Skip to main content

Advertisement

Log in

Dominance of local sensory signals over inter-segmental effects in a motor system: experiments

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Legged locomotion requires that information local to one leg, and inter-segmental signals coming from the other legs are processed appropriately to establish a coordinated walking pattern. However, very little is known about the relative importance of local and inter-segmental signals when they converge upon the central pattern generators (CPGs) of different leg joints. We investigated this question on the CPG of the middle leg coxa–trochanter (CTr)-joint of the stick insect which is responsible for lifting and lowering the leg. We used a semi-intact preparation with an intact front leg stepping on a treadmill, and simultaneously stimulated load sensors of the middle leg. We found that middle leg load signals induce bursts in the middle leg depressor motoneurons (MNs). The same local load signals could also elicit rhythmic activity in the CPG of the middle leg CTr-joint when the stimulation of middle leg load sensors coincided with front leg stepping. However, the influence of front leg stepping was generally weak such that front leg stepping alone was only rarely accompanied by switching between middle leg levator and depressor MN activity. We therefore conclude that the impact of the local sensory signals on the levator–depressor motor system is stronger than the inter-segmental influence through front leg stepping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akay T, Büschges A (2006) Load signals assist the generation of movement-dependent reflex reversal in the femur-tibia joint of stick insects. J Neurophysiol 96: 3532–3537

    Article  PubMed  Google Scholar 

  • Akay T, Bässler U, Gerharz P, Büschges A (2001) The role of sensory signals from the insect coxa-trochanteral joint in controlling motor activity of the femur-tibia joint. J Neurophysiol 85: 594–604

    PubMed  CAS  Google Scholar 

  • Akay T, Haehn S, Schmitz J, Büschges A (2004) Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg. J Neurophysiol 92: 42–51

    Article  PubMed  Google Scholar 

  • Akay T, Ludwar BCh, Göritz ML, Schmitz J, Büschges A (2007) Segment specificity of load signal processing depends on walking direction in the stick insect leg muscle control system. J Neurosci 27: 3285–3294

    Article  PubMed  CAS  Google Scholar 

  • Bässler U (1983) Neural basis of elementary behavior in stick insects. Studies of brain function, vol 10. Springer, Berlin

    Book  Google Scholar 

  • Bässler U (1987) Timing and shaping influences on the motor output for walking in stick insects. Biol Cybern 55: 397–401

    Article  Google Scholar 

  • Bässler U (1993) The walking and searching pattern of stick insects—a modular system composed of reflex chains and endogenous oscillators. Biol Cybern 9: 305–317

    Article  Google Scholar 

  • Borgmann A, Scharstein H, Büschges A (2007) Intersegmental coordination: influence of a single walking leg on the neighboring segments in the stick insect walking system. J Neurophysiol 98: 1685–1696

    Article  PubMed  Google Scholar 

  • Borgmann A, Hooper SL, Büschges A (2009) Sensory feedback induced by front leg stepping entrains the activity of central pattern generators in caudal segments of the stick insect walking system. J Neurosci 29: 2972–2983

    Article  PubMed  CAS  Google Scholar 

  • Brunner von Wattenwyl K (1907) Die Insektenfamilie der Phasmiden, vol 2. Wilhelm Engelmann, Leipzig

    Google Scholar 

  • Büschges A (2005) Sensory control and organization of neural networks mediating coordination of multisegmental organs for locomotion. J Neurophysiol 93: 1127–1135

    Article  PubMed  Google Scholar 

  • Büschges A, Gruhn M (2008) Mechanosensory feedback in walking: from joint control to locomotor patterns. Adv Insect Physiol 34: 193–230

    Article  Google Scholar 

  • Büschges A, Manira AE (1998) Sensory pathways and their modulation in the control of locomotion. Curr Opin Neurobiol 8: 733–739

    Article  PubMed  Google Scholar 

  • Büschges A, Schmitz J, Bässler U (1995) Rhythmic patterns in the thoracic nerve cord of the stick insect induced by pilocarpine. J Exp Biol 198: 435–456

    Google Scholar 

  • Büschges A, Akay T, Gabriel JP, Schmidt J (2008) Organizing network action for locomotion: insights from studying insect walking. Brain Res Rev 57: 162–171

    Article  PubMed  Google Scholar 

  • Cangiano L, Grillner S (2005) Mechanisms of rhythm generation in a spinal locomotor network deprived of crossed connections: the lamprey hemicord. J Neurosci 25: 923–935

    Article  PubMed  CAS  Google Scholar 

  • Cattaert D, Barthe JY, Neil DM, Clarac F (1992) Remote control of the swimmeret central pattern generator in crayfish (Procambarus clarkii and Pacifastacus leniusculus): effect of a walking leg proprioceptor. J Exp Biol 169: 181–206

    Google Scholar 

  • Cheng J, Stein RB, Jovanovic K, Yoshida K, Bennett DJ, Han Y (1998) Identification, localization, and the modulation of neural networks for walking in the mudpuppy (Necturus maculates) spinal cord. J Neurosci 18: 4295–4304

    PubMed  CAS  Google Scholar 

  • Clarac F, Cattaert D, Le Ray D (2000) Central control components of a ’simple’ stretch reflex. Trends Neurosci 23: 199–208

    Article  PubMed  CAS  Google Scholar 

  • Cowley KC, Schmidt BJ (1995) Effects of inhibitory amino acid antagonists on reciprocal inhibitory interactions during rhythmic motor activity in the in vitro neonatal rat spinal cord. J Neurophysiol 74: 1109–1117

    PubMed  CAS  Google Scholar 

  • Cruse H (1990) What mechanisms coordinate leg movement in walking arthropods?. Trends Neurosci 13: 15–21

    Article  PubMed  CAS  Google Scholar 

  • Cruse H, Bartling C, Cymbalyuk G, Dean J, Dreifert M (1995) A modular artificial neural net for controlling a six-legged walking system. Biol Cybern 72: 421–430

    Article  PubMed  CAS  Google Scholar 

  • Daun-Gruhn S (2011) A mathematical modeling study of inter-segmental coordination during stick insect walking. J Comput Neurosci 30: 255–278

    Article  PubMed  Google Scholar 

  • Daun-Gruhn S, Toth TI (2011) An inter-segmental network model and its use in elucidating gait-switches in the stick insect. J Comput Neurosci 31(1): 43–60. doi:10.1007/10827-010-0300-1

    Article  PubMed  Google Scholar 

  • Daun-Gruhn S, Toth TI, Borgmann A (2012) Dominance of local sensory signals over inter-segmental effects in a motor system—Modeling studies. Submitted

  • Delcomyn F (1991) Activity and directional sensitivity of leg campaniform sensilla in the stick insect. J Comp Physiol 168: 113–119

    Article  CAS  Google Scholar 

  • Di Prisco GV, Pearlstein E, Robitaille R, Dubuc R (1997) Role of sensory-evoked NMDA plateau potentials in the initiation of locomotion. Science 278: 1122–1125

    Article  PubMed  CAS  Google Scholar 

  • Dürr V, Schmitz J, Cruse H (2004) Behavior-based modeling of hexapod locomotion: linking biology and technical application. Arthropod Struct Dev 33: 237–250

    Article  PubMed  Google Scholar 

  • Duysens J, Clarac F, Cruse H (2000) Load-regulating mechanisms in gait and posture: comparative aspects. Physiol Rev 80(1): 83–133

    PubMed  CAS  Google Scholar 

  • Eaton RC, Lee RK, Foreman MB (2001) The Mauthner cell and other identified neurons of the brainstem escape network of fish. Prog Neurobiol 63: 467–485

    Article  PubMed  CAS  Google Scholar 

  • Ekeberg O, Blümel M, Büschges A (2004) Dynamic simulation of insect walking. Athropod Struct Dev 33: 287–300

    Article  Google Scholar 

  • Fischer H, Schmidt J, Haas R, Büschges A (2001) Pattern generation for walking and searching movements of a stick insect leg. I. Coordination of motor activity. J Neurophysiol 85: 341–353

    PubMed  CAS  Google Scholar 

  • Frost WN, Katz PS (1996) Single neuron control over a complex motor program. Proc Natl Acad Sci USA 93: 422–426

    Article  PubMed  CAS  Google Scholar 

  • Gabriel JP, Scharstein H, Schmidt J, Büschges A (2003) Control of flexor motoneuron activity during single leg walking of the stick insect on an electronically controlled treadwheel. J Neurobiol 56: 237–251

    Article  PubMed  Google Scholar 

  • Graham D (1985) Pattern and control of walking in insects. Adv Insect Physiol 18: 31–140

    Article  Google Scholar 

  • Grillner S (1981) Control of locomotion in bipeds, tetrapods, and fish. In: Brookhart JM, Mountcastle VB (eds) Handbook of physiology—the nervous system II. American Physiological Society, Bethesda, pp 1179–1236

    Google Scholar 

  • Grillner S, Wallen P (2002) Ion channels of importance for the locomotor pattern generation in the lamprey brainstem-spinal cord. J Physiol 533: 23–30

    Article  Google Scholar 

  • Grillner S, Zangger P (1979) On the central generation of locomotion in the low spinal cat. Exp Brain Res 34: 241–261

    Article  PubMed  CAS  Google Scholar 

  • Hess D, Büschges A (1999) Role of proprioceptive signals from an insect femur-tibia joint in patterning motoneuronal activity of an adjacent leg joint. J Neurophysiol 81: 1856–1865

    PubMed  CAS  Google Scholar 

  • Hofmann T, Bässler U (1982) Anatomy and physiology of trochanteral campaniform sensilla in the stick insect, Cuniculina impigra. Physiol Entomol 7: 413–426

    Article  Google Scholar 

  • Kremer E, Lev-Tov A (1997) Localization of the spinal network associated with generation of hindlimb locomotion in the neonatal rat and organization of its transverse coupling system. J Neurophysiol 77: 1155–1170

    PubMed  CAS  Google Scholar 

  • Ludwar BCh, Göritz ML, Schmidt J (2005) Intersegmental coordination of walking movements in stick insects. J Neurophysiol 93: 1255–1265

    Article  PubMed  Google Scholar 

  • Marchetti C, Beato M, Nistri A (2001) Alternating rhythmic activity induced by dorsal root stimulation in the neonatal rat spinal cord in vitro. J Physiol 530: 105–112

    Article  PubMed  CAS  Google Scholar 

  • Marquardt F (1940) Beiträge zur Anatomie der Muskulatur und der peripheren Nerven von Carausius (Dixippus) morosus BR. Zool Jahrbücher Abt Anat 66: 63–128

    Google Scholar 

  • Noah JA, Quimby L, Frazier SF, Zill SN (2004) Sensing the effect of body load in legs: responses of tibial campaniform sensilla to forces applied to the thorax in freely standing cockroaches. J Comp Physiol A 190: 201–215

    Article  CAS  Google Scholar 

  • Orlovsky GN, Deliagina T, Grillner S (1999) Neuronal control of locomotion: from mollusc to man. Oxford University Press, New York

    Google Scholar 

  • Pearson KG (2000) Plasticity of neuronal networks in the spinal cord: modifications in response to altered sensory output. Prog Brain Res 128: 61–70

    Article  PubMed  CAS  Google Scholar 

  • Pearson KG (2004) Generating the walking gait: role of sensory feedback. Prog Brain Res 143: 123–129

    Article  PubMed  Google Scholar 

  • Pratt CA (1995) Evidence of positive force feedback among hindlimb extensors in the intact standing cat. J Neurophysiol 73: 2578–2583

    PubMed  CAS  Google Scholar 

  • Quimby LA, Amer AS, Zill SN (2006) Common motor mechanisms support body load in serially homologous legs of cockroaches in posture and walking. J Comp Physiol A 192: 247–266

    Article  Google Scholar 

  • Ridgel AL, Frazier SF, DiCaprio RA, Zill SN (1999) Active signaling of leg loading and unloading in the cockroach. J Neurophysiol 81: 1432–1437

    PubMed  CAS  Google Scholar 

  • Rosenbaum P, Wosnitza A, Büschges A, Gruhn M (2010) Activity patterns and timing of muscle activity in the forward walking and backward walking stick insect Carausius morosus. J Neurophysiol 104: 1681–1695

    Article  PubMed  Google Scholar 

  • Schmitz J (1993) Load-compensating reactions in the proximal leg joints of stick insects during standing and walking. J Exp Biol 183: 15–33

    Google Scholar 

  • Schmitz J, Stein W (2000) Convergence of load and movement information on leg motoneurons in insects. J Neurobiol 43: 424–436

    Article  Google Scholar 

  • Schmitz J, Delcomyn F, Büschges A (1991) Oil and hook electrodes for en passant recording from small nerves. In: Methods in neurosciences, vol 4, pp 266–278

  • Stein PSG, Victor JC, Field EC, Currie SN (1995) Bilateral control of hindlimb scratching in the spinal turtle: contralateral spinal circuitry contributes to the normal ipsilateral motor pattern of fictive rostral scratching. J Neurosci 15: 4343–4355

    PubMed  CAS  Google Scholar 

  • Soffe SR (1989) Roles of glycinergic inhibition and N-methyl-d-aspartate receptor mediated excitation in the locomotor rhythmicity of one half of the Xenopus embryo central nervous system. Eur J Neurosci 1: 561–571

    Article  PubMed  Google Scholar 

  • von Twickel A, Büschges A, Pasemann F (2011) Deriving neural network controllers from neuro-biological data: implementation of a single-leg stick insect controller. Biol Cybern 104(1–2): 95–119

    Article  Google Scholar 

  • Weidler DJ, Diecke FP (1969) The role of cations in conduction in the central nervous system of the herbivorous insect Carausius morosus. Vergl Physiol 64: 372–399

    Article  Google Scholar 

  • Whelan PJ, Hiebert GW, Pearson KG (1995) Plasticity of the extensor group I pathway controlling the stance to swing transition in the cat. J Neurophysiol 74: 2782–2787

    PubMed  CAS  Google Scholar 

  • Zill SN, Schmitz J, Büschges A (2004) Load sensing and control of posture and locomotion. Arthropod Struct Dev 33: 273–286

    Article  PubMed  Google Scholar 

  • Zill SN, Keller BR, Duke ER (2009) Sensory signals of unloading in one leg follows stance onset in another leg: transfer of load and emergent coordination in cockroach walking. J Neurophysiol 101: 2297–2304

    Article  PubMed  Google Scholar 

  • Zill SN, Büschges A, Schmitz J (2011) Encoding of force increases and decreases by tibial campaniform sensilla in the stick insect, Carausius morosus. J Comp Physiol A 197(8): 851–867

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anke Borgmann.

Additional information

Silvia Daun-Gruhn and Ansgar Büschges shared senior authorship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borgmann, A., Toth, T.I., Gruhn, M. et al. Dominance of local sensory signals over inter-segmental effects in a motor system: experiments. Biol Cybern 105, 399–411 (2011). https://doi.org/10.1007/s00422-012-0473-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-012-0473-y

Keywords

Navigation