
Noname manuscript No.
(will be inserted by the editor)

On the spectral formulation of Granger causality

D. Chicharro

the date of receipt and acceptance should be inserted later

Abstract Spectral measures of causality are used to
explore the role of different rhythms in the causal con-
nectivity between brain regions. We study several spec-

tral measures related to Granger causality, comprising
the bivariate and conditional Geweke measures, the di-
rected transfer function and the partial directed co-

herence. We derive the formulation of dependence and
causality in the spectral domain from the more gen-
eral formulation in the information theory framework.

We argue that the transfer entropy, the most general
measure derived from the concept of Granger causal-
ity, lacks a spectral representation in terms of only the

processes associated with the recorded signals.

For all the spectral measures we show how they are

related to mutual information rates when explicitly con-
sidering the parametric autoregressive representation of
the processes. In this way we express the conditional

Geweke spectral measure in terms of a multiple co-
herence involving innovation variables inherent to the
autoregressive representation. We also link partial di-

rected coherence with Sims criterion of causality.

Given our results we discuss the causal interpreta-
tion of the spectral measures related to Granger causal-
ity and stress the necessity to explicitly consider their

specific formulation based on modeling the signals as
linear Gaussian stationary autoregressive processes.
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1 Introduction

The concept of Granger causality (Granger, 1963, 1980)

provides a data-driven approach to study causal in-
teractions from time series. In neuroscience, measures
based on Granger causality have been used to study

the effective connectivity between brain areas (Friston,
1994), that is, the causal influence that one brain area
exerts on another. (See Pereda et al., 2005; Gourevitch

et al., 2006; Bressler and Seth, 2011, for a review of
Granger causality measures applied to neural data).

In its original formulation Granger causality infers
a causal interaction from a process Y to a process X
relying on the reduction of the prediction error of X

when including the past of Y (Wiener, 1956; Granger,
1963). Given this criterion it is easy to implement a
Granger causality measure if linear Guassian stationary

processes are assumed. This prediction error criterion
can be generalized to a criterion of conditional indepen-
dence on probability distributions (Granger, 1980) that

is generally applicable to stationary and non-stationary
stochastic processes. This general criterion is naturally
implemented in the framework of information theory

(e. g. Schreiber, 2000; Solo, 2008; Amblard and Michel,
2011), resulting in the information theoretic measure of
Granger causality called transfer entropy. Despite its

generality, in practice the criterion of conditional inde-
pendence is difficult to apply because it involves the es-
timation of high-dimensional probability distributions.
Therefore it has been a common practice in applica-

tions to neural data to use the Granger causality mea-
sure specific for linear Gaussian stationary processes (e.
g. Bernasconi and König, 1999; Brovelli et al., 2004)

to avoid this estimation problem.

For the study of neural causal interactions it is espe-

cially appealing to examine how the causal interactions
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are associated with different brain rhythms which are

functionally relevant (Buzsáki, 2006). For this purpose
different spectral measures related to Granger causality
have been introduced, comprising the Geweke spectral

measures of Granger causality (GSC) (Geweke, 1982,
1984), the Directed Transfer Function (DTF) (Kamin-
ski and Blinowska, 1991), and the Partial Directed Co-

herence (PDC) (Baccalá and Sameshima, 2001). These
spectral measures have been used to analyze in which
frequency bands the causal interactions between the

brain regions predominantly occur (e. g. Bernasconi
and König, 1999; Bernasconi et al., 2000; Kaminski
et al., 2001; Brovelli et al., 2004; Bressler et al., 2008;

Ladroue et al., 2009; Besserve et al., 2010).

Furthermore, Geweke (1982) showed that the mea-

sures of Granger causality form part of a decomposi-
tion of a measure of the total dependence between the
processes X and Y into causal and instantaneous de-

pendence measures. This decomposition was first for-
mulated specifically for linear Gaussian stationary pro-
cesses in the time and spectral domain using the frame-

work of autoregressive models, for bivariate (Geweke,
1982) and multivariate (Geweke, 1984) systems. More
generally, for stationary and non-stationary stochas-

tic processes, the corresponding decomposition has also
been formulated in the framework of information theory
(Rissanen and Wax, 1987; Solo, 2008).

The connection between the linear Gaussian and the
information theoretic decompositions in the time do-

main has been shown (Barnett et al., 2009; Amblard
and Michel, 2011) and relies on the specific form of
the entropy for Gaussian variables, as we will see be-

low. However, the derivation of the decomposition in
the spectral domain from the more general decomposi-
tion in the information theory framework has not been

considered yet. Takahashi et al. (2010) showed that the
DTF and the PDC are also associated with some mu-
tual information rates that involve an explicit consid-

eration of the autoregressive model representation of
the recorded processes. We here will complete the con-
nection between the measures in the information the-

ory formulation and the spectral domain formulation.
Based on this connection we will discuss the interpreta-
tion of the spectral measures of Granger causality ques-

tioning to which degree they are informative about the
role of each frequency band in the causal interactions
between brain regions.

This paper is organized as follows: in Sect. 2 we re-
view the three frameworks of dependence and causality

measures: the information theory formulation, and the
one for linear Gaussian stationary processes in the time
and frequency domain. In Sect. 3 we examine for the

bivariate case the connection of the measures in the

spectral domain to information theoretic measures. We

provide a nonparametric derivation of a spectral repre-
sentation of the information theoretic measure of total
dependence showing that it corresponds to the spec-

tral measure of total dependence proposed by Geweke
(1982). However, we indicate that the same type of
derivation does not lead to a spectral representation

of the transfer entropy. Our arguments suggest that
Granger causality cannot be expressed in the spectral
domain only in terms of the observed processes, with-

out explicitly considering a parametrical autoregressive
representation. In Sect. 4 we extend these results to the
multivariate case.

In Sect. 5 we examine for the bivariate case how
the GSC, DTF, and PDC are connected to information
theoretic measures when explicitly considering the au-

toregressive representation. In this way we prove that,
for bivariate processes, PDC is associated with gener-
alized Sims causality (Sims, 1972), an alternative crite-

rion to infer causality. We then extend the analysis to
the multivariate case (Sect. 6). We prove that the con-
ditional GSC can be expressed in terms of a multiple
coherence in the same way that for the bivariate case

GSC is related to a coherence (Takahashi et al., 2010).
Finally in Sect. 7 we discuss the implications that

the lack of a spectral representation of Granger causal-

ity in terms only of the observed processes has for the
interpretation of the spectral measures that are related
to Granger causality. We review previous applications

of these measures to study causal interactions in the
brain focusing on their methodological procedures.

2 Bivariate framework of dependence and
causality measures

We start reviewing the decomposition of the total de-
pendence between two processes into causal and instan-

taneous dependence terms. We will review this decom-
position and the measures of dependence and causal-
ity involved for linear Gaussian stationary processes in

the time domain (Sect. 2.1), in the general information
theoretic formulation (Sect. 2.2), and for linear Gaus-
sian stationary processes in the spectral domain (Sect.

2.3). Notice that these decompositions have been intro-
duced for each type of processes without considering
the specific nature of the dynamics they represent. For

brain signals, the linear Granger causality measure in
the time domain and its information theoretic coun-
terpart, the transfer entropy, have been widely applied

(see Bressler and Seth, 2011, for a review), but the joint
consideration of all the terms appearing in the decom-
position of the total dependence has mainly been ap-

plied in the spectral domain (e. g. Ding et al., 2006).
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Accordingly, focusing on the frequency domain decom-

position, we will discuss the meaning of the measures
and how they are expected to be informative about the
causal interactions between brain regions.

2.1 Decomposition for linear Gaussian stationary

processes in the time domain

Consider a system formed by X and Y , which are sta-
tionary stochastic processes. We follow Geweke (1982)
considering the projection of Xi+1 on his own past:

Xi+1 =

∞∑
s=0

a(x)xs Xi−s + ϵ
(x)
xi+1, var(ϵ(x)x ) = Σ(x)

x , (1)

and its projection on the past of both X and Y :

Xi+1 =
∞∑
s=0

a(xy)xxs Xi−s + a(xy)xys Yi−s + ϵ
(xy)
xi+1

Yi+1 =
∞∑
s=0

a(xy)yxs Xi−s + a(xy)yys Yi−s + ϵ
(xy)
yi+1

(2)

Σ(xy) =

(
Σ

(xy)
xx Σ

(xy)
xy

Σ
(xy)
yx Σ

(xy)
yy

)
(3)

where Σ
(xy)
xx = var(ϵ

(xy)
x ), Σ

(xy)
yy = var(ϵ

(xy)
y ), Σ

(xy)
xy =

cov(ϵ
(xy)
x , ϵ

(xy)
y ), and Σ

(xy)
yx = Σ

(xy)T
xy . Notice that while

the subindexes are used to refer to the corresponding
variable or to components of a matrix, the superindexes
refer to the particular projection.

The Geweke measure of Granger causality is defined
as:

FY→X = ln(
Σ

(x)
x

Σ
(xy)
xx

). (4)

The measure reflects the principle first formulated by
Wiener (1956) and formalized by Granger (1963) that

causality from Y to X implies an improvement in pre-
dictability when using information from the past of Y
together with from the past of X, and thus reducing

the variance of the innovation variables (Σ
(xy)
xx ) with

respect to the variance obtained when only information
from the own past is used (Σ

(x)
x ). The Geweke measure

of Granger causality from X to Y , FX→Y , is defined
analogously to (4) using the projections of Yi+1.

Apart from these measures of causality, two other
measures were proposed by Geweke (1982) to character-

ize the interactions between the processes. A measure
of instantaneous causality is defined as

FX·Y = ln(
Σ

(xy)
xx Σ

(xy)
yy

|Σ(xy)|
), (5)

which is zero for Σ(xy) diagonal, that is, if the inno-

vations are uncorrelated. Finally, the measure of total
dependence between X and Y is (Geweke, 1982):

FX,Y = ln(
Σ

(x)
x Σ

(y)
y

|Σ(xy)|
), (6)

where Σ
(y)
y is obtained from the analogous projection of

Yi+1 like in (1). This measure compares the prediction
error under the assumption that the processes are inde-
pendent with the prediction error in the bivariate pro-

jection, thus accounting for any source of interdepen-
dence. From the definition of the measures it is straight-
forward to check that:

FX,Y = FX→Y + FY→X + FX·Y . (7)

This decomposition shows that the total dependence
arise from the causal interactions in both directions plus

a term of instantaneous interactions. It is important to
notice that none of the terms in (7) was defined by
Geweke (1982) ad hoc to enforce this decomposition.

Oppositely, each measure has a clear interpretation on
its own and the existence of this decomposition only
results a posteriori from the meaningful definition of

the measures.

2.2 Decomposition for stochastic processes in the
information theory framework

Measures analogous to the ones above but for general
stochastic processes have also been introduced (Ris-
sanen and Wax, 1987; Solo, 2008). The principle of

Granger based on predictability is generally formulated
in terms of conditional independence of specific prob-
ability distributions: the general criterion of Granger

noncausality is

p(Xi+1|Xi) = p(Xi+1|Xi, Y i), (8)

where Xi = {Xi, Xi−1, ..., Xi−n} for n → ∞, and anal-

ogously for Y i. An information theoretic measure of
causality based on this criterion has been repeatedly
proposed in different fields (e. g. Marko, 1973; Gourier-

oux et al., 1987; Schreiber, 2000). We follow Schreiber
(2000) and we call this information theoretic measure of
causality from Y to X the transfer entropy rate defined

as:

TY→X =
∑

Xi+1,Xi,Y i

p(Xi+1, X
i, Y i) log

p(Xi+1|Xi, Y i)

p(Xi+1|Xi)

= H(Xi+1|Xi)−H(Xi+1|Xi, Y i)

= I(Xi+1;Y
i|Xi).
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(9)

Here H(·) denotes the entropy and I(·) the mutual in-
formation (Cover and Thomas, 2006). The transfer en-
tropy rate corresponds to the Kullback-Leibler distance

(Cover and Thomas, 2006) between the partial proba-
bility distributions p(Xi+1|Xi, Y i) and p(Xi+1|Xi). Ac-
cordingly, I(Xi+1;Y

i|Xi) = 0 if and only if the equality

in (8) holds.

The correspondence between TY→X and FY→X can

be seen (Barnett et al., 2009) taking into account that
the entropy of aN -variate Gaussian distribution is com-
pletely determined by its covariance matrix Σ:

H(XN
Gaussian) =

1

2
ln ((2πe)N |Σ|). (10)

Accordingly, the two measures are such that:

FY→X = 2 TY→X . (11)

Based also on the specific form of the entropy for

Gaussian variables (10), it is also easy to infer the infor-
mation theoretic measures corresponding to the other
terms in the decomposition of (7). In particular, we have
that for linear Gaussian stationary processes

FX,Y = 2 (I(Xi+1X
i;Yi+1Y

i)− I(Xi;Y i)), (12)

where

I(Xi+1X
i;Yi+1Y

i)− I(Xi;Y i) = H(Yi+1|Y i)

+H(Xi+1|Xi)−H(Xi+1;Yi+1|XiY i).
(13)

Similarly,

FX·Y = 2I(Xi+1;Yi+1|XiY i), (14)

where

I(Xi+1;Yi+1|XiY i) = −H(Xi+1;Yi+1|XiY i)

+H(Yi+1|XiY i) +H(Xi+1|XiY i).
(15)

Altogether this results in the general decomposition

I(Xi+1X
i;Yi+1Y

i)− I(Xi;Y i) = TX→Y + TY→X

+I(Xi+1;Yi+1|XiY i).

(16)

This decomposition subsumes the one in (7), which
is specific for linear Gaussian stationary processes. Fur-
thermore, although we assumed stationarity to connect

with (7), the measures in (16) can also be used for non-
stationary processes considering i as a particular point
in time, so that the probability distributions such as

the ones in (8) are defined in a time-resolved way.

The correspondence between the information theo-

retic formulation and the one for linear Gaussian sta-
tionary processes goes beyond the level of the four mea-
sures appearing in the decompositions in (7) and (16).

There is also a one-to-one relation between the com-
ponents of the measures. In particular, each variance
appearing in the linear Gaussian stationary measures

has a direct relation to an entropy term appearing in
the information theoretic measures. For example, given
(1) and (10)

H(Xi+1|Xi) =
1

2
ln 2πe+

1

2
lnΣ(x)

x , (17)

and given (2) and (10)

H(Xi+1|XiY i) =
1

2
ln 2πe+

1

2
lnΣ(xy)

xx . (18)

Analogous equalities exist for the other individual en-

tropies in (13) and (15).

2.3 Decomposition for linear Gaussian stationary

processes in the frequency domain

Geweke (1982) also proposed a spectral decomposition

of the time domain Granger causality measure (4) and
of the other terms in (7). Geweke derived the spec-
tral measures requiring the fulfillment of some prop-
erties: First, the measures had to be nonnegative. Sec-

ond for the spectral measure of causality from Y to X,
fY→X(ω), it was required that

1

2π

∫ π

−π

fY→X(ω)dω = FY→X , (19)

and analogously for the other spectral measures. These
two conditions together imply that

FY→X = 0 ⇔ fY→X(ω) = 0 ∀ω. (20)

As a third condition, the spectral measures should have
an intuitive interpretation so that the spectral decom-
position is useful for empirical applications.

We here will describe the Geweke spectral measure
of Granger causality (GSC) for the simplified case in
which the covariance matrix in (3) is diagonal so that

there is no instantaneous correlation between X and Y .
This enormously simplifies its derivation and suffices for
our purpose of characterizing the spectral measure of

Granger causality examining its derivation from an in-
formation theoretic measure. The GSC is obtained from
the spectral representation of the bivariate autoregres-

sive process as follows. Fourier transforming (2) leads
to:(
A

(xy)
xx (ω) A

(xy)
xy (ω)

A
(xy)
yx (ω) A

(xy)
yy (ω)

)(
X(ω)

Y (ω)

)
=

(
ϵ
(xy)
x (ω)

ϵ
(xy)
y (ω)

)
, (21)
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where we have A
(xy)
xx (ω) = 1−

∑∞
s=1 a

(xy)
xxs e−iωs, as well

as A
(xy)
xy (ω) = −

∑∞
s=1 a

(xy)
xys e−iωs, and analogously for

A
(xy)
yy (ω), A

(xy)
yx (ω). The coefficients matrix A(xy)(ω)

can be inverted into the transfer function H(xy)(ω) =
(A(xy))−1(ω), so that

(
X(ω)

Y (ω)

)
=

(
H

(xy)
xx (ω) H

(xy)
xy (ω)

H
(xy)
yx (ω) H

(xy)
yy (ω)

)(
ϵ
(xy)
x (ω)

ϵ
(xy)
y (ω)

)
. (22)

Accordingly, the spectral matrix can be expressed as:

S(xy)(ω) = H(xy)(ω)Σ(xy)(H(xy))∗(ω) (23)

where ∗ denotes complex conjugate and matrix trans-

pose. Given the lack of instantaneous correlations

Sxx(ω) = Σ(xy)
xx |H(xy)

xx (ω)|2 +Σ(xy)
yy |H(xy)

xy (ω)|2. (24)

The GSC from Y to X at frequency ω is defined as:

fY→X(ω) = ln
Sxx(ω)

Σ
(xy)
xx |H(xy)

xx (ω)|2
. (25)

This definition fulfills the requirement of being nonneg-
ative since, given (24), Sxx(ω) is always higher than

Σ
(xy)
xx |H(xy)

xx (ω)|2. It also fulfills the requirement of be-

ing intuitive since fY→X(ω) quantifies the portion of
the power spectrum which is associated with the in-
trinsic innovation process of X. We will show in Sect. 3

that it also fulfills the requirement of (19), which estab-
lishes the link between the time domain and frequency
domain measures.

Geweke did not explicitly complete a decomposi-
tion analogous to (7) and (16) in the spectral domain.

However, he took into account that, for bivariate linear
Gaussian stationary processes, a spectral decomposi-
tion of the mutual information rate I(Xi;Y i) already

had been introduced by Gelfand and Yaglom (1959) as:

I(Xi;Y i) =
−1

4π

∫ π

−π

ln
|S(xy)(ω)|

Sxx(ω)Syy(ω)
dω

=
−1

4π

∫ π

−π

ln (1− |C(X,Y )|2)dω,
(26)

where |C(X,Y )|2 is the squared coherence of X and Y
(Priestley, 1981). Considering this, it is possible (Ding

et al., 2006) to introduce a spectral measure of total
dependence between X and Y at a frequency ω:

fX,Y (ω) = I(X(ω);Y (ω)) = ln
Sxx(ω)Syy(ω)

|S(xy)(ω)|
= − ln (1− |C(X,Y )|2),

(27)

where I(X(ω);Y (ω)) is the mutual information rate

between the spectral variables X(ω) and Y (ω). The re-
quirement analogous to (19) is thus fulfilled by defini-
tion. This definition also fulfills the nonnegativity con-

dition and has a clear interpretation, since the coher-
ence is a measure which is widely applied to quantify
the interdependence of the processes in the spectral do-

main.
Defining fX→Y (ω) analogously to (25), the defini-

tion of the instantaneous causality spectral measure

fX·Y (ω) is chosen ad hoc to satisfy

fX,Y (ω) = fX→Y (ω) + fY→X(ω) + fX·Y (ω). (28)

This results, for the case of no instantaneous causality,

in

fX·Y (ω) = ln
Σ

(xy)
xx |H(xy)

xx (ω)|2Σ(xy)
yy |H(xy)

yy (ω)|2

|S(xy)(ω)|
. (29)

Being introduced ad hoc to complete the decompo-

sition, the spectral measure fX·Y (ω) does not fulfill the
requirements of Geweke. It may be negative for some
frequencies and has no clear physical meaning (Ding

et al., 2006). The lack of nonnegativity can be seen
considering that the integration over frequencies of the
decomposition in (28) has to be consistent with the de-

composition in (7). For the lack of instantaneous causal-
ity in the time domain FX·Y = 0, but, if a bidirectional
coupling exists, fX·Y (ω) is generally nonzero even if

there is no instantaneous causality. Since the integral of
fX·Y (ω) has to cancel when FX·Y = 0, not being zero
for all frequencies, this implies the violation of nonnega-

tivity. This difference in the properties of fX·Y (ω) and
FX·Y also indicates that also the other terms in the
time and the spectral domain decompositions cannot

play equivalent roles.
Enforcing the definition of fX·Y (ω) to fulfill the de-

composition in the spectral domain impairs the useful-

ness of such decomposition. The value of the decom-
positions in the time domain and information theoretic
framework relies on the possibility to physically inter-

pret them as quantifying how any interdependence be-
tween two processes results from either causal inter-
actions or from instantaneous dependencies. Having a

measure of causality embedded in a such decomposition
may be helpful when studying a system to, for example,
better analyze the contribution of the causal effects to

the level of synchronization between the processes.
For the study of neural data, given that it has been

hypothesize that neural coherence plays an important

role in neural communication (Fries, 2005), the con-
nection with fX,Y (ω), which is directly related to the
coherence, helps to interpret the spectral measure of

causality fX→Y (ω). In fact, it is common when causal
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analysis between brain regions is carried out in the spec-

tral domain to examine how the location of the peaks
in the spectrum of the causal measures is related to the
location of the peaks in the power spectrum and the

coherence spectrum (Brovelli et al., 2004; Chen et al.,
2006; Bressler et al., 2007).

Given the requirements imposed by Geweke, the

measure fX→Y (ω) has a clear interpretation as the por-
tion of the power spectrum associated with the inno-
vation process ϵ

(xy)
x . However, this interpretation relies

on the use of the autoregressive representation, because
the innovation process is only well-defined in the con-
text of this representation and does not correspond to

any process recorded from a given brain region. Since
the spectral measures of causality should serve us to
study how the causal effects between two regions from

which we record are channeled in a given brain rhythm,
we would like to know how, if possible, they can be
expressed in terms of the X and Y variables, like the

time domain and information theoretic Granger causal-
ity measures. This is because the processes X and Y di-
rectly reflect the activity of the brain regions and do not
depend on the specific autoregressive representation.

For that purpose, given the generality of the infor-
mation theoretic framework, we will examine how the
different spectral measures can be derived from infor-

mation theoretic measures. We do that to connect the
spectral formulation (28) with the information theo-
retic formulation (16), but more specifically our main

interest is to better characterize the Granger causality
spectral measure.

3 The connection between the information
theoretic framework and the spectral

framework of dependence and causality
measures

In the information theoretic formulation all the mea-
sures are expressed involving only variables correspond-
ing to the processes X and Y , and thus are independent

of any particular representation, like the autoregressive
representation. In the time domain, the linear station-
ary Gaussian measures result to be the specific form

that take the information theoretic measures for linear
Gaussian stationary processes. As we said, the corre-
spondence not only holds for each measure but also for

their different components, so that each variance of the
innovations is related to an entropy involving only vari-
ables of the processes X and Y , as shown for example

in (17) and (18).
The connection between the time domain and fre-

quency domain Granger causality measures is based on

the requirements expressed in (19) and (20) for GSC.

We want to examine if it is possible to derive the GSC

and the other spectral measure in (28) from the infor-
mation theoretic measures in the same way that it has
been done for the time domain measures. In particu-

lar, we want to see if there is a one-to-one correspon-
dence between some terms derived from the four terms
in the information theoretic representation of the de-

composition of the total dependence (16) and the four
terms in spectral representation of the decomposition
in (28). Furthermore, we want to examine if this con-

nection also holds for the components of the spectral
measures, that is, we want to determine if, for exam-
ple, Σ

(xy)
xx |H(xy)

xx (ω)|2, which appears in the definition

of fY→X(ω) (25), can be related to an information the-
oretic quantity similarly to the relation shown in (18)

for Σ
(xy)
xx , which appears in the definition of FY→X .

To do so we will start by considering an important

equality between two alternative definitions of the en-
tropy rate of a stochastic process under the existence
of stationarity. The first definition is:

H(Xi) = lim
n→∞

H(X1, X2, ..., Xn)

n
, (30)

while the second is:

H(Xi+1|Xi) = lim
n→∞

H(Xn+1|Xn, Xn−1, ..., X1). (31)

The existence of the limit of (31) is assured by the
existence of the autoregressive representation in (1),

and corresponds to the expression in (17). It can then
be shown that for a stationary stochastic process these
limits are equal (Theorem 4.2.1, Cover and Thomas

(2006)):

H(Xi) = H(Xi+1|Xi). (32)

Below in this section we will consider in more detail why
this equality holds. For the moment it is important to

note that the reason why this equality is relevant for our
arguments is that while H(Xi+1|Xi) explicitly consid-
ers a distinction between the past Xi, and the value one
step in the futureXi+1, the other definitionH(Xi) does

not distinguish between future and past variables. This
lack of distinction is convenient to express the informa-
tion theoretic measure in terms of frequency variables.

In (17) we showed the relation between H(Xi+1|Xi)

and the variance of ϵ
(x)
x , the innovation term in the pro-

jection in (1). Similarly, for linear stationary Gaussian

processes, we have that

H(Xi) =
1

2
ln 2πe+ lim

n→∞

1

2n
ln |Σ(Xn)|. (33)

whereΣ(Xn) is the covariance matrix ofX1, X2, ..., Xn.
In general, this covariance matrix is not diagonal, how-
ever, for a linear Gaussian stationary process, the fre-

quency modes are independent and thus the matrix is
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diagonal, consistently with the additivity of the entropy

for independent variables (Cover and Thomas, 2006).
Therefore, changing to the basis of the frequency modes
we get

H(Xi) = lim
n→∞

n∑
k=1

H(X(ωk))

=
1

2
ln 2πe+ lim

n→∞

1

2n

n∑
k=1

lnΣ(ωk),

(34)

and considering a continuous spectrum in the limit n →
∞

H(Xi) =
1

2π

∫ π

−π

H(X(ω))dω =
1

2
ln 2πe

+
1

4π

∫ π

−π

lnSxx(ω)dω.

(35)

Accordingly, the component of fY→X(ω) that con-
tains Sxx(ω) in (25) is related to an entropy involving

only X variables in the same way that in (17) Σ
(x)
x is

related to H(Xi+1|Xi):

H(X(ω)) =
1

2
ln 2πe+

1

2
lnSxx(ω). (36)

Combining (17), (32), and (35), we obtain that

lnΣ(x)
x =

1

2π

∫ π

−π

lnSxx(ω)dω, (37)

which is the well-known equality of Kolmogorov (1939).

We also have that

H(Xi+1|Xi) =
1

2π

∫ π

−π

H(X(ω))dω, (38)

so that H(Xi+1|Xi) has a spectral representation in

terms of Sxx(ω). This means that one of the two en-
tropies appearing in the definition of the transfer en-
tropy (9) has a spectral representation corresponding

to one of the components of fY→X(ω). This entropy
H(Xi+1|Xi) also appears in the definition of the to-
tal dependence in the information theoretic framework

(13).
We continue examining which other entropies used

to define the information theoretic measures have a

spectral representation. Following the same line of ar-
guments and substituting X by the bivariate stochastic
process XY the same theorem (Theorem 4.2.1, Cover

and Thomas (2006)) assures that for stationary pro-
cesses

H(XiY i) = H(Xi+1Yi+1|XiY i). (39)

For linear Gaussian stationary processes these entropy

rates can be expressed as:

H(Xi+1Yi+1|XiY i) = ln 2πe+
1

2
ln |Σ(xy)|, (40)

in terms of the covariance matrix of the innovations in

the joint autoregressive representation in (2), and as

H(XiY i) =
1

2π

∫ π

−π

H(X(ω)Y (ω))dω

= ln 2πe+
1

4π

∫ π

−π

ln |S(xy)(ω)|dω,
(41)

where we have taken again into account that in the basis

of the frequency modes all the modes are independent
for X and Y except for the same frequency of X and
Y . Accordingly, we have that

H(X(ω)Y (ω)) = ln 2πe+
1

2
ln |S(xy)(ω)|, (42)

and

H(Xi+1Yi+1|XiY i) =
1

2π

∫ π

−π

H(X(ω)Y (ω))dω, (43)

which means that another of the entropies appearing in

the information theoretic measure of total dependence
(13) as well as in the information theoretic measure of
instantaneous causality (15) has a spectral representa-

tion corresponding to a component of fX,Y (ω) (27) and
fX·Y (ω) (29).

The existence of the relations between H(Xi+1|Xi)

and Sxx(ω) (38) and between H(Xi+1Yi+1|XiY i) and
|S(xy)(ω)| (43) suffices to derive the decomposition of
the total dependence into terms of causality and instan-

taneous dependence in the spectral domain (28) from
the information theoretic decomposition (16). This is
because the equality in (16) is obtained after the cance-

lation of the terms H(Yi+1|XiY i) and H(Xi+1|XiY i),
which appear in TX→Y +TY→X and I(Xi+1;Yi+1|XiY i)
with opposite sign. Therefore, at the level of the de-

compositions, we do not have to further examine how
H(Yi+1|XiY i) and H(Xi+1|XiY i) are linked to any
quantity in the frequency domain.

We will now consider if the individual terms in (16)
have a spectral representation. Combining (35) and (41)
we see that the components of the mutual information

rate proposed by Gelfand and Yaglom (1959) (26) cor-
respond to what we expect from its definition in terms
of entropies (Cover and Thomas, 2006):

I(Xi;Y i) = H(Xi) +H(Y i)−H(XiY i). (44)

Furthermore, using the equalities between the entropy
rates in (32) and (39), and comparing (13) with (44),
we see that the equality between the entropy rates also

leads to the equality between the alternative definitions
of mutual information rate, corresponding one of these
definitions to the definition of the information theoretic

measure of total dependence:

I(Xi+1X
i;Yi+1Y

i)− I(Xi;Y i) = I(Xi;Y i). (45)
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Therefore the information theoretic measure of total de-

pendence has a spectral representation and, as happen
for the connection with the time domain measures, the
correspondence with the spectral measure also holds for

the different entropies that compound the information
theoretic measure of total dependence. These entropies,
under the assumption of having linear Gaussian sta-

tionary processes and Fourier transforming Xi and Y i,
naturally take the form shown in (36) and (42).

We continue considering the spectral representation

of TX→Y , TY→X , and I(Xi+1;Yi+1|XiY i). This repre-
sentation would require that also the terms canceled in
(16), that is, H(Yi+1|XiY i) and H(Xi+1|XiY i) could

be represented in the spectral domain. We will show
that it is not possible to do so using the same proce-
dure used for H(Xi+1|Xi) and H(Xi+1Yi+1|XiY i). For

that purpose we will first review how the equality be-
tween the entropy rates in (32) is obtained (Theorem
4.2.1, Cover and Thomas (2006)). Remember that this

equality allowed us above to establish the link between
entropies like H(Xi+1|Xi), that appears in the defini-
tion of the information theoretic measures of depen-
dence and causality, and a spectral representation de-

rived from the Fourier transformation of Xi in H(Xi).
Using the chain rule for entropies (Cover and Thomas,
2006) we have that the term inside the limit used to

define H(Xi) can be rewritten as:

H(X1, X2, ..., Xn)

n
=

1

n

n−1∑
i=0

H(Xi+1|Xi, Xi−1, ..., X1),

(46)

so that the entropy rate is the time average of condi-
tional entropies that have the same form as the one used

for the alternative definition of the entropy rate (31).
Theorem 4.2.3 in Cover and Thomas (2006) (called the
Cesáro mean) states that if a series of terms an has a

limit an → a, then another series bn = 1
n

∑n−1
i=0 ai+1

also has the limit bn → a. Therefore, the possibility
to use the chain rule to express H(X1, X2, ..., Xn) as

conditional entropies with the form appearing in the
alternative definition of the entropy rate is necessary to
apply the Cesáro mean, which establishes the equality

of the limits.
We will now apply the same logic used in the proof of

the equality of the entropy rates in (32) to the entropy

rates H(Yi+1|XiY i) and H(Xi+1|XiY i) and consider
how they arise as a limit for n → ∞. H(Xi+1|XiY i)
corresponds to the entropy rate:

H(Xi+1|XiY i) = lim
n→∞

H(Xn|Xn−1, Yn−1, Xn−2,

Yn−2, ..., X1, Y1),
(47)

and analogously for H(Yi+1|XiY i).

We now have to consider the alternative definition

of the entropy rate as an average of the joint entropy,
analogously to (30):

H(Xi+1X
iY i) = lim

n→∞

1

n
H(X1, Y1, X2, Y2,

..., Xn, Yn, Xn+1).
(48)

However, we see that the definition of such entropy

rate is problematic for our aims. When changing from
H(Xi+1|Xi) to H(Xi) the distinction between past and
future disappears, and so does when changing from

H(Xi+1Yi+1|XiY i) to H(XiY i). But in H(Xi+1|XiY i)
there is an asymmetry between X and Y based on
the fact that only the future of X appears. Since this

asymmetry intrinsically depends on the distinction be-
tween future and past, we cannot get rid of this dis-
tinction in the definition of the alternative entropy rate

H(Xi+1X
iY i) in (48). In fact, the variable Xi+1 is

what distinguishesH(Xi+1X
iY i) fromH(XiY i), which

is equal to H(Xi+1Yi+1|XiY i). The variable Xi+1 is

needed to maintain the asymmetry but prevents from
expressing the variables in the frequency domain. We
cannot Fourier transform Xi+1X

iY i in the same way as

Xi or XiY i because the spectral space is not compati-
ble with maintaining such temporal distinction. There-
fore, establishing the equivalence with an alternative

entropy rate such as H(Xi+1X
iY i) would not allow us

to connect to the spectral representation in the same
way we did before. Furthermore, even the equivalence

of these alternative entropy rates is problematic. The
chain rule should be applied in a way that conditional
entropies of the form H(Xn|Xn−1, Yn−1, ..., X1, Y1) ap-

pear, analogously to (46). But then it would not be
possible to avoid the appearance of other terms with
the form H(Yn|Xn, Xn−1, Yn−1, ..., X1, Y1). Therefore,

in this case the Cesáro mean could not be used to
equate the two alternative definitions of entropy rate.

These arguments suggest that H(Yi+1|XiY i) and
H(Xi+1|XiY i) do not have a spectral representation
analogous to the one that have H(Xi+1|Xi) (38) and

H(Xi+1Yi+1|XiY i) (43). Accordingly, also the trans-
fer entropy would be incompatible with a spectral rep-
resentation derived without explicitly considering the

parametric autoregressive representation (see Sect. 5.1
for such derivation). Notice that we are not pointing to
any inconsistency of the spectral measure of Granger

causality proposed by Geweke with the requirements
imposed in Geweke (1982). These requirements, in par-
ticular (19), are weaker than the existence of a spectral

representation for the transfer entropy. This is because
(19) only links the time domain measure with the inte-
gral across all frequencies. It does not require that, for

each frequency, an information theoretic measure in-
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volving variables from the observed processes X and Y

takes the form of the spectral measure when expressed
under the assumption of having linear Gaussian station-
arity processes. The difference is important because,

when using the spectral measure of Granger causality,
we specifically aim to interpret it at each frequency in
terms of causal interactions between the observed pro-

cesses, and not just to know that integrated across all
frequencies they are consistent with the time domain
Granger causality measure.

Geweke (1982) showed that the fulfillment of (19)
relies on Theorem 4.2 Rozanov (1967). Considering the
conventional definition of the lag operator such that

Lxi = xi−1, this theorem states that for a square matrix
lag operator D(L) with a leading term 1 and all roots
outside the unit circle:∫ π

−π

ln |D(ω)|2dω = 0. (49)

This theorem is applied to show that the integration

of the component in the denominator of fY→X(ω) (25)
results in:∫ π

−π

ln (Σ(xy)
xx |H(xy)

xx (ω)|2)dω = 2π lnΣ(xy)
xx . (50)

Therefore, it is clear that the use of the integration

across frequencies is necessary to fulfill the requirement
of (19), without deriving from H(Xi+1|XiY i) any spec-
tral representation like the ones of (36) and (42).

To derive the linear Gaussian stationary measures
in the time domain from the information theoretic mea-
sures it suffices to consider the form of the entropy for

Gaussian variables (10). To derive the linear Gaussian
stationary measures in the frequency domain we used
the equalities between the different definitions of en-

tropy rates (32) and (39) and the Fourier transforma-
tion of Xi and Y i. This procedure in the frequency
domain allowed us to show the correspondence between

the spectral and information theory formulations at the
level of the decomposition of the total dependence into
causal and instantaneous terms. At the level of the com-

ponents of the measures, this procedure only allowed us
to derive the spectral form of some of entropies in (36)
and (42), which suffice for a spectral representation of

the total dependence (13), but not of the transfer en-
tropy (9) and the instantaneous causality (15).

The fact that the same procedure that allows us to

establish the connection at the level of the decompo-
sitions and to express H(Xi+1|Xi), H(Yi+1|Y i), and
H(Xi+1Yi+1|XiY i) in their spectral representation is

not valid to derive a spectral representation for the en-
tropy rates H(Yi+1|XiY i) and H(Xi+1|XiY i) does not
constitute a proof of inexistence of their spectral repre-

sentation. Therefore we have not provided a proof of the

inexistence of a spectral representation of the transfer

entropy containing only variables of the observed pro-
cessesX and Y . However, the way the procedure fails in
comparison with how it is valid for the other entropies

is illustrative of the main impediment to obtain such
a spectral representation. The asymmetry between the
role of X variables and Y variables is based on the dis-

tinction between the future and the past. A valid spec-
tral representation of the transfer entropy would need
to reflect this asymmetry in the spectral space. If this

is possible remains as an open question.

4 The connection between the formulations for
the multivariate framework of dependence and

causality measures

Above we showed for the bivariate case the problems

to obtain a spectral representation for the transfer en-
tropy. Here we deal with the spectral representation in
the case of multivariate processes. We will not review

the multivariate formulation for linear Gaussian sta-
tionary processes in the time domain, in the frequency
domain, and the general formulation in the information

theory framework as we did for the bivariate case (Sect.
2). Here we will only indicate what differs from the bi-
variate case in relation to the connection between the

different formulations.

For a multivariate processW , to assess the existence
of causality from Y to X it is necessary to consider also

the statistical dependence between X and Y that is me-
diated by Z = W \XY . Accordingly, in the information
theoretic formulation, in all the partializations appear-

ing in (9), (13), and (15) one has to include Zi. With
this inclusion the decomposition in (16) is converted to:

I(Xi+1X
i;Yi+1Y

i|Zi)− I(Xi;Y i|Zi) = TX→Y |Z

+TY→X|Z + I(Xi+1;Yi+1|XiY iZi),
(51)

which given the terms that cancel between TX→Y |Z ,
TY→X|Z and I(Xi+1;Yi+1|XiY iZi) results in

I(Xi+1X
i;Yi+1Y

i|Zi)− I(Xi;Y i|Zi) =

H(Xi+1|XiZi) +H(Yi+1|Y iZi)

−H(Xi+1Yi+1|XiY iZi).

(52)

The terms appearing in the r.h.s. of (52) have a struc-

ture analogous to H(Yi+1|XiY i) and H(Xi+1|XiY i).
For example, in H(Xi+1|XiZi) there is an asymme-
try between the variables of X and Z based on the

distinction between future and past. Accordingly, the
logic used in Sect. 3 to derive the spectral represen-
tation for H(Xi+1|Xi), which plays the same role of

H(Xi+1|XiZi) in the bivariate case (see (13)), is not
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valid in the multivariate case. The lack of an equality

analogous to (32) for H(Xi+1|XiZi) also implies that
there is not an equality for alternative partial mutual
information rates, analogously to (45). The conditional

total dependence I(Xi+1X
i;Yi+1Y

i|Zi)− I(Xi;Y i|Zi)
cannot be associated with the partial mutual informa-
tion rate I(Xi;Y i|Zi), like the total dependence was

associated with the mutual information rate in (45).
Accordingly, in the conditional case, also for the infor-
mation theoretic measures of total dependence a spec-

tral representation is not obtained. We cannot obtain
this spectral representation for the conditional transfer
entropies TX→Y |Z and TY→X|Z either.

5 The interpretation of the spectral measures

related to Granger causality in bivariate
processes

The arguments in Sect. 3 suggested that the transfer
entropy, which is the generalized measure of Granger
causality in the framework of information theory, does

not have a spectral representation for linear Gaussian
stationary processes that involves only variables from
the observed processes. We argued that (19) is a weaker

requirement that only constraints the integration of the
spectral measure across all frequencies. We now want
to examine, at the level of each frequency, how to inter-

pret the Geweke spectral measure of Granger causality
(GSC) (Geweke, 1982) and other spectral measures re-
lated to Granger causality, namely the Directed Trans-

fer Function (DTF) and the Partial Directed Coherence
(PDC). In this section we discuss the bivariate case and
we address the multivariate case in Sect. 6.

5.1 Definition of the bivariate Directed Transfer

Function and the Partial Directed Coherence

We start reviewing the definition of these two spectral

measure for the bivariate case. We here will focus on the
extended version of DTF and PDC introduced by Taka-
hashi et al. (2010), namely the information directed

transfer function (iDTF) and the information partial
directed coherence (iPDC), which are related to mu-
tual information rates.

Given the joint autoregressive model of X and Y

(2), and assuming for simplicity that Σ(xy) (3) is diag-
onal, the iDTF from Y to X is defined as (Takahashi
et al., 2010):

iγ(xy)
xy (ω) =

H
(xy)
xy (ω)

√
Σ

(xy)
yy√

Sxx(ω)
= C(X, ϵ(xy)y ), (53)

where H
(xy)
xy (ω) is a component of the transfer func-

tion in (22) and C(X, ϵ
(xy)
y ) is the coherence between

X and ϵ
(xy)
y . The iDTF is equal to the DTF (Kaminski

and Blinowska, 1991) for Σ(xy) the identity matrix and

equal to the directed coherence (Baccalá et al., 1999)
for Σ(xy) diagonal (as considered here). In the bivari-
ate case, considering the definition of the bivariate GSC

fY→X(ω) (25), there is a direct connection between the
bivariate GSC and the bivariate iDTF:

fY→X(ω) =− ln (1− |C(X, ϵ(xy)y )|2)

=− ln (1− |iγ(xy)
xy (ω)|2),

(54)

where |C(X, ϵ
(xy)
y )|2 is the squared coherence of X with

the innovations ϵ
(xy)
y of (2). Given the expression of

fY→X(ω) in (54) and the general relation of the mu-
tual information rate with the squared coherence (26),
Takahashi et al. (2010) showed that:

FY→X =2 I(Xi; ϵ(xy)iy )

=
−1

2π

∫ π

−π

ln (1− |iγ(xy)
xy (ω)|2)dω.

(55)

The information partial directed coherence (iPDC)
from Y to X (Takahashi et al., 2010) is defined as:

iπ(xy)
xy (ω) =

A
(xy)
xy (ω)√

Σ
(xy)
xx

√
(a

(xy)
y )∗(ω)(Σ(xy))−1a

(xy)
y (ω)

= C(ϵ(xy)x , η(xy)y ) =
A

(xy)
xy (ω)

√
Syy|X√

Σ
(xy)
xx

,

(56)

where A(xy)(ω) is the spectral representation of the au-

toregressive coefficients matrix of (2), a
(xy)
y (ω) is the y

column of A(xy)(ω), and Syy|X is the partial spectrum

(Priestley, 1981) of the Y process when partialized on

process X. Furthermore, η
(xy)
y refers to the partialized

process resulting from the Y process when partialized

on X. Like in the case of the iDTF, a mutual infor-
mation rate is associated with iPDC (Takahashi et al.,
2010):

I(ϵ(xy)ix ; η(xy)iy ) =
−1

4π

∫ π

−π

ln (1− |iπ(xy)
xy (ω)|2)dω. (57)

5.2 The interpretation of Geweke measure and the

directed transfer function for bivariate processes

The results of Takahashi et al. (2010), in particular (54),
indicate that the Geweke spectral measure of Granger

causality can be associated, at each frequency, with a
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mutual information rate. This is because it is possible

to express I(Xi; ϵ
(xy)i
y ) (55) as an integral across fre-

quencies, in the same way that we did for H(Xi) and
H(XiY i) in (35) and (41):

I(Xi; ϵ(xy)iy ) =
1

2π

∫ π

−π

I(X(ω); ϵ(xy)y (ω))dω, (58)

so that

fY→X(ω) = 2 I(X(ω); ϵ(xy)y (ω))

= 2(H(X(ω))−H(X(ω)|ϵ(xy)y (ω))),
(59)

where from (36) we know that H(X(ω)) is related to

Sxx(ω). The conditional entropy H(X(ω)|ϵ(xy)y (ω)) can

be seen to be related to Σ
(xy)
xx |H(xy)

xx (ω)|2, the term of
fY→X(ω) in (25) for which in Sect. 3 we were looking for

its correspondence with an information theoretic mea-
sure. In particular we have that

S
xx|ϵ(xy)

y
= Sxx −

S
xϵ

(xy)
y

S
ϵ
(xy)
y x

S
ϵ
(xy)
y ϵ

(xy)
y

= Σ(xy)
xx |H(xy)

xx (ω)|2.

(60)

Recognizing Σ
(xy)
xx |H(xy)

xx (ω)|2 as a partial spectrum is

enough to relate it to a conditional entropy, since in
general for the linear Gaussian stationary processes the
conditional entropy can be expressed in terms of the

partial spectrum (Brillinger, 1981):

H(X(ω)|ϵ(xy)y (ω)) =
1

2
ln 2πe+

1

2
lnS

xx|ϵ(xy)
y

. (61)

Therefore, in contrast to the spectral measure of to-
tal dependence fX,Y (ω), which corresponds to the mu-

tual information rate I(X(ω);Y (ω)), (59) shows that,
at each frequency, we are only able to express the GSC
from Y to X in terms of the dependence of X with the

innovation process ϵ
(xy)
y , but not in terms of only vari-

ables from the observed processes X and Y . Nonethe-
less, with the integration across all the frequencies the

relation in terms of X and Y is recovered. This means
that to interpret the spectral measure at each frequency
one has to consider explicitly the representation of the

processes X and Y with an autoregressive model, since
the process ϵ

(xy)
y is only meaningful under this repre-

sentation.

5.3 The interpretation of the partial directed
coherence

The PDC has been shown to be a measure to test
for Granger causality (Schelter et al., 2006; Takahashi
et al., 2010) because

FY→X = 0 ⇔ iπxy(ω) = 0 ∀ω. (62)

However, there is no direct relation between the iPDC

and GSC, like it exists with iDTF (54). Here we will
show that the mutual information rate associated with
iPDF (57) is in fact testing another principle of condi-

tional independence alternative to the general criterion
of Granger causality (8). This principle is the gener-
alized Sims condition of strict exogeneity of X (Sims,

1972) (also referred as Sims non-causality from Y to
X). For the simplified case of noninstantaneous depen-
dencies it corresponds to the following condition:

p(Yi+1|Y iX1, ..., X∞) = p(Yi+1|XiY i), (63)

that is, if no causal interaction exists from Y to X, Yi+1

is conditionally independent ofXi+1, ...X∞ givenXiY i.

It has been proven (Chamberlain, 1982) that Granger
non-causality and Sims non-causality are equivalent for
bivariate systems (see also Kuersteiner, 2008, for a re-

view of the relation between the two criteria of causal-
ity), that is, the equality in (63) is fulfilled if and only
if the one in (8) is fulfilled.

To establish the relation between iPDC and Sims
non-causality we consider that

(a(xy)y )∗(ω)(Σ(xy))−1a(xy)y (ω) =
|A(xy)

xy (ω)|2

Σ
(xy)
xx

+
|A(xy)

yy (ω)|2

Σ
(xy)
yy

(64)

so that we can rewrite (57) as:

I(ϵ(xy)ix ; η(xy)iy ) =
−1

4π

∫ π

−π

ln
|A(xy)

yy (ω)|2Syy|X

Σ
(xy)
yy

dω. (65)

We now examine how the integral of the different
components in the r.h.s. of (65) are related to infor-

mation theoretic measures in terms of X and Y vari-
ables. For the partial spectrum Syy|X it can be shown
(Brillinger, 1981), given (35) and (41) that

H(Y i|Xi) = H(XiY i)−H(Xi) =
1

2
ln 2πe

+
1

4π

∫ π

−π

ln
|S(xy)(ω)|
Sxx(ω)

dω
(66)

where

|S(xy)(ω)|
Sxx(ω)

= Syy −
SxySyx

Sxx
= Syy|X . (67)

Furthermore, we indicated in Sect. 2.2 that Σ
(xy)
yy is

related to H(Yi+1|XiY i) (18). Finally, the square ma-

trix lag operator A
(xy)
yy (L) has a leading term 1, and if

all the roots are outside the unit circle, it follows from
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(49) that its integral across frequencies cancels. Alto-

gether we obtain that:

I(ϵ(xy)ix ; η(xy)iy ) = H(Yi+1|XiY i)−H(Y i|Xi). (68)

This means that only after the integration across fre-

quencies, the iPDC is associated with an information
theoretic measure that depends only on X and Y vari-
ables, as it occurs for GSC. To better appreciate the

parallelism with GSC and iDTF lets combine (9), (11),
and (55) to get:

I(Xi; ϵ(xy)iy ) = H(Xi+1|Xi)−H(Xi+1|XiY i). (69)

In (69) it is evident that the difference of entropy
rates corresponds to the comparison of the probability

distribution equated in the general criterion of Granger
causality (8). We will now show that in an analogous
way the difference of entropy rates in (68) compares

the probability distributions equated in the Sims non-
causality criterion (63). Consider H(Y i|Xi) as the limit

H(Y i|Xi) = lim
n→∞

1

n
H(Y1, ..., Yn|X1, ..., Xn)

= lim
n→∞

1

n

∞∑
i=1

H(Yi|Yi−1, ..., Y1, X1, ..., Xn).

(70)

If the equality (63) of Sims non-causality from Y to X
holds

H(Yi|Yi−1, ..., Y1, X1, ..., Xn) = H(Yi|Yi−1, ..., Y1,

Xi−1, ..., X1).
(71)

Considering the definition of H(Yi+1|XiY i) analogous
to (47), for n → ∞ we get H(Y i|Xi) = H(Yi+1|XiY i).

Apart from the theoretical interest of the link of
iPDC with the criterion of Sims non-causality, the ar-

gument above is important in practice for the inter-
pretation of the spectral measures because it indicates,
given (68) and (69), that independently of which cri-

terion of causality is adopted, the appearance of terms
like H(Yi+1|XiY i) and H(Xi+1|XiY i) prevents from
deriving a spectral representation in terms of X and Y

variables in the same way that it is done for the mu-
tual information rate I(Xi;Y i). Like for the relation of

fY→X(ω) and iγ
(xy)
xy (ω) (54) one can consider a measure

gY→X(ω) = − ln (1− |iπxy(ω)|2), (72)

so that

gY→X(ω) = 2 I(ϵ(xy)x (ω); η(xy)y (ω))

= 2(H(η(xy)y (ω))−H(η(xy)y (ω)|ϵ(xy)x (ω))).

(73)

Given that η
(xy)
y is the process obtained after partializ-

ing Y on X, H(η
(xy)
y (ω)) is related to Syy|X (Brillinger,

1981). It can then be seen that the rest of the terms
apart from Syy|X inside the logarithm in the r.h.s of

(65) correspond to the partial spectrum S
η
(xy)
y |ϵ(xy)

x
, and

thus are related to H(η
(xy)
y (ω)|ϵ(xy)x (ω)). Therefore, like

for the bivariate GSC in Sect. 5.2, there is a one-to-one
connection between components of the PDC measure

and entropies involving innovation variables. However,
at each frequency it is not possible to express the mea-
sures of causal interactions only using variables from

the observed processes. Therefore the results presented
in Sects. 5.2 and 5.3 complement the ones in Sect. 3
showing that the information theoretic measures re-

lated to the spectral measures of Granger causality in-
volve innovation variables and not only variables from
the observed processes X and Y .

6 The interpretation of the spectral measures

related to Granger causality in multivariate
processes

6.1 Definition of the spectral measures in the

multivariate case

We now extend the analysis to the case of multivari-
ate systems. We start reviewing the definition of the
spectral measures. For that purpose, we consider the

fully multivariate autoregressive representation of the
system W = {X,Y, Z}:

Xi+1 =

∞∑
s=0

a(xyz)xxs Xi−s + a(xyz)xys Yi−s + a(xyz)xzs Zi−s

+ϵ
(xyz)
xi+1

Yi+1 =
∞∑
s=0

a(xyz)yxs Xi−s + a(xyz)yys Yi−s + a(xyz)yzs Zi−s

+ϵ
(xyz)
yi+1

Zi+1 =
∞∑
s=0

a(xyz)zxs Xi−s + a(xyz)yzs Yi−s + a(xyz)zzs Zi−s

+ϵ
(xyz)
zi+1

(74)

Σ(xyz) =

Σ
(xyz)
xx Σ

(xyz)
xy Σ

(xyz)
xz

Σ
(xyz)
yx Σ

(xyz)
yy Σ

(xyz)
yz

Σ
(xyz)
zx Σ

(xyz)
zy Σ

(xyz)
zz

 . (75)

Like for the bivariate case we will from now on assume
that Σ(xyz) is diagonal. This joint autoregressive rep-
resentation suffices to define the iDTF and the iPDC,

which are straightforward extensions of the bivariate
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case. In that case the iDTF from Y to X corresponds

to (Takahashi et al., 2010):

iγ(xyz)
xy (ω) =

H
(xyz)
xy (ω)

√
Σ

(xyz)
yy√

Sxx(ω)
= C(X, ϵ(xyz)y ), (76)

where C(X, ϵ
(xyz)
y ) is the coherence between X and

ϵ
(xyz)
y , and H

(xyz)
xy is a component of the transfer func-

tionH(xyz) associated with the multivariate autoregres-
sive process in (74) analogous to H(xy) in the bivariate

case (22).
The information partial directed coherence (iPDC)

from Y to X (Takahashi et al., 2010) is:

iπ(xyz)
xy (ω) = C(ϵ(xyz)x , η(xyz)y ) =

A
(xyz)
xy (ω)

√
Syy|W\y√

Σ
(xyz)
xx

=
A

(xyz)
xy (ω)√

Σ
(xyz)
xx

√
(a

(xyz)
y )∗(ω)(Σ(xyz))−1a

(xyz)
y (ω)

,

(77)

where A(xyz)(ω) is the spectral representation of the

autoregressive coefficients matrix of (74), a
(xyz)
y (ω) is

the y column of A(xyz)(ω), and Syy|W\y is the partial

spectrum (Priestley, 1981) of the Y process when par-
tialized on all the other processes in the multivariate
process W . Furthermore, η

(xyz)
y refers to the partialized

process resulting from the Y process when partialized
on all the others.

In contrast to iDTF and iPDC, the definition of the

conditional GSC (Geweke, 1984) is not a straightfor-
ward extension of the bivariate case. Apart from the
joint autoregressive representation of W in (74) to cal-

culate the conditional GSC from Y to X it is also
needed the projection of Xi+1 only on the past of X
and Z:

Xi+1 =
∞∑
s=0

a(xz)xxs Xi−s + a(xz)xzs Zi−s + ϵ
(xz)
xi+1

Zi+1 =
∞∑
s=0

a(xz)zxs Xi−s + a(xz)zzs Zi−s + ϵ
(xz)
zi+1

(78)

Σ(xz) =

(
Σ

(xz)
xx Σ

(xz)
xz

Σ
(xz)
zx Σ

(xz)
zz

)
. (79)

The conditional GSC (Geweke, 1984) is defined in

the time domain analogously to FY→X (4):

FY→X|Z = ln(
Σ

(xz)
xx

Σ
(xyz)
xx

). (80)

It is straightforward to see that given the form of the

entropy for Gaussian variables (10) and the definition of

the conditional transfer entropy TY→X|Z as discussed

in Sect. 4

FY→X|Z = 2 TY→X|Z . (81)

To derive the spectral representation of FY→X|Z for
simplicity we assume that there is no instantaneous

causality and Σ(xyz) and Σ(xz) are diagonal (see for ex-
ample Ding et al., 2006, for a detailed derivation when
instantaneous correlations exist). We rewrite (78) after
Fourier transforming as:(
ϵ
(xz)
x (ω)

ϵ
(xz)
z (ω)

)
=

(
A

(xz)
xx (ω) A

(xz)
xz (ω)

A
(xz)
zx (ω) A

(xz)
zz (ω)

)(
X(ω)

Z(ω)

)
. (82)

Furthermore we rewrite (74) using the transfer function
H(xyz):X(ω)

Y (ω)
Z(ω)

 = H(xyz)

 ϵ
(xyz)
x (ω)

ϵ
(xyz)
y (ω)

ϵ
(xyz)
z (ω)

 . (83)

Geweke (1984) showed that

FY→X|Z = F
Y ϵ

(xz)
z →ϵ

(xz)
x

. (84)

Accordingly, (82) and (83) are combined to express Y ,

ϵ
(xz)
z and ϵ

(xz)
x in terms of the innovations of the fully

multivariate process: ϵ
(xz)
x (ω)

Y (ω)

ϵ
(xz)
z (ω)

 = GH(xyz)

 ϵ
(xyz)
x (ω)

ϵ
(xyz)
y (ω)

ϵ
(xyz)
z (ω)

 , (85)

where

G =

A
(xz)
xx (ω) 0 A

(xz)
xz (ω)

0 1 0

A
(xz)
zx (ω) 0 A

(xz)
zz (ω)

 . (86)

Considering Q = GH(xyz), the spectrum matrix of Y ,
ϵ
(xz)
z and ϵ

(xz)
x is:

Ŝ(ω) = Q(ω)Σ(xyz)Q∗(ω), (87)

and in particular

S
ϵ
(xz)
x ϵ

(xz)
x

(ω) = |Qxx(ω)|2Σ(xyz)
xx + |Qxy(ω)|2Σ(xyz)

yy

+|Qxz(ω)|2Σ(xyz)
zz .

(88)

The conditional GSC from Y to X given Z is defined

(Geweke, 1984) as the portion of the power spectrum

associated with ϵ
(xyz)
x , in analogy to (25):

fY→X|Z(ω) = f
Y ϵ

(xz)
z →ϵ

(xz)
x

(ω) = ln
S
ϵ
(xz)
x ϵ

(xz)
x

(ω)

|Qxx(ω)|2Σ(xyz)
xx

.
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(89)

This measure also fulfills the requirements that Geweke
(1982) imposed to the spectral measures. Apart from

the interpretation stated above it is nonnegative and
again the link with the time domain measure analogous
to (19) is fulfilled given the cancelation of the integral

across frequencies of |Qxx(ω)|2, following (49).

6.2 The interpretation of the conditional Geweke
spectral measure of Granger causality

In the same way that Takahashi et al. (2010) indicated
the link of the bivariate GSC to a mutual information
rate, we here want to examine if it is possible to estab-

lish this link for the conditional GSC. In fact it is easy
to see that given its definition (89) the conditional GSC
corresponds to a multiple coherence (Priestley, 1981):

fY→X|Z(ω) =− ln (1− |C(ϵ(xz)x , ϵ(xyz)y ϵ(xyz)z )|2)

=2 I(ϵ(xz)x (ω); ϵ(xyz)y (ω)ϵ(xyz)z (ω)),
(90)

where |C(ϵ
(xz)
x , ϵ

(xyz)
y ϵ

(xyz)
z )|2 is the squared multiple co-

herence. This equality results from the direct applica-
tion of the definition of the squared multiple coher-
ence. For the variables here involved, defining V ≡
(ϵ

(xyz)
y , ϵ

(xyz)
z ), the squared multiple coherence is de-

fined as:

|C(ϵ(xz)x ,V)|2 =
S
ϵ
(xz)
x V

S−1
VV S∗

ϵ
(xz)
x V

S
ϵ
(xz)
x ϵ

(xz)
x

(ω)
, (91)

where SVV is the spectral matrix:

SVV =

(
Σ

(xyz)
yy 0

0 Σ
(xyz)
zz

)
, (92)

and

S
ϵ
(xz)
x V

=
(
QxyΣ

(xyz)
yy , QxzΣ

(xyz)
zz

)
. (93)

These cross-spectra are obtained considering (85) and

the general definition of cross-spectrum, which for two
spectral variables X1(ω), X2(ω) is (Priestley, 1981):

S12dω = E[X1(ω)X
∗
2 (ω)]. (94)

Given the definition of fY→X|Z(ω) in terms of the
squared multiple coherence it is clear that, analogously
to FY→X (55):

FY→X|Z = 2 I(ϵ(xz)ix ; ϵ(xyz)iy ϵ(xyz)iz ). (95)

The identification of the conditional GSC as directly
related to a particular application of a standard well-

known spectral measure, namely the multiple coherence

is useful from a theoretical point of view because it al-

lows us to relate the conditional GSC to a mutual infor-
mation rate. Furthermore, in practice, this connection
is helpful because the properties of the multiple coher-

ence as well as its estimation have been already widely
studied (Priestley, 1981). How this knowledge could be
used to improve the estimation of the bias and confi-

dence intervals for conditional GSC is left for a future
contribution. Also from the perspective of the practi-
cal interpretation of the measure, we see that, like it

occurs for fY→X(ω) in the bivariate case (54), at each
frequency we can express the spectral measure only in
terms of the innovations. It is after integrating across

frequencies that the representation in terms of innova-
tions and in terms of the processes X, Y , and Z are
equivalent. This stresses again the role in the spectral

causal measures of the innovation variables intrinsically
related to the autoregressive representation, which can-
not be interpret in terms of a causal interaction between
the actual observed processes.

6.3 The interpretation of the directed transfer function

The most relevant difference for the iDTF in the multi-

variate case concerns the lack of a relation to GSC like
in the bivariate case (54). This relation relied on the
specific form of Sxx (24) for bivariate processes. For the
multivariate case the DTF is associated with the total

causal effect of one process on another (Eichler, 2006)
and not to the direct causal effect like conditional GSC.
Apart from this difference, analogously to the bivariate

case we have that

I(X(ω); ϵ(xyz)y (ω)) = H(X(ω))−H(X(ω)|ϵ(xyz)y (ω))

= −1

2
ln (1− |iγ(xyz)

xy (ω)|2),

(96)

where given (76)

− ln (1− |iγ(xyz)
xy (ω)|2) = lnSxx(ω)

− ln (|H(xyz)
xx (ω)|2Σ(xyz)

xx + |H(xyz)
xz (ω)|2Σ(xyz)

zz ).
(97)

The connection at each frequency between the two

terms in the r.h.s of (97) with the entropies in (96) is
the same as in the bivariate case. However, when inte-
grating across frequencies, while the term with Sxx(ω)

is related to H(Xi+1|Xi) (38), the integration of second
term on the r.h.s. cannot be expressed in terms of X,
Y , Z in general. This is because this term does not cor-

respond to the spectral matrix of any subgroup of W
and furthermore theorem 4.2 of Rozanov (1967) (49)
does not apply in this case. Accordingly, in the multi-

variate case, not even the integration across frequencies
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of the iDTF can be expressed in terms of the observed

variables X, Y , Z. The equality (Takahashi et al., 2010)

I(Xi; ϵ(xyz)iy ) =
−1

4π

∫ π

−π

ln (1− |iγ(xyz)
xy (ω)|2)dω (98)

analogous to the one of the bivariate case (55), pro-
vides only an expression which involves the innovation
process ϵ

(xyz)
y .

6.4 The interpretation of the partial directed
coherence

The most relevant difference for iPDC in the multivari-
ate case concerns the lack of a relation with the prin-
ciple of Sims non-causality. It has been shown that the

criterion of Sims non-causality is not equivalent to the
criterion of Granger non-causality in the multivariate
case (Florens, 2003). Since the equivalence between a

nonzero partial directed coherence and the existence of
Granger causality (62) is not restricted to the bivari-
ate case (Schelter et al., 2006), it would be contradic-

tory that the link between iPDC and Sims non-causality
holds for the multivariate case.

In particular, analogously to the bivariate case

gY→X(ω) = 2 I(ϵ(xyz)x (ω); η(xyz)y (ω))

= 2(H(η(xyz)y (ω))−H(η(xyz)y (ω)|ϵ(xyz)x (ω)))

= − ln (1− |iπ(xyz)
xy (ω)|2),

(99)

and given (77)

gY→X(ω) = − ln (
|A(xyz)

yy (ω)|2

Σ
(xyz)
yy

+
|A(xyz)

zy (ω)|2

Σ
(xyz)
zz

)

− lnSyy|XZ .

(100)

The connection between the two terms in the r.h.s of

(100) with the entropies in (99) is the same as in the bi-
variate case. Regarding the integration across frequen-
cies, the integration of the term lnSyy|XZ is related

to H(Y i|XiZi), in analogy to (66). Oppositely, the in-
tegration of the other term on the r.h.s. cannot be in
general expressed in terms of the variablesX, Y , and Z,

since theorem 4.2 of Rozanov (1967) is not applicable
for the same reason like for the term in the multivariate
iDTF (97). This implies that we cannot follow the same

procedure that we used in Sect. 5.3 to link iPDC with
Sims non-causality. Accordingly, like it occurs for the
iDTF, in the multivariate case not even after the inte-

gration across frequencies the iPDC can be expressed

in terms of the variables of the observed processes X,

Y , Z. The equality (Takahashi et al., 2010)

I(ϵ(xyz)ix ; η(xyz)iy ) =
−1

4π

∫ π

−π

ln (1− |iπ(xyz)
xy (ω)|2)dω

(101)

analogous to the one of the bivariate case (57), pro-
vides only an expression which involves the innovation
processes ϵ

(xyz)
x and η

(xyz)
y .

7 Discussion

We studied the relation that exists between the formu-
lation of Granger causality in the spectral domain and
the formulation in the more general framework of in-

formation theory. For the bivariate case we derived the
decomposition in the frequency domain (Geweke, 1982)
of the total dependence into causal and instantaneous

dependence terms from the decomposition in the infor-
mation theory framework (Sect. 3). In a nonparametric
way we proved the connection between the measures of

total dependence in the two frameworks showing that
they can be expressed in terms of variables from the ob-
served processes X and Y . These measures are related

to the coherence between X and Y and thus quantify
an important physical property that can be functionally
relevant (Fries, 2005).

In contrast to the total dependence, we showed that

the same type of derivation does not lead to a spectral
representation of the transfer entropy in terms of the
observed processes (Sect. 3). Although our arguments

do not constitute a complete proof of nonexistence we
indicated the impediments that such a spectral repre-
sentation of Granger causality needs to deal with. We

extended these results to the multivariate case in Sect.
4.

To further support the arguments in Sect. 3 and
to complete the picture of the connection between the

spectral and the information theory framework, we ex-
amined for the bivariate case (Sect. 5) and for the mul-
tivariate case (Sect. 6) how the spectral measures re-

lated to Granger causality are connected to informa-
tion theoretic measures when explicitly considering the
parametric autoregressive representation. In this way

we connected bivariate PDC to the generalized criterion
of Sims non-causality and we expressed the conditional
GSC in terms of a multiple coherence.

More generally we showed that the spectral mea-

sures of Granger causality examined are associated with
mutual information rates that involve innovation vari-
ables inherent to the autoregressive representation, and

only after integrating across frequencies they can, some
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of them, be expressed only in terms of the observed pro-

cesses. Although not considered here, our arguments for
the lack of a spectral representation of Granger causal-
ity in terms of the observed processes also hold for other

measures that have been proposed to study causal in-
teractions in the spectral domain. They comprise a vari-
ation to improve the robustness of the estimation of the

Geweke measure for the multivariate case (Chen et al.,
2006), measures for the study of causal interactions be-
tween groups of processes (Guo et al., 2008a; Ladroue

et al., 2009), and to deal with the effect of latent vari-
ables (Guo et al., 2008b).

The lack of a spectral representation of Granger
causality in terms only of variables from the observed
processes indicates that the spectral measures related

to Granger causality should be interpreted consider-
ing explicitly the autoregressive model. The innova-
tion variables are intrinsic to this model and do not

have a physical meaning. This prevents from interpret-
ing the value at each frequency as quantifying the de-
gree to which the causal interactions occur in a given

frequency band. This does not mean that the spectral
measures are not informative about the dynamics re-
sulting from the causal interactions, but one should be

cautious when using them to associate the causal in-
teractions with specific functionally relevant rhythms.
Usually the role played by the innovation processes in

the definition of the measures remains implicit and the
peaks in the Granger causality spectrum are directly in-
terpreted in terms of coherent oscillatory activity that

serves to carry causal influences between the observed
processes associated with different brain regions (e. g.
Bernasconi and König, 1999; Winterhalder et al., 2005;

Bressler et al., 2007).

Considered in terms of the autoregressive represen-

tation the measures have a clear interpretation: for ex-
ample, the GSC and DTF quantify the relative contri-
bution of a particular innovation process to the power

spectrum. Oppositely, for the bivariate case the inter-
pretation in terms of Granger causality only holds as
a condition for the existence of a direct causal interac-

tion, since a zero value of the Granger causality time
domain measure implies the cancelation of the spectral
measures at all frequencies. For the multivariate case

this constraint holds for the conditional GSC and the
PDC, while the DTF is related to the existence of a
total causal effect (Eichler, 2006).

Accepting that the spectral measures should be in-
terpreted considering the autoregressive model in an

explicit way highlights the necessity to validate this
model. This implies that checking the fulfillment of the
linear Gaussian stationary condition is a requirement

for the correct application of the measures. The vali-

dation of the model with the corresponding tests for

stationarity and Gaussianity was discussed in detail
in one of the first applications Bernasconi and König
(1999), but has been discussed with less detail in other

posterior applications to neural data. This validation
is still relevant even if nonparametric calculations are
used (Dhamala et al., 2008; Nedungadi et al., 2009)

for the measures. Only if the autoregressive model is a
good model the spectral measures of Granger causality,
which involve innovation processes, will be meaningful

to characterize the dynamics of the system.

Furthermore, considering the explicit autoregressive
representation helps us to appreciate the sensitivity and
specificity of the measures to different changes in the
properties of the processes. For example, the GSC from

Y to X may change not due to a change in the cou-
pling between the two processes, but simply because
the autocorrelation of X changes. Being aware of which

properties affect the measures is important, for exam-
ple, to compare the value obtained for a particular pair
of regions in two different experimental conditions. This

means that for a better understanding of the processes
and the interactions, it is better to examine not only
directly the spectral measures of Granger causality but

also the individual components of the transfer func-
tions and the power spectra, to identify which prop-
erties change. For example, the bivariate Geweke spec-

tral measure of causality from Y to X corresponds to
the relative contribution to the power spectrum of X
of the innovation process associated with X in the bi-

variate autoregressive process. Therefore, displaying to-
gether with the Granger causality measure the power
spectrum and the transfer function from the innovation

process associated with X to the actual process X can
help to understand how the predominant rhythms arise
and contribute to the spectral measure.

Altogether our results provide a complete frame-

work that integrates the information theory formulation
of dependence and causality, and the time and spec-
tral domain formulation for linear Gaussian stationary

processes. The relationship between the spectral mea-
sures and mutual information rates involving innova-
tion processes suggests that the parametric autoregres-

sive representation should be considered to interpret
the measures. Here we have not addressed how useful
these measure can be in practice to study causal inter-

actions in the brain. Our results are independent of the
nature of the processes and not specific to study neural
data. However, given that these techniques have been

applied quite often to study the causal interactions be-
tween brain regions, and the especial relevance of the
spectral analysis for the neural data, we believe that

our results are relevant for future analysis of brain con-
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nectivity. In particular, they provide a theoretical back-

ground to appreciate the necessity of validating the au-
toregressive representation, to consider the specificity
of the measures to different parameters in the model

which are not only related to the coupling between the
processes, and to be cautious for interpreting the spec-
tral measures as indicative of causal interactions related

to specific brain rhythms.

Finally, we should note that in this study it was
generally assumed the lack of instantaneous causality
or, equivalently for the linear Gaussian stationary pro-

cesses, that the correlation matrices were diagonal. We
restricted ourselves to this case to avoid the so called
normalization of the correlation matrix (Ding et al.,

2006), which makes more complicated and less intuitive
the derivations without adding new qualitative insights.
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