholar 

  • Shadmehr R, Mussa-Ivaldi FA (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 14: 3208–3224

    PubMed  CAS  Google Scholar 

  • Shadmehr (2003) Equilibrium point hypothesis. In: Arbib M (eds) Handbook of brain theory and neural networks.. MIT Press, Cambridge, pp 409–412

    Google Scholar 

  • Soechting JF, Lacquaniti F (1981) Invariant characteristics of a pointing movement in man. J Neurosci 1: 710–720

    PubMed  CAS  Google Scholar 

  • Sternad D, Schaal S (1999) Segmentation of endpoint trajectories does not imply segmented control. Exp Brain Res 124(1): 118–136

    Article  PubMed  CAS  Google Scholar 

  • Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor coordination. Nat Neurosci 5: 1226–1235

    Article  PubMed  CAS  Google Scholar 

  • Todorov E (2004) Optimality principles in sensorimotor control. Nat Neurosci 7: 907–915

    Article  PubMed  CAS  Google Scholar 

  • Uno Y, Kawato M, Suzuki R (1989) Formation and control of optimal trajectory in human multi-joint arm movement. Biol Cybern 61: 89–101

    Article  PubMed  CAS  Google Scholar 

  • van Hemmen JL, Schwartz AB (2008) Population vector code: a geometric universal as actuator. Biol Cybern 98: 509–518

    Article  PubMed  Google Scholar 

  • Van Horn JD (2003) Imaging the motor brain. In: Arbib M (eds) Handbook of brain theory and neural networks. MIT Press, Cambridge, pp 556–562

    Google Scholar 

  • Viviani P, Terzuolo CA (1982) Trajectory determines movement dynamics. Neuroscience 7: 431–437

    Article  PubMed  CAS  Google Scholar 

  • Von Koch H (1904) On a continuous curve without tangents, constructible from elementary geometry. In: Classics on fractals. (Westview Press, 2004), Boulder, pp 25–45

  • Wale AP, Weir MK (2002) Measurement and design of goal-directed behavior. In: Proceedings of the seventh neural computation and psychology workshop. World Scientific, Singapore, pp 78–89

  • Wale AP (2006) Non-analytic shifts in smooth goal-directed human behavior. PhD Thesis, St Andrews University

  • Weir DJ, Stein JF, Miall RC (1989) Cues and control strategies in visually guided tracking. J Mot Behav 21(3): 185–204

    PubMed  CAS  Google Scholar 

  • Weir MK (1984) Goal-directed behavior, studies in cybernetics. Gordon and Breach, New York

    Google Scholar 

  • Weir MK, Wale AP (2003) Smooth shifts in animate goal-directed action. Invited talk to the annual meeting of the computing section of the British Psychological Society

  • Weir MK, Wale AP (2005) Finding cognitive action strategies through smooth kinematic shifts. Invited talk to the annual meeting of the computing section of the British Psychological Society

  • Wilson VJ, Melvill Jones G (1979) Mammalian vestibular physiology. Plenum Press, New York

    Google Scholar 

  • Woodworth RS (1899) The accuracy of voluntary movement. Psychol Rev Monogr 3(13): 1–106

    Google Scholar 

  • Wu C-H, Houk JC, Young KY, Miller LE (1990) Nonlinear damping of limb motion. In: Winters JM, Woo SL-Y (eds) Multiple muscle systems: biomechanics and movement organization. Springer, Heidelberg, Berlin, New York, pp 214–235

    Google Scholar 

  • Zelaznik HN, Hawkins B, Kisselburgh L (1983) Rapid visual feedback processing in single-aiming movements. J Mot Behav 23: 75–85

    Google Scholar 

  • Zelaznik HN (ed) (1996) Advances in motor learning and control. Human Kinetics, Champaign, USA

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Weir.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00422-011-0461-7

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weir, M.K., Wale, A.P. Revealing non-analytic kinematic shifts in smooth goal-directed behaviour. Biol Cybern 105, 89–119 (2011). https://doi.org/10.1007/s00422-011-0449-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-011-0449-3

Keywords

Navigation