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Abstract

We present a method for using measurements of membrane voltage in individual neurons to 

estimate the parameters and states of the voltage-gated ion channels underlying the dynamics of 

the neuron’s behavior. Short injections of a complex time-varying current provide sufficient data to 

determine the reversal potentials, maximal conductances, and kinetic parameters of a diverse range 

of channels, representing tens of unknown parameters and many gating variables in a model of the 

neuron’s behavior. These estimates are used to predict the response of the model at times beyond 

the observation window. This method of data assimilation extends to the general problem of 

determining model parameters and unobserved state variables from a sparse set of observations, 

and may be applicable to networks of neurons. We describe an exact formulation of the tasks in 

nonlinear data assimilation when one has noisy data, errors in the models, and incomplete 

information about the state of the system when observations commence. This is a high 

dimensional integral along the path of the model state through the observation window. In this 

article, a stationary path approximation to this integral, using a variational method, is described 

and tested employing data generated using neuronal models comprising several common channels 

with Hodgkin–Huxley dynamics. These numerical experiments reveal a number of practical 

considerations in designing stimulus currents and in determining model consistency. The tools 
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explored here are computationally efficient and have paths to parallelization that should allow 

large individual neuron and network problems to be addressed.
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1 Introduction

Networks of neurons exhibit complex dynamical behaviors, including rhythmic bursting and 

patterned sequence generation (Stein et al. 1997; Laurent et al. 2001; Johnston and Wu 

1995; Koch 1999). These dynamics derive from the intrinsic properties of individual neurons 

and from properties arising from excitatory and inhibitory connections within the network. 

The membrane voltage of a neuron depends on currents from a diverse collection of ion 

channels, many of which have nonlinear voltage-dependent dynamics (Johnston and Wu 

1995). General forms for the dynamics of many of the major families of ion channels have 

been characterized (Brette et al. 2007; Graham 2002), but the kinetic parameters vary from 

isoform to isoform. Small differences in the complement and densities of the channel 

isoforms expressed by a neuron can lead to widely divergent physiological behavior. This 

sensitivity may be significant functionally but also complicates determining channel 

properties experimentally.

Patch-clamp recording techniques (Hamill et al. 1981) allow low-impedance intracellular 

injections of current while simultaneously measuring membrane potential. Depolarizing and 

hyperpolarizing currents can reveal much of a neuron’s response properties, but due to the 

large variety of channels expressed in most neurons, determining the contribution of specific 

channel types usually requires intracellular or extracellular pharmacological manipulation. 

The efficacy and specificity of the pharmacological agents is often a concern, and data 

typically have to be pooled from many neurons, possibly obscuring differences among 

individual cells. Furthermore, such pharmacological manipulations require numerous 

experimental steps and lengthy recording durations, which often has the practical 

implication of limiting analysis to exceptional recordings fortuitously maintained in a 

healthy condition for an extended period of time. Based on these results, biophysical 

Hodgkin–Huxley (HH) models of the neurons can be constructed, with the parameters fixed 

by experimental results or chosen based on simulation and iterative search (Brette et al. 

2007).

This article describes a method for directly inferring the channel parameters and unobserved 

states of HH-type neuronal models using injections of complex current waveforms often less 

than a second in duration, allowing insight into a cell’s complement of ionic channels prior 

to or in lieu of any pharmacological manipulations. Beginning with a discussion of the 

overall problem of state and parameter estimation in nonlinear systems, we give a formally 

exact framework for assimilating data into models in order to determine the set of 

parameters and initial conditions likely to have given rise to the data (Evensen 2009). Based 
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on a variational approximation to the exact formulation we construct an efficient algorithm 

for performing this task.

We test the utility of the method through “twin experiments,” where a biophysical neuronal 

model is used to generate data and then subsequently used to see if the parameters and 

underlying states can be accurately recovered through the estimation procedure in this 

article. We demonstrate that the procedure is robust to additive noise and model errors, and 

also we discuss what features of the stimulus current are necessary to obtain good estimates. 

For application to experimentally obtained data, where the underlying states are unknown, 

we describe tests of model consistency and validity. The methods we outline and explore 

here have wide applicability to equivalent questions in areas of inquiry well beyond 

neurobiology.

1.1 Ion channel models of neuron dynamics

Biophysical models of neuronal dynamics are based on the flux of ions through channels or 

different types and densities inserted into an impermeable membrane. Many of these 

channels open and close in a voltage-dependent manner, so the models consist of an 

equation of current conservation determining the voltage across the cell membrane V(t) as 

well as a set of state variables ai (t) describing the voltage-dependent permeability of each 

type of channel. These equations are described more fully in Sect. 2.2. More complex 

models may have multiple compartments with different densities and complements of 

channels, additional state variables for the concentration of intracellular signals like calcium, 

and synapses with channels gated by extra cellular ligands. Here, we focus our attention on 

single-compartment models of individual neurons to explore the methods and the numerical 

requirements of estimating states and parameters in a neurobiological context. To extend 

these methods, more complex settings may require richer models and additional data.

We consider the most common case, where the only measurement an experimenter makes of 

intracellular dynamics is the membrane voltage. (We note that optical proxies for 

intracellular concentrations and channel state continue to be developed.) A stimulus current 

Iapp(t) is applied through the recording electrode to change the polarity of the membrane and 

probe the responses of voltage-gated channels. Thus, a data set usually consists of the 

applied current and the observed voltage over some observation window t = [t0, tm = T ] with 

measurements made at times tn = {t0, t1, …, tm} within that window.

Working solely with observations of the membrane voltage and kinetic models of the 

channels, the goal is to estimate the parameters of the model, including maximal 

conductance, intracellular ion concentrations, and channel gating kinetics—as well as the 

unobserved gating dynamics ai (t)—throughout the observation window t = T. Knowledge of 

the quantities V(T ) and all of the ai (T ) along with estimates of all fixed parameters allow 

us to use the model to predict the response of the neuron for t > T given Iapp(t > T ). If these 

predictions are accurate for a broad range of biologically plausible stimuli, then the 

estimates of the model parameters provide a parsimonious, biophysically interpretable 

description of the neuron’s behavior. Furthermore, such results would motivate the 

hypothesis that the model neurons will respond accurately to a diverse set of stimuli when 

used in models of interesting functional networks.
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2 Methods

2.1 General framework

In an experimental preparation (individual neuron or network of neurons), we have L 
observed quantities (i.e., membrane voltages) at times tn in the window [t0, tm = T ]. We 

label these observations yl (tn) = yl (n); l = 1, 2, …, L; n = 0, 1, …, m.

Using our ideas about biophysical processes associated with the preparation, we construct a 

model comprising a D-dimensional state vector including the voltage V(t) and the gating 

variables ai (t); i = 1, 2, …, D − 1. For brevity, we denote the state variables {V (t), ai (t)} as 

xa(tn) = xa(n); a = 1, 2, …, D. We also establish, as part of the model of the experiment, a 

connection between the state of the neuron x(n) and observed quantities. The observation 

function of the neuron state x(n), hl (x(n)); l = 1, 2, …, L, should accurately yield the 

observations yl (n), if the model is ‘good.’ In both the statement of the dynamical model of 

the neuron and the observation functions hl (x) there may be unknown parameters. The 

collection of parameters we denote as p.

The model comprises a rule in discrete time taking the state at time tn = n to the state at time 

n + 1: xa(n + 1) = fa(x(n), p) along with the observation functions hl (x(n)). The discrete time 

rule may be the specific formulation of a numerical solution algorithm for an underlying set 

of differential equations.

Using the observations yl (n) of a subset of the state variables we wish to estimate the full 

collection of state variables x(n) at times in the observation window, in particular at the end 

of the measurements t = T. With x(T ), the estimated parameters p, and knowledge of the 

stimulus for t > T we may use the model to predict the behavior for t > T. Our goal is to 

achieve yl (t) ≈ hl (x(t)) for t > T, as these are the observed quantities.

These requirements raise a number of practical and theoretical questions:

1. How many measurements L ≤ D are required? Typically for single neurons L = 1 

(voltage), and given that most of the states of the system will remain 

unmeasurable, L ≪ D. Equivalently, given that observations are generally limited 

to V(t), is there an upper limit to the complexity of the models that can be 

completed from the data?

2. How often is it necessary to make measurements? Namely, given a fixed 

observation window [t0, …, tm = T ], how frequently should the measurable 

variables be sampled? How large can one choose the intervals between 

observations, tn+1 − tn?

3. Given that measurements are noisy and models are always wrong in some 

respect, how robust are the estimates of parameters and unobserved state 

variables to these errors?

4. What kinds of stimuli lead to adequate exploration of the state space of the 

model so that all the parameters and unobserved state variables can be estimated 

with a similar degree of confidence?
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5. What metrics are most appropriate for testing the validity of a neuronal model, 

especially in light of the intrinsic variability of real neurons?

We do not suggest we have full answers to these questions. However, in this article and 

others in the references, we explore them within the context of various examples. The 

examples in this article are directed toward neurobiological instantiations of these questions.

In this article, the data are simulated from a model which has the form of a set of ordinary 

differential equations (Sect. 2.2). After choosing a realistic set of parameters and initial 

states, we generate a solution to the equations. We select a subset of the output, here the 

voltage alone, as observed quantities y(t) and, after adding noise, attempt to fit the model, 

with undetermined parameters, to the data. This process is called data assimilation following 

the name given in the extensive and well developed geophysical literature on this subject 

(Evensen 2009).

2.2 Neuron models

The first and simplest model we address consists of the dynamics of membrane voltage V(t) 
driven by two voltage-gated ion channels, Na and K, a ‘leak’ current and an external, applied 

current we call Iapp(t). The dynamics of the single compartment model comprise the usual 

equations for voltage

(1)

where the  indicate maximal conductances and the  reversal potentials, for each of 

the Na, K, and leak channels. IDC is a DC current, and Iapp(t) is an applied external current 

selected in an experiment. We refer to this as the NaKL HH model.

The gating variables ai (t) = {m(t), h(t), n(t)} are discussed in many textbooks and reviews 

(Johnston and Wu 1995; Brette et al. 2007; Graham 2002), and each satisfies a first order 

kinetic equation of the form

(2)

The kinetic terms ai0(V) and τi (V) are taken here in the form
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(3)

The constants va, dva, … are selected to match the familiar forms for the kinetic coefficients 

usually given in terms of sigmoidal functions (1 ± exp((V − V1)/V2))−1. The tanh forms are 

numerically the same over the dynamic range of the neuron models but have better 

controlled derivatives when one goes out of that range during the required search 

procedures.

In the language used in our general formulation, the model state variables are the x(t) = 

{V(t), m(t), h(t), n(t)}, and the parameters are p = {C, gNa, ENa, gK, EK, …, dvat}. In a twin 

experiment, the data are generated by solving these HH equations for some initial condition 

x(0) = {V(0), m(0), h(0), n(0)} and some choice for the parameters, the DC current and 

Iapp(t), the stimulating current. The data presented to the model y(t) consist of the voltage 

alone V(t) alone along with additive noise. The measurement function h(x(t)) is here just the 

voltage V(t) produced by the model.

2.3 Data assimilation

The data presented to the model consist of noisy measurements made at times {t0, t1, …, tm 

= T }. We wish to determine the parameters p and the state of the neuron model x(tm) = x(m) 

= x(T ) at the end of the observation window. The parameters are independent of the external 

currents IDC and Iapp(t), while x(m) is dependent on them. If we know p, x(m) = x(T ) and 

the external currents for t > tm = T, we can predict the response of the model neuron.

The first step is to specify a cost function, which quantifies the ‘distance’ between the model 

output V(t) which is a function of x(0) and the p, and the observations y(t) to which we wish 

it to correspond. We choose a least squares distance

(4)

and we seek to minimize this cost function with respect to the x(0) and the p subject to the 

HH Eqs. (1) and (2). The assumption is that this will yield accurate estimates of p and values 

of x(tn) though the observation window. Unless there are some symmetries among the 

parameters leaving the solutions invariant, this is likely to be the case.

If we know x(0) then using the model equations, we may evaluate x(n); n = 1, 2, …, m. In 

the cases, we discuss in this article that may be quite a stable procedure. However, in a 
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nonlinear problem which has chaotic trajectories, small errors in x(0) can lead to large errors 

in x(n > 0). This leads us to use the so-called direct method for performing the minimization 

indicated here: this treats all values of x(n) and all parameters as variables in the 

minimization process, subject to equality constraints enforcing the dynamics across each 

time interval tn+1−tn (Gill et al. 1998). The values of x(n) = x(tn) come directly from the 

optimization procedure, and one does not have to contend with growing errors in x(0) to 

reach the end of the observation period {t0, t1, …, tm} where accurate x(tm) are required for 

accurate forecasts. The details of this approach are discussed in Appendix II. Justification 

for using the least squares cost function is presented in Appendix I where the exact 

formulation of data assimilation tasks is outlined. Huys et al. (2006) provide methods for 

linear estimation and summarize earlier studies of the problems we address. That earlier 

study does not recognize the variational principle as a first approximation to the exact 

integral representation of data assimilation questions as it outlined in Appendix I.

2.3.1 Control term in cost function—When minimizing cost functions such as Eq. 4 

we have shown there can be multiple local minima in C(x(0), p) associated with stability 

properties of the nonlinear equation (Creveling et al. 2008; Abarbanel et al. 2009). To 

regulate this unwanted phenomena, we argued that one can utilize an external control added 

to the differential equation for the measured state variable. In our case, we would add to the 

HH voltage equation a term u(t)(y(t) − V(t)); u(t) ≥ 0. The time dependence of u(t) is 

introduced because the magnitude of this ‘control’ required to accomplish V(t) ≈ y(t) is not 

uniform along the orbit of the model in its state space. The role of the control u(t) is to drive 

the solution of the model equation V(t) to the observations y(t). Indeed, as u(t) becomes 

large, V(t) ≈ y(t) with an error of order u(t)−1.

However, the control u(t) is not part of the biophysics of the HH model, and while we may 

use it during the estimation procedure, it should be absent when we have concluded the data 

assimilation task. Certainly, we make forecasts with u(t) = 0. To accomplish this, we argued 

that one should add to the cost function a term (a cost) for the control. This should vanish as 

the model and the data synchronize V(t) ≈ y(t).

Many such ‘costs’ can be explored, however, the simple term u(t)2 works well 

(Crevelingetal. 2008). This now changes the optimization problem seeking to estimate fixed 

parameters and unobserved state variables to the minimization of

(5)

subject to
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(6)

along with unchanged kinetic equations for the gating variables. We have called this general 

procedure dynamical state and parameter estimation (Abarbanel et al. 2009).

3 Results

The optimization procedure was initially applied to data generated using the NaKL model 

(Sect. 2.2), which has four state variables and 26 fixed parameters (Table 1). The applied 

current waveform was taken from the output of a small chaotic system providing a spectrum 

of frequencies in a band approximating 50% of the frequencies in the neuron model voltage 

output. The time scale of the current ρI is defined relative to the time step for the integration 

of the model (here 0.01 ms). Initially no additional noise was added to the voltage, so any 

error is associated with numerical round off and the signal to noise ratio is large.

The idea of using ρI is to give a rough measure of the time scale on which a selected 

stimulus waveform is sampled. Once we have chosen a waveform—in particular its 

dynamical range of amplitude variation so all depolarized and hyperpolarized dynamics are 

stimulated—then we need to select how much it is compressed—its frequency is raised— or 

expanded—its frequency is lowered—relative to the frequency of activity of the spiking 

response of the neuron to which the stimulus is presented. We have selected ρI as described 

so that when it is small, the frequency of variation of the stimulus is slow compared to the 

neuron response spiking, and vice versa.

The cost function in Eq. 5 was minimized while allowing the state variables and 18 of the 

parameters to be free. We selected some of the parameters to be equal, for example vm = 

vmt reducing the possible 26–18 because no change in the overall dynamical performance of 

the model neuron was changed by this. This made the example neurons used here a bit 

simpler without sacrificing any generality in the biophysics of the model. We also performed 

the same kind of twin experiments reported on here with all 26 parameters to be determined, 

and that worked just as well as the results we report.

The membrane capacitance and IDC were fixed, and some of the parameters were 

constrained to be equal. We used 9000 data points spaced at dtM = 0.01 ms, corresponding to 

90 ms of data, and used observations at each time step. Table 2 shows the estimated values 

for each of the parameters in comparison to the values used to generate the data. ρI = 0.5 in 

these calculations, i.e., the step size was twice as big for the injected current as was the 

integration time of the model. The estimated values of the parameters are quite accurate.
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As shown in Fig. 1 Left, the estimated values for the membrane voltage are also very close 

to the true values. This is unsurprising, because these are the data to which the model output 

was compared, and the control term u(t) allows the estimation to be nearly perfect even if the 

dynamics of the estimated model have errors.

More importantly, the estimates of the unobserved state variables, which are not directly 

passed to the model during the optimization, also closely approximate the true values in the 

simulated data Fig. 1 Right. We display here only the Na+ activation variable m(t), but the 

accuracy shown here is also reflected in the estimates of h(t) and n(t). In effect, the model 

acts as a nonlinear filter using data on the observed variables through the estimation 

procedure to estimate the state variables that are unobserved. More specific interpretations 

are appropriate for the neurobiological setting of the example problem, but this description is 

of more general utility.

3.1 Testing model consistency

As noted earlier, an excellent estimation for observed state variables and an associated small 

C(x(0), p) could result from the action of the control variable u(t) introduced into the 

regulated data assimilation procedure, because large values of u(t)would drive the model 

output V (t) to the observed data y(t). u(t) is also determined by the numerical optimization 

task in Eqs. 5 and 6. This provides a useful consistency test, because we can examine the 

time course of the control variable to determine when the dynamics of the fitted model fail 

to match the data. We define a dimensionless ratio

(7)

which measures the importance of the control term u(t) in the dynamical equation for 

voltage compared to the usual HH term FV (V(t), m(t), h(t), n(t)). At the end of the 

estimation, procedure given an optimization problem in Eqs. 5 and 6 we use the values of 

V(t), ai (t), and u(t) over the observation interval to evaluate R(t).

R(t) lies between zero and unity. When it is close to one, it indicates that the role of the 

control term in achieving a good estimation, or small cost function, is not important and the 

model is consistent with the data presented to it. Excursions of R(t) toward values near zero 

indicate increasing inconsistency of the model with the observed data. R(t) ≈ 1 does not 

demonstrate that the model is valid, just that it is consistent with the data presented to it. In 

the example of voltage data from the NaKL HH model presented to itself, R(t) deviates from 

unity by order 10−6 or less across the observation window (not shown).

The importance of the use of the control term u(t) in the numerical accuracy of the state and 

parameter estimations was assessed by performing the calculation that led to Table 2 with 

precisely the same model, the same data, the same stimulus, and the same algorithm for 

nonlinear estimation, but setting u(t) = 0.0 throughout. This result is presented in Table 3 

where we see clearly that the overall quality of the estimation is degraded. This suggests that 
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the use of the control variable u(t) during the data assimilation will prove a good strategy 

even when the impediments of chaotic behavior are absent.

3.2 Frequency content of the stimulus Iapp(t)

Intuitively, proper estimation of the parameters of the model will depend on providing a 

stimulus current that adequately explores regions of the state space where different subsets 

of the channels are opened or closed. If the frequency content of the stimulus is such that it 

fails to spend sufficient time in these regions the fit may be poor. To test this, the relative 

frequency of the stimulus current ρI was increased by selecting the same waveform for 

Iapp(t) and sampling it more frequently. In the initial experiment ρI was 0.5, which means it 

was relatively slow in comparison to the dynamics of the model. We found that ρI could be 

increased up to about 5.0 without compromising the parameter and state estimates. However, 

at ρI ≈ 10.0, these estimates became of low quality (Table 4).

This experiment provides a useful demonstration of the utility of the consistency test. In Fig. 

2 Left, the estimated membrane voltage is compared to the known Vdata(t) when ρI = 10.0. 

This plot alone is misleading, however, as seen when the unobserved state variables are 

compared to their estimated values as shown in Fig. 2 Right. Thus, by changing ρI from 0.5 

to 10.0, we have lost the capability of the model to transfer information from the 

observations to an unobserved state variable.

In an experiment on physical neurons, we cannot check how well unobserved variables are 

estimated by our approach, but we can still test whether the fitted model is consistent with 

the data. As seen in Fig. 3, R(t) deviates significantly from 1.0 when ρI = 10.0. As discussed 

above this indicates that with this higher frequency stimulus, our model is not consistent 

with the data, because the control term u(t) cannot be reduced to zero. This result also helps 

to emphasize that seemingly good fits of observed variables Vdata(t) likely have little 

biological significance if the control term is not reduced to zero.

3.3 Additive noise in the observations

In the calculations presented thus far on the NaKL model, we have allowed only numerical 

roundoff error to contaminate the ‘observations’ y(t). To assess the role of noise in 

measurements, which will eventually degrade any state and parameter estimation procedure, 

we added noise drawn from a uniform distribution to y(t), reducing the signal to noise ratio 

to 30 dB. As shown in Fig. 4, the added noise does not compromise the data assimilation 

procedure. In fact, the estimated voltage is much closer to the original ‘clean’ data than to 

the noisy data presented to the model. This phenomenon has been seen in some of our earlier 

study (Abarbanel et al. 2011) and discussed there at more length. Here, we simply observe 

that for modestly noisy data the dynamical state and parameter estimation approach 

succeeds in resolving a clean signal uncontaminated by instrumental or environmental 

addition of noise. Earlier calculations suggested that until the signal to noise ratio decreased 

to about 20 dB, the procedure remained successful.

In neurobiological experiments making intracellular recordings, a noise floor in the range of 

0.5mV is commonly achieved. In favorable recordings, activity results in signals of up to 

100mV and certainly at least 40–60mV, so the signal to noise ratio required for accurate 
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modeling is easily achieved. Smaller potentials representing input to a cell from other cells 

are often in the range of 4mV, however, so this may represent a signal to noise ratio problem 

when we extend these techniques to modeling interactions between neurons in a network.

3.4 Additional currents: Ih

Most neurons express a number of voltage-gated channels in addition to the sodium and 

potassium channels directly responsible for action potential generation (Graham 2002). 

These additional channels contribute to bursting, firing rate adaptation, and other behaviors. 

Determining which channels are expressed in a population of neurons typically requires 

molecular or pharmacological data, but the data assimilation procedure we describe here has 

the potential to infer which channels contribute to a neuron’s response properties. As a first 

step, we expanded the NaKL model to include the Ih current, which has slower kinetics than 

the other channels in the model, and is activated by hyperpolarization. Similar results should 

obtain for other fast-gated channels. We do not discuss voltage-gated Ca2+ currents or Ca2+ 

activated K currents. These require a model of intracellular Ca2+ concentration which has 

slow kinetics causing the differential equations to become stiff. The importance of these 

currents in neurobiological characterization is undeniable, and clearly one future step is to 

address the building and testing of model with their participation.

The inclusion of an additional current in the model allows us to address several questions 

that represent our first attempts to evaluate if the data assimilation procedure can indeed 

infer the existence of specific channel types:

• If one presents a stimulus that does not activate Ih strongly, but produces spikes, 

can we still evaluate the biophysical characteristics of Ih (or other currents acting 

at hyperpolarized voltages) ?

• If data from a more complex model including Ih (NaKLh) are used to estimate 

states and parameters in a simpler (NaKL) model, are the parameter estimates 

still accurate?

• If data from a model that lacks an Ih or other current (NaKL) are presented to 

amore complex model (NaKLh), will the dynamical data assimilation procedure 

inform us that Ih is absent?

The Ih current was represented by an additional term in the HH voltage equation,

(8)

as well as an additional equation for the dynamics of the Ih gating variable
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(9)

3.5 NaKLh ‘twin experiments’

Data were simulated from the NaKLh model using the parameter values in Table 1 and in 

Table 5. We now have five state variables {V(t), m(t), h(t), n(t), hc(t)} and 26 unknown 

parameters.

We used two different stimulation currents, with the same ρI and shape as earlier, but with 

different amplitudes. The ‘strong’ stimulus was 1.85 times the amplitude of the ‘weak’ 

stimulus. The NaKLh model was then fit separately to the data from each of these 

simulations. As shown in Table 6 the estimates for all the parameters in the NaKL model are 

accurate using either stimulus, but only the data for the strong stimulus gives good estimates 

of the parameters for the Ih current. This suggests that the weaker stimulus did not 

adequately explore the dynamics associated with the Ih current. As shown in Fig. 5, the 

estimated voltage and state variables are good fits for all the currents when the stimulus is 

strong. When the stimulus is weak, the estimated voltage and state variables for the NaKL 

model are still good, but the estimated state associated with the Ih current is a poor fit (Fig. 

6).

In an experimental setting, however, only the quality of the estimation of the voltage trace 

(Fig. 6) and the consistency test would be available. Neither of these indicate that the weaker 

stimulus fails to excite one of the currents in the model, though the latter may well indicate 

an inconsistency of the model with the data. Thus, an additional test for model validity is 

needed, which we discuss in the following section.

3.6 Model validation using state and parameter estimates

An important piece of a model investigation we have not covered in our discussion until now 

is the ability of the model neuron with parameters and state variables estimated in an 

observation window to predict the response of that neuron to new stimuli. If this is 

successful for a class of stimuli that one might expect to be given to this neuron when it is 

placed into a network, we can expect that it will respond properly in the network. We 

examined this issue in the context of our two stimuli: weak and strong, knowing the former 

was not giving sufficient stimulation of the Ih current.

To validate the models’ consistency to weak and strong stimuli, we tested their ability to 

predict responses to the other stimulus. Using the parameters estimated with data in the 

observation window, we employed the estimated state variables {V(T ), m(T ), h(T ), n(T ), 
hc(T )} to predict the behavior of the model neuron for t > T. When the model fit to the 
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strong stimulus was tested on the weak stimulus, we found that the model was able to 

predict the response of the neuron to the weak stimulus with a high degree of accuracy (Fig. 

7 Left). In this twin experiment, we are also able to compare the predicted values for the 

state variables against their true values (Fig. 7 Right), which display a similar degree of 

accuracy.

In contrast, the model fit to the weak stimulus was unable to predict the response to the 

strong stimulus (Fig. 8). Both the phase and amplitude of the predictions is degraded, 

especially at times when the stimulus was strongly hyperpolarizing. Thus, because the weak 

stimulus did not give sufficient information about Ih, the predictions are inadequate. 

Corresponding to twin experiments, predictive experiments in a laboratory setting are a 

useful way to test whether a candidate stimulus in conjunction with a neuron model is 

capable of adequately probing the model in question. These results also emphasize the 

importance of using model predictions to cross-validate them against different kinds of 

stimuli.

3.7 Robustness to model errors

3.7.1 NAKLh data presented to NAKLh model—We want to contrast what happens 

when we present data from the NaKLh model first to itself, a now-familiar twin experiment, 

to what happens when we present NaKLh voltage data to the NaKL model. The latter 

presents the data to a wrong model; namely one missing Ih. First, we take the NaKLh model 

with a strong stimulus and ρI = 0.5, our two good stimulus settings, and generate ‘data’ 

without added noise. We present this NaKLh model output voltage along with the same 

stimulus, and we are able to accurately estimate the parameters, as reported, and as we show 

in Fig. 9 Left, also the voltage response. The is the minimum we would expect to qualify as 

an interesting model for the source of our data. We confirm this quality of the model, in 

particular its consistency with the data, by evaluating R(t)as shown in Fig. 10. As additional 

confirmation, we examine the accuracy of our estimation of an unobserved state variable 

m(t) for the NaKLh model. This is shown in Fig. 9 Right.

3.7.2 NAKLh data presented to NAKL model—We contrast these results with those 

resulting when we present the wrong data to our NAKL model. Again we generated data 

using our NaKLh model with a strong stimulus and ρI = 0.5 and presented these data to our 

NaKL model, which we recall does not have an Ih current. In Fig. 11 Left, we show that a 

rather accurate, perhaps impressive ‘fit’ to the data is achieved by the dynamical data 

assimilation procedure. However, when we evaluate R(t) for this configuration, we see the 

result in Fig. 12 which indicates the apparent success of the estimate comes from large 

values of the control u(t) because R(t) makes significant excursions to values less than one.

We see features of this ‘wrong data’ once again, as we are able in a twin experiment, in the 

quite inaccurate estimation of the Na+ activation variable m(t) in Fig. 11 Right.

3.8 NaKL data driving a NAKLh model

In building a model for an experimentally observed neuron, we face the problem, once we 

have selected an HH framework for the model, of which currents to include in the model. 
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Though it is hardly elegant, one rather straightforward idea is to include in the model ‘all’ 

the currents one can plausibly argue should enter the biophysics of that neuron. All such 

currents will have the form (Brette et al. 2007; Graham 2002)

(10)

and the kinetics of the gating variables will be selected as well. One would expect that if this 

particular channel is absent in the data from the experimental preparation, then gcurrent will 

be zero.

To examine whether the data assimilation methods, we have developed are able to identify 

currents in a model which are absent in the data, and thus prune a larger model down to 

those required by the data, we presented data from an NaKL model to a larger model having 

an Ih current as well. The NaKL data was generated by the NaKLh model where gh = 0 but 

constants for the Ih kinetics were specified although the Ih contribution to the voltage 

equation was absent. Table 7 displays the results for this situation. We see that all the 

information about the Na+, K+, and leak currents was accurately reproduced, the absence of 

the Ih current was recorded as a very small gh, namely gh = 1.9 × 10−9 mS/cm2, and 

estimates for Eh and the parameters in the kinetics which are wrong, but irrelevant as the 

current is absent. In other words, the idea that we could build a ‘large’ model of all neurons 

and use the data to prune off currents that are absent is plausible and supported by this 

calculation. Whether this optimistic viewpoint will persist as we confront laboratory data 

with our methods is yet to be seen. The independence of the prediction of Ih parameters from 

the prediction for the other currents gives some, albeit only preliminary, reason to hope such 

an approach might work.

4 Discussion

We have touched upon a number of items of significance in the estimation of the parameters 

and unobserved state variables of HH neuron models. The context of our discussion is an 

exact formula (Appendix I) for the evaluation of the answers to questions arising when one 

wishes to estimate model parameters and unobserved model states when the model is 

presented with observed data. That exact formula is a path integral through model states 

encountered while observations are made, and in this article we have focused on the saddle 

path approximation to that integral representation of answers to data assimilation questions. 

More direct approaches to the evaluation of the desired path integral are in preparation 

(Kostuk et al. 2011).

In the framework of this approximation, we encounter a numerical optimization problem 

which asks that we maximize the transfer of information to a model from observations 

subject to the satisfaction of a biophysical model of the neural activities being observed. To 

regulate the impediments encountered in nonlinear estimation problems (Creveling et al. 

2008; Abarbanel et al. 2009) we introduce a ‘control’ to drive the model output to the 
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observations while assuring that, if the model is consistent with the data, the control is set to 

zero within the optimization routine.

Our methods have been focused on single compartment models of HH neurons. One has Na, 

K, and leak channels in the model, (NaKL model) and the second has an additional Ih 

current (NaKLh model). We described a series of ‘twin experiments’ wherein data is 

generated by the model, then, with or without noise added, one variable, the observable 

membrane voltage V(t) is presented to the model with free parameters and we use our saddle 

path variational principle (numerical optimization problem) to estimate the parameters and 

the unobserved (gating variables) state variables of the model.

The outcome of the estimation procedure is a single path satisfying the optimization task 

through the observation window. The path integral also allows the evaluation of errors 

estimates for each parameter and state variable, though we do not address this here.

In the solution of the numerical optimization problem, posed in Eqs. 5 and 6, we use the 

‘direct method’ (Gill et al. 1998) where all state variables, all parameters, and, here, all 

control variables are varied in the optimization procedure. Most of the computational effort 

is centered, in our evaluations, in the numerical linear algebra required in the programs. We 

have shown (Toth 2010) that using linear algebra libraries optimized for parallel computing, 

we can achieve substantial speedup of our results.

When employing the regularized search method, called dynamical state and parameter 

estimation (Abarbanel et al. 2009), we may form a dimensionless estimate (Eq. 7) of the 

importance of the control u(t) that indicates whether the model is consistent with the data 

presented to it.

In the context of the two models we explored: NaKL and NaKLh, we addressed the 

following questions with associated results:

• when presenting NaKL data to the NaKL model, is the use of the control variable 

important ? We found that the identical numerical optimization calculation to 

find the fixed parameters and unobserved state variables of the neuron model 

with u(t) ≠ 0 and u(t) = 0 yielded much better estimations for all quantities when 

u(t) ≠ 0 during the optimization procedure. By dint of the procedure itself u(t) = 

0 results at the end of the optimization. This is good as the term in the equations 

of motion, Eq. 6, with u(t) is not part of the biophysics of the neuron but only a 

regularization tool.

The same outcome is seen when the model is enhanced with other currents; here 

only the addition of Ih was explored.

• each twin experiment requires the selection of characteristics of the stimulating 

current, called Iapp(t). We showed that if the frequencies in Iapp(t) are too high 

compared to the basic frequency for the membrane voltage activity, the response 

of the neuron was washed out though its RC low pass filtering capability. We 

quantified this through the ratio of the neuron sampling time and the 

characteristic time of the stimulus, called ρI here. When ρI is in the range 0.5–1.0 

Toth et al. Page 15

Biol Cybern. Author manuscript; available in PMC 2018 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



we stimulate the neuron in a manner that does not get removed by the neuron 

membrane time constants.

This will play a significant role in the design of experimental protocols for using 

our estimation procedure.

• we explored the role of additive noise in the measurements presented to the 

model. As in our earlier discussions (Abarbanel et al. 2011), the model through 

the dynamical state and parameter estimation regularized optimization method, 

acts as a nonlinear filter for the noise. In this article, we only examined an 

example for NaKL models with a signal to noise ratio of 30 dB.

• in the context of NaKL and NaKLh models we established that when the 

stimulating current is strong enough during the observation window to 

effectively excite currents acting at polarized (Na and K) levels and 

hyperpolarized levels for the neuron, we are able to effectively predict beyond 

the observation window using the estimated parameters and estimated state 

variables at the end of observations. This also suggests stimulation protocols in 

experiments which result in quantitatively effective estimations.

• in presenting the ‘wrong’ data from an NaKLh model to an NaKL model, we 

were able to detect the inconsistency of the model with the data, thus, indicating 

that the model required improvement. Our method, and probably any data 

assimilation method, when it fails in this manner does not suggest how to repair 

the model utilized. However, the inconsistency of the model with presented data 

is likely to be quite valuable information for model development.

• one key to the success of the methods we explore in this article is the 

presentation of a sufficient length of data in time to show the model the full 

variations of the response (here V(t)) waveform. In our examples, we used about 

60–90ms of simulated data. This may, in the examples investigated here, actually 

have been more data than was required. However, we did not investigate how 

short a data set would have sufficed for accurate estimates of parameters and 

unobserved states.

The accurate results we have presented, however, suggest that one may be able to 

utilize rather short (order of 100 ms) voltage signals for the exploration of neural 

dynamics in complicated nervous systems.

One of our results has stronger implications than these. We asked whether when presenting 

membrane voltage data from an NaKL model to an NaKLh model, we could detect in the 

latter, the absence of the Ih current. This was accomplished by noting that the maximal 

conductance gh in the HH form of Ih:

(11)
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should be zero when NaKL data is presented to an NaKLh model with this current. Indeed, 

we found this to be the case, within numerical resolution gh ≈ 2×10−9 when other maximal 

conductances were order 0.1–100 in the same estimation procedure.

This suggests one may be able to devise a ‘grand’ model for a large class of neurons which 

contains a substantial collection of currents, voltage gated and ligand gated (in networks), as 

well as intracellular processes such as Ca2+ dynamics, and utilize the data, though DSPE, to 

prune those ingredients in the large model that are not required by the data. How one selects 

the components of the grand model is not dictated by the arguments presented in this article 

but calls for insightful biophysical reasoning about the classes of neurons of interest.

Although not discussed here in detail: (1) one can use a well established neuron model as a 

sensor of its environment and by treating the time dependent stimulating current Iapp(tn) as a 

set of m+1 parameters, estimate these numbers from the voltage response data. This entails 

the estimation in the class of problems discussed here of many thousands of unknown 

parameters, and it is accomplished by our methods with high accuracy (C. Knowlton, 

personal communication). (2) Through the use of well designed presynaptic voltages, one 

can determine the critical parameters of a dynamical synapse (neurotransmitter docking and 

undocking time constants, synaptic maximal conductivity,…) using the methods discussed in 

this article.

There are two final items we wish to address. First, the introduction of the control u(n) into 

the dynamical equations and the numerical optimization procedure might induce a bias in 

the estimation of the biophysical parameters in the HH voltage equation or the kinetics of 

the gating variables. While we have no mathematical proof this is not so, we have the 

following observations which suggest it is not so:

The controls u(n) are parameters just as a maximal conductance or a reversal potential is a 

parameter. Namely there is no dynamical equation, .

In the numerical optimization process, each of the parameters at each time point is treated 

independently, that is with no correlations between pairs of them: u(12) is independent of 

u(341) is independent of ENa…, etc. So the presence of the control parameters in addition to 

the biophysical parameters should have no more effect on any of them than an optimization 

addressing just the biophysical parameters. Nonetheless, there might be correlations, and 

consequently bias in the estimations, if within the numerical optimization routine there is a 

correlation we do not know about that is induced by the software algorithm.

We have two suggestions why there is no bias: (1) we have done the optimization starting at 

quite different initial guesses and quite different bounds over which to search. Each time we 

end up with results more or less precisely what we reported in the table—sometimes the 

estimates are a bit more accurate, sometimes a bit less accurate. The values of u(n) as one 

proceeds through the iterations of the optimization algorithm are different for each of these 

runs, and there appears to be no difference in the outcomes. (2) At the end of the iterations 

of the numerical algorithms, u(n) is essentially zero (≈10−13) and while the fluctuations 
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around this tiny value may be correlated, again through the inner working of the algorithm, 

the numerical size, since the fluctuations of u(n) are also of order 10−13, is tiny.

Second, the algorithms we present and use in this article are quite general, as the discussion 

and derivation suggest. The use of them for studying neurobiological questions is one of 

many potential applications. The limits on their practical use come from three main sources 

we know about: (1) as the number of degrees of the models and observed systems rises, 

practical numerical algorithms and procedures may fail to produce accurate answers in 

acceptable times. As IPOPT (Wächter and Biegler 2006), one of the open-source numerical 

optimization programs we use extensively, uses so much of its computing time in linear 

algebra operations and as that is nicely parallelizable, this concern may be simply a matter 

of waiting for computing to catch up with the scale of interesting scientific problems. (2) If 

the required number of measurements is not available, the quality of predictions will 

degrade. We do not have a metric for that degradation, but it can be quite severe as 

instabilities on the synchronization manifold will not be totally cured. (3) There is no 

guarantee that the class of model chosen to represent the data is correct in any sense. This 

goes under the discussion of model errors, and we do not know an algorithm to discover and 

cure model errors. The calculation we presented when NaKL data is presented to a model 

with more degrees of freedom (here NaKLh) and prunes away the currents not needed, is the 

first example of using any method to remove incorrect model choices. In some cases, there 

may not be such a method and model errors may never be found until more physics is known 

or better guesses are made.

This article should be seen as an initial exploration of the use of the general data 

assimilation formulation. The direct evaluation of the path integral using Monte Carlo 

methods will be addressed using the same examples here in a companion paper (Kostuk et 

al. 2011).
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Appendix I: General formulation: noisy data, model errors, uncertain x(0)

In the general setting for data assimilation problems, we have noisy data, errors in the model 

from missing dynamics, errors in the model due to resolution in the numerical 

implementation, resolution model errors due to noisy environmental effects, and we have 

incomplete knowledge of the state x(t0) = x(0) when measurements begin. In this, probably 

typical, circumstance we are limited to questions about probability densities in the space of 

states x, and we wish to answer questions about expectation values of functions of the 

system states defined over the time interval of observations [t0, tm = T ]. Starting with 

deterministic differential equations for the states
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(12)

we would be led to a Fokker-Planck equation for the probability density function (pdf) 

P(x(t)) which is linear in the pdf, and has the formal solution

(13)

with a transfer function K(x(m); x(0)). We will write this in the form

(14)

and we will now give a formula for the ‘action’ A0(X) defined on the path of the system 

state X = {x(m), x(m − 1), …, x(0)} through the observation window {t0, t1, …, tm}. The 

expectation values of functions on the path G(X) are given by the integral over the path

(15)

In the questions we ask in this article, we have a conditional pdf as we wish to know the 

probability of being at x(m) (within dx(m)) conditioned on the (m + 1) L-dimensional 

observations Y(m) = {y(m), y(m − 1), …, y(0)} up until time tm. In this discussion, we 

choose the measurement function to be the unit operation: hl (x)) = xl.

We need two ingredients: (a) identities following from the definition of conditional 

probabilities, and (b) an understanding that the dynamics moving the model system forward 

in time is Markov: the state x(tn+1) = x(n + 1) depends only on the state at time tn x(n) and 

the fixed parameters p. We write the latter in discrete time as the explicit statement

(16)

when we have a deterministic (infinite resolution, no noise) dynamical rule. Of course, we 

will relax this as we proceed.

If the dynamics is not Markov, it usually signals that we have projected the underlying 

dynamics described by sets of differential equations into a smaller space, and we can rectify 
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this by enlarging the state space of the model. In practice, we have no knowledge of the 

‘correct’ model, so we proceed assuming the Markov property.

We are interested then in an expression for the conditional pdf P(x(m)|Y(m)), the probability 

density for the state at time tm conditioned on measurements at times {t0, …, tm}. Using the 

definition of a conditional probability, we may write

(17)

We recognize the quantity in the curly brackets to be the exponential of the conditional 

mutual information between the D-dimensional state at time tm and the L-dimensional 

observation at time tm conditioned on the previous observations Y(m − 1) (Fano 1961):

(18)

This set of relations among conditional pdfs is often called Bayes’ rule.

Since we have assumed the dynamics taking x(n) → x(n +1) to be Markov, we may use the 

Chapman-Kolmogorov relation for such processes

(19)

where the transition probability for x(n) → x(n + 1) is P(x(n + 1)|x(n)). Together with the 

identity on conditional pdf’s this gives us a recursion relation connecting P(x(m)|Y(m)) to 

P(x(m − 1)|Y(m − 1)):

(20)
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In the deterministic dynamics setting P(x(n+1)|x(n)) = δD(x(n + 1) − f(x(n), p))). In the 

presence of model error, this sharp distribution is broadened.

We may now move from time tm−1 to time tm−2 and back to t0 to write (Abarbanel 2009)

(21)

defining the action

(22)

Just as a note, this exact formula, simplifies if the dynamics is deterministic because the 

integrals over x(m), x(m − 1), …, x(1)) can all be performed.

This expression for P(x(m)|Y(m)) and the related formula for E[G(X)|Y(m)], the conditional 

expectation value for a function G(X) on the path X, are useful only when we make 

approximations to the action. We address them in a moment.

There are two well established ways to approach the evaluation of the integral (15) when, as 

happens in rare instances, one can evaluate it exactly. (1) Use a Monte Carlo method (Quinn 

and Abarbanel 2010) to sample the high dimensional space of paths X to estimate the 

distribution exp[–A0(X|Y)], and (2) use a saddle path approximation which leads to a 

standard perturbation theory (Zinn-Justin 2002). In the latter approach, there are 

resummation methods (Zinn-Justin 2002) to approximate subsets of the full answer.

The optimization problem we used to estimate parameters and states for neuron (or other) 

models given data Y(m) comes as the first approximation to the saddle path evaluation of the 

integral in (m+1)D dimensional path space. This consists of expanding the action about a 

stationary point S, for fixed Y (not displayed),

(23)
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The full integral also gives the corrections to the variational approximation discussed above. 

In the optimization method, we sketched earlier, we seek the extremum S of the action using 

one or another numerical optimization routine. This is the method we will utilize in our 

further considerations in this article. We return to the use of Monte Carlo methods in a 

subsequent paper. Now we turn to approximations to the action that allow us to build a 

practical strategy for estimating properties of neuron models from time course data.

Approximating the Action

Two more or less standard approximations to the action consist of first assuming that the 

noise in each measurement yl (n) is independent of the noise in measurements at different 

times. The conditional mutual information then becomes

(24)

If the noise is taken as additive, yl = xl + noise, then, ignoring factors of y that cancel in any 

expectation value, we have

(25)

If, further, the noise is Gaussian, then up to constants canceling in any expectation value,

(26)

where Rm is an L × L covariance matrix. If this is diagonal with equal terms along the 

diagonal, then

(27)

This term of the action is now seen as our earlier cost function which gives a magnitude to 

the synchronization error between the data yl (n) and the corresponding model output xl (n) 

summed over the data set.

Toth et al. Page 23

Biol Cybern. Author manuscript; available in PMC 2018 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Looking now at the model error term, if we assign the error to the resolution associated with 

discretization of space and time as well as environmental fluctuations, perhaps at other 

spatial scales, we can represent P(x(n + 1)|x(n)) = δD(x(n + 1) − f(x(n), p))) by

(28)

When R f → ∞, we return to the delta function of deterministic dynamics. The resolution in 

state space of the model is proportional to . While numerous other approximations 

are possible, some of which may be tested within the path integral representation (Abarbanel 

2011). With these ‘standard’ approximations

(29)

Appendix II: Numerical procedures for nonlinear optimization

The stationary path approximation to our path integral in the case when the dynamics is 

deterministic is approximated by the standard numerical optimization problem: Minimize 

the objective or cost function

(30)

subject to the equality constraints imposed by the model dynamical Eq. 6 along with kinetic 

equations for the gating variables.

We write this in the form

(31)

which includes the control term u(t)(y(t) − x1(t)) = u(t) (y(t) − V(t)) in the function Fa(x(t), 
p).
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There are many methods for solving this optimization problem (Kirk 2004; Gill et al. 2005; 

Wächter and Biegler 2006; Gill et al. 1981). We adopt the ‘direct method’ in which the D 
state variables x(tn) = x(n) at each time {t0, t1, …, tm} the NP parameters, and the (m + 1) 

control variables u(tn) = u(n) are varied to minimize the cost function. This transform what 

could be seen as a problem in D initial conditions x(0), NP parameters p, and m +1 ‘other 

parameters’ u(n) into the larger problem in (D +1)(m +1)+ NP dimensional space. The 

apparent disadvantage of the direct method which acts in this larger space is significantly 

offset by the sparseness of the problem Jacobian in the larger space and, equally importantly, 

in that it determines as outputs the parameters, the controls and the state variables at each 

time point in the observation window. If we determined only the parameters and the x(0), 
then prediction for t > tm = T would require us to the dynamical equations integrate forward 

from approximate initial conditions with approximate parameters. In the case where the 

dynamical system has chaotic solutions, this would result in enhanced errors at t = T making 

prediction certainly inaccurate and uncertain.

As a first step, the dynamical system equality constraints must be transformed to discrete 

time, commensurate with the discrete time data y(tn). Many options exist for this 

discretization. Here we choose Simpson’s Rule, with functional midpoints estimated by 

Hermitian cubic interpolation. This Hermite-Simpson (Gill et al. 2005) choice gives 

accuracy of order Δt4 for discrete time steps Δt in the integration routine. Methods with 

similar accuracy will suffice just as well, but lower order methods must be used carefully to 

insure that the data sampling rate is both accurate enough and fast enough to capture the 

variation of the underlying dynamics of the system. These integrated equations become the 

equality constraints in our optimization:

Simpson Integration:

with Hermite Polynomial Interpolation:

where tn2 = (tn+1 − tn)/2.

A variety of optimization software and algorithms are available to solve this ‘direct method’ 

optimization problem. SNOPT (Gill et al. 2005) and IPOPT (Wächter and Biegler 2006) 

were chosen since these are both widely available, are designed for nonlinear problems with 

sparse Jacobian structure, and can handle large problems. Depending on the problem and the 

data set, a few thousand data points (or more) are necessary to explore the state space of the 

model in order to produce accurate solutions. The dynamical criterion is that the waveform 

of the observed dynamics be explored accurately as it moves along either the transient to the 

system attractor or along the attractor itself. Avery short observation window might produce 

only a small piece of the variation in the waveform and appear essentially as a straight line 
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which cannot be distinguished from other straight lines and does not identify the underlying 

dynamics.

For problems of the size described here, two to three voltage spikes or more are needed to 

explore the model state space, and this results in tens of thousands of constraints and 

unknown variables. Because of the discretized temporal structure of the problem, however, 

the Jacobian of the constraints is sparse, and both SNOPT and IPOPT can take advantage of 

this sparsity. All the results discussed in this article have used IPOPT.

As described by Toth (2010), the problem is set up using symbolic differentiation and code 

generation techniques with the Python programming language. For each model, for instance 

the NaKL or NaKLh models, with dynamics described by a set of first order ordinary 

differential equations, a separate instance of the optimization problem is necessary. This 

instance is implemented via C++ code generation in Python as follows:

• Model dynamics (differential equations) input to a text file. In this file the 

dynamical equations are given in ascii format along with the names of the state 

variables, the parameters, the controls, the data file, and the file containing the 

applied (stimulus) current.

• Python script imports this text file and then performs the following steps:

– Discretizes it in accord with the selected discretization rule;

– Uses symbolic differentiation with SymPy1 to generate Jacobian and 

Hessian matrices;

– Generates C++ files that set up the optimization problem in IPOPT.

• The user next compiles the C++ code with generated Make file that links to 

IPOPT libraries; this produces an executable ‘problemname_cpp’ file.

• Execution of the compiled code requires a second user-generated text file that 

specifies:

– Problem size

– Integration time step, or inverse of sampling rate.

– Bounds for all states and parameters.

– Initial optimization starting point for all states and parameters.

– Names of data files which include the observed data.

• Completion of the optimization problem gives the following files:

– Estimates of all states, measured and unmeasured, at all time points in 

the observation window, as well as the values for all control u(tn) terms 

for tn = {t0, t1, …, tm}.

– Estimates of all parameters

1http://code.google.com/p/SymPy/
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– Calculation of the R(t) value

– An output file with the saddle path through the observation window. 

This is a (m+1)D+NP dimensional vector: X = {xa(m), xa(m − 1), …, 

xa(0), p1, p2, …, pNP} for possible later use in the full calculation of the 

path integral.

• From x(Tm) = x(T ), the parameters p and the dynamical equations with u(n) = 0, 
we can forecast the behavior of the dynamical system for t > T.

In our use of IPOPT in problems such as the individual neuron models discussed here, we 

estimate from timing analyses that about 70% of the computation time is used in linear 

algebra calculations. This suggests, and we have verified this on CPUs with a small number 

of cores, that a nearly linear speedup in computation can be achieved with the use of linear 

algebra libraries developed for parallel computation. If this extends to parallel machines with 

a large number of cores, the methods discussed in this article can be extended in a 

straightforward manner to quite large problems.
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Fig. 1. 
NaKL model. Left We display the membrane voltage Vdata(t) from ‘data’ generated in a twin 

experiment using the NaKL model as a data source. Also we display the estimated 

membrane voltage Vestimated(t) using the dynamical state and estimation approach. The 

frequency scale of the stimulus to the neuron response is ρI = 0.5. Right We display the Na+ 

activation gating variable mdata(t) from ‘data’ generated in a twin experiment using the 

NaKL model as a data source. Also we display the estimated membrane voltage Na+ 

activation gating variable mestimated(t) using the dynamical state and estimation approach. 

The frequency scale of the stimulus to the neuron response is ρI = 0.5. In a laboratory 

experiment, m(t) would be an unobserved state variable. In this twin experiment, the 

unobserved variables are known to us and comparison is possible
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Fig. 2. 
NaKL Model. Left We display the membrane voltage Vdata(t) from ‘data’ generated in a 

twin experiment using the NaKL model as a data source. Also we display the estimated 

membrane voltage Vestimated(t) using the dynamical state and estimation approach. The 

frequency scale of the stimulus relative to the neuron response is ρI = 10.0. The apparent 

good fit results from the large magnitudes of the control u(t). Right We display the Na+ 

activation gating variable mdata(t) from ‘data’ generated in a twin experiment using the 

NaKL model as a data source. Also we display the estimated membrane voltage Na+ 

activation gating variable mestimated(t) using the dynamical state and estimation approach. 

The frequency scale of the stimulus to the neuron response is ρI = 10.0. In a laboratory 

experiment, m(t) would be an unobserved state variable

Toth et al. Page 29

Biol Cybern. Author manuscript; available in PMC 2018 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
The consistency check for the NaKL model in two twin experiments. They differ only in the 

frequency of the stimulus current Iapp(t) compared to that of the model. We display results 

for R(t) both for ρI = 0.5 (solid line) and ρI = 10.0 (triangles). When R(t) is near unity, the 

model is consistent with the data, including properties of the stimulus. When R(t) deviates 

significantly from one, the model is inconsistent with the data. By increasing the frequency 

content of the stimulus, we have reached a setting where, through its own RC filtering, the 

model has removed information from the stimulus. The message is that in experimental 

protocols, one must attend to the ratio of model and stimulus frequencies
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Fig. 4. 
Left Estimated membrane voltage (dots) along with original clean data (grey line) and the 

noisy voltage data (solid line) presented to the NaKL model in the dynamical data 

assimilation approach. Here the signal to noise ratio is 30 dB, and, as above, ρI = 0.5. Right 
A blowup of a section of Fig. 4 showing how the estimation procedure has removed much of 

the noise added to the original clean data. The model acts here as a nonlinear noise filter. See 

Abarbanel et al. (2011) for a longer discussion of this effect
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Fig. 5. 
NaKLh twin experiments: strong stimulus. Left Estimated membrane voltage (circles) along 

with original data (triangles) as presented to the NaKLh model. The stimulus current was 

taken as usual from a chaotic system. This result uses the ‘strong’ stimulus which excites 

both polarized state variables and hyperpolarized state variables. Right Estimated Na+ 

inactivation gating variable (circles) along with original data (solid line) as presented to the 

NaKLh model. The stimulus current was taken as usual from a chaotic system. This result 

uses the ‘strong’ stimulus which excites both polarized state variables and hyperpolarized 

state variables; as above. Bottom Estimated Ih activation gating variable (circles) along with 

original data (solid line) as presented to the NaKLh model. The stimulus current was taken 

as usual from a chaotic system. This result uses the ‘strong’ stimulus which excites both 

polarized state variables and hyperpolarized state variables. ρI = 0.5
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Fig. 6. 
NaKLh twin experiments: weak stimulus Left Estimated membrane voltage (triangles) along 

with original data (circles) as presented to the NaKLh model. The stimulus current was 

taken as usual from a chaotic system. This result uses the ‘weak’ stimulus which excites 

polarized state variables. The ‘weak’ stimulus provides sufficient excitation to the Na and K 

channels to allow accurate estimation of their properties. Right Estimated Na+ inactivation 

gating variable (circles) along with original data (solid line) as presented to the NaKLh 

model. The stimulus current was taken as usual from a chaotic system. This result uses the 

‘weak’ stimulus which excites polarized state variables. The ‘weak’ stimulus provides 

sufficient excitation to the Na and K channels to allow accurate estimation of their 

properties. Bottom Estimated Ih activation gating variable (circles) along with original data 

(solid line) as presented to the NaKLh model. The stimulus current was taken as usual from 

a chaotic system. This result uses the ‘weak’ stimulus which excites polarized state variables 

state variables. The Ih current is not well stimulated by this ‘weak’ Iapp(t). ρI = 0.5.
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Fig. 7. 
Left Prediction of the membrane voltage for times greater than the observation window with 

state variables and parameters estimated with the strong stimulus. Right Prediction of the Ih 

gating variable hc(t) for times greater than the observation window with state variables and 

parameters estimated with the strong stimulus. In both cases, the values of the current’s 

parameters and state variables are accurately estimated
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Fig. 8. 
Using the parameters and state variables estimated using the ‘weak’ stimulus, we predict the 

response of the NaKLh neuron to the ‘strong’ stimulus
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Fig. 9. 
Left Voltage estimated with a NaKLh HH model presented with data created from the same 

model—a twin experiment. The stimulus used is our ‘strong’ stimulus and has ρI = 0.5 

which we determined earlier allows accurate estimations. Right Estimation of the Na+ 

activation variable m(t) when NaKLh voltage data is presented to a NaKLh model. The high 

quality of this estimation is consistent with the R(t) values in Fig. 10
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Fig. 10. 
R(t) for the situation represented in Fig. 9. The value of R(t) does not deviate from unity, 

indicating the model is consistent with the data
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Fig. 11. 
Left Estimating the membrane voltage in the NaKL model when it is presented with voltage 

output from an NaKLh model. The accuracy of the ‘fit’ to the voltage data is misleading as 

the voltage data is incorrect for this model. Right Estimation of the Na+ activation variable 

m(t) when NAKLh voltage data is presented to a NaKL model. The low quality of this 

estimation is consistent with the R(t) value in Fig. 12
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Fig. 12. 
R(t) for the situation represented in Fig. 9. The value of R(t) deviates significantly from 

unity, indicating the model is inconsistent with the data
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Table 1

Parameters in NaKL HH model: Na, K, and leak currents

Name Value Name Value

C 1.0μF/cm2 vh −60.0mV

gNa 120.0mS/cm2 dvh −15.0mV

ENa 50.0mV th0 1.0ms

gK 20.0mS/cm2 th1 7.0ms

EK −77.0mV vht −60.0mV

gL 0.3mS/cm2 dvht −15.0mV

EL −54.4mV vn −55.0mV

vm −40.0mV dvn 30.0mV

dvm 15.0mV tn0 1.0ms

tm0 0.1ms tn1 5.0ms

tm1 0.4ms υnt −55.0mV

vmt −40.0mV dvnt 30.0mV

dvmt 15.0mV IDC 7.3pA/cm2
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Table 2

Parameters in ‘Data’ and estimated parameters in NaKL HH model; ρI = 0.5

Parameter Data Estimate Units

gNa 120 118.79 mS/cm2

ENa 50.0 49.99 mV

gK 20 20.35 mS/cm2

EK −77.0 −76.97 mV

gL 0.3 0.2955 mS/cm2

EL −54.4 −54.11 mV

vm = vmt −40.0 −40.08 mV

dvm=dvmt 15.0 14.90 mV

tm0 0.1 0.1009 ms

tm1 0.4 0.3982 ms

vh=vht −60.0 −59.91 mV

dvh=dvht −15.0 −14.88 mV

th0 1.0 1.004 ms

th1 7.0 7.047 ms

vn=vnt −55.0 −54.91 mV

dvn=dvnt 30.0 29.28 mV

tn0 1.0 1.012 ms

tn1 5.0 4.99 ms

IDC and C were fixed in all calculations
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Table 3

Parameters in ‘Data’ and estimated parameters in NaKL HH model; ρI = 0.5

Parameter Data Estimate Units

gNa 120 100.0 mS/cm2

ENa 50.0 50.71 mV

gK 20 10.0 mS/cm2

EK −77.0 −115.0 mV

gL 0.3 0.262 mS/cm2

EL −54.4 −75 mV

vm = vmt −40.0 −57.9 mV

dvm=dvmt 15.0 0.378 mV

tm0 0.1 0.2368 ms

tm1 0.4 7.34 × 10−14 ms

vh=vht −60.0 −58.13 mV

dvh=dvht −15.0 −0.47 mV

th0 1.0 0.48 ms

th1 7.0 3.43 ms

vn=vnt −55.0 −63.06 mV

dvn=dvnt 30.0 55.0 mV

tn0 1.0 1.00 ms

tn1 5.0 0.285×10−12 ms

No coupling of observed data into the dynamical equations: u(t) = 0.0. In all other aspects, this is the same calculation as displayed in Table 2
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Table 4

Parameters in ‘Data’ and estimated parameters in NaKL HH model; ρI = 10.0

Parameter Data Estimate Units

gNa 120.0 100.0 mS/cm2

ENa 50.0 50.0 mV

gK 20.0 14.6 mS/cm2

EK −77.0 −115.0 mV

gL 0.3 1.23 × 10−13 mS/cm2

EL −54.4 −58.22 mV

vm = vmt −40.0 −47.78 mV

dvm=dvmt 15.0 30.0 mV

tm0 1.0 0.636 ms

tm1 0.4 3.1 ms

vh=vht −60.0 −83.72 mV

dvh=dvht −15.0 −6.5 mV

th0 1.0 1.602 ms

th1 7.0 12.0 ms

vn=vnt −55.0 −52.04 mV

dvn=dvnt 30.0 13.80 mV

tn0 1.0 7.25 ms

tn1 5.0 15.0 ms

In all other aspects, this is the same calculation whose results are reported in Table 2
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Table 5

Parameters in NaKLh HH model: Na, K, leak, and Ih currents

Name Value Name Value

gh 1.21mS/cm2 thc0 0.1 ms

Eh −40.0mV thc1 193.5 ms

vhc −75.0mV vhct −80 mV

dvhc −11.0mV dvhct 21.0 mV
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Table 6

Parameters in a NaKLh HH Model where the maximal conductance of the Ih current from two different 

amplitudes of the stimulus current

Parameter Data Estimate

UnitsStrong Weak

gNa 120 120.27 119.88 mS/cm2

ENa 55.0 54.98 54.993 mV

gK 20 20.148 20.148 mS/cm2

EK −77.0 −77.013 −77.019 mV

gL 0.3 0.30675 0.29851 mS/cm2

EL −54.4 −54.706 −54.121 mV

vm = vmt −34.0 −33.983 −33.994 mV

dvm=dvmt 34.0 33.996 33.985 mV

tm0 0.01 0.01023 0.01013 ms

tm1 0.5 0.50022 0.50045 ms

vh=vht −60.0 −59.991 −59.961 mV

dvh=dvht −19.0 −18.982 −18.973 mV

th0 0.2 0.19885 0.19993 ms

th1 8.5 8.5163 8.5078 ms

vn=vnt −65.0 −64.834 −64.94 mV

dvn=dvnt 45.0 44.966 45.147 mV

tn0 0.8 0.80137 0.80155 ms

tn1 5.0 5.0123 4.9932 ms

gh 1.21 1.2274 1.000 mS/cm2

Eh −40.0 −39.359 −32.745 mV

vhc −75.0 −76.119 −60.996 mV

dvhc −11.0 −11.122 −7.6066 mV

thc0 0.1 0.09632 0.1224 ms

thc1 193.5 190.26 67.750 ms

vhct −80 −81.063 −59.644 mV

dvhct 21.0 20.781 18.279 mV

The “strong” stimulus is 1.85 times in amplitude of the “weak” stimulus. Only the “strong” stimulus hyperpolarizes the neuron sufficiently to 
activate the Ih current. The “weak” stimulus only weakly activates Ih and the reduced information on the activity of Ih leads to reduced accuracy in 

estimating the parameters of Ih
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Table 7

Parameters in a NaKLh HH model where the maximal conductance of the Ih current was set to zero; so only 

the NaKL model was active (The NaKL parameters are slightly different from our earlier NaKL model)

Name Data Estimate Units

gNa 120 120.4258 mS/cm2

ENa 55.0 54.92950 mV

gK 20 20.05503 mS/cm2

EK −77.0 −77.01366 mV

gL 0.3 0.2990211 mS/cm2

EL −54.4 −54.24781 mV

vm = vmt −34.0 33.97316 mV

dvm=dvmt 34.0 34.00498 mV

tm0 0.01 0.009585590 ms

tm1 0.5 0.5008398 ms

vh=vht −60.0 −59.98665 mV

dvh=dvht −19.0 −18.97535 mV

th0 0.2 0.1998151 ms

th1 8.5 8.525130 ms

vn=vnt −65.0 −64.94673 mV

dvn=dvnt 45.0 45.01288 mV

tn0 0.8 0.7997343 ms

tn1 5.0 5.016256 ms

gh 0 1.907150×10−9 mS/cm2

Eh −40.0 −60.57007 mV

vhc −75.0 −6.88913 mV

dvhc −11.0 4.203612 mV

thc0 0.1 3.589662 ms

thc1 193.5 179.5280 ms

vhct −80 −44.07163 mV

dvhct 21.0 55.30240 mV

This data was presented to a NaKLh model with free parameters, the dynamical estimation procedure yielded a maximal conductance for Ih of 

1.907150 × 10−9 mS/cm2. The other Ih parameters are badly estimated, but they are not relevant as the Ih current was absent in the data, though 

present as a possibility in the NaKLh model

Biol Cybern. Author manuscript; available in PMC 2018 January 09.


	Abstract
	1 Introduction
	1.1 Ion channel models of neuron dynamics

	2 Methods
	2.1 General framework
	2.2 Neuron models
	2.3 Data assimilation
	2.3.1 Control term in cost function


	3 Results
	3.1 Testing model consistency
	3.2 Frequency content of the stimulus Iapp(t)
	3.3 Additive noise in the observations
	3.4 Additional currents: Ih
	3.5 NaKLh ‘twin experiments’
	3.6 Model validation using state and parameter estimates
	3.7 Robustness to model errors
	3.7.1 NAKLh data presented to NAKLh model
	3.7.2 NAKLh data presented to NAKL model

	3.8 NaKL data driving a NAKLh model

	4 Discussion
	References
	Appendix I: General formulation: noisy data, model errors, uncertain x(0)
	Appendix II: Numerical procedures for nonlinear optimization
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Fig. 8
	Fig. 9
	Fig. 10
	Fig. 11
	Fig. 12
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7

