Skip to main content
Log in

A general linear framework for the comparison and evaluation of models of sensorimotor synchronization

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Sensorimotor synchronization (SMS), the temporal coordination of a rhythmic movement with an external rhythm, has been studied most often in tasks that require tapping along with a metronome. Models of SMS use information about the timing of preceding stimuli and responses to predict when the next response will be made. This article compares the theoretical structure and empirical predictions of four two-parameter models proposed in the literature: Michon (Timing in temporal tracking, Van Gorcum, Assen, 1967), Hary and Moore (Br J Math Stat Psychol 40:109–124, 1987b), Mates (Biol Cybern 70:463–473, 1994a; Biol Cybern 70:475–484, 1994b), and Schulze et al. (Mus Percept 22:461–467, 2005). By embedding these models within a general linear framework, the mathematical equivalence of the Michon, Hary and Moore, and Schulze et al. models is demonstrated. The Mates model, which differs from the other three, is then tested empirically with new data from a tapping experiment in which the metronome alternated between two tempi. The Mates model predictions are found to be invalid for about one-third of the trials, suggesting that at least one of the model’s underlying assumptions is incorrect. The other models cannot be refuted as easily, but they do not predict some features of the data very accurately. Comparison of the models’ predictions in a training/test procedure did not yield any significant differences. The general linear framework introduced here may help in the formulation of new models that make better predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aitken AC (1935) On least squares and linear combinations of observations. Proc Roy Soc Edinburgh 55: 42–48

    Google Scholar 

  • Best RE (2003) Phase-locked loops: design, simulation, and applications. McGraw-Hill, New York

    Google Scholar 

  • Dorf RC (1993) The electrical engineering handbook. CRC Press, Boca Raton

    Google Scholar 

  • Hary D, Moore G (1985) Temporal tracking and synchronization strategies. Hum Neurobiol 4: 73–77

    Article  PubMed  CAS  Google Scholar 

  • Hary D, Moore G (1987a) Synchronizing human movement with an external clock source. Biol Cybern 56: 305–311. doi:10.1007/bf00319511

    Article  PubMed  CAS  Google Scholar 

  • Hary D, Moore G (1987b) On the performance and stability of human metronome-synchronization strategies. Br J Math Stat Psychol 40: 109–124

    Article  PubMed  Google Scholar 

  • Hasan MA, Thaut MH (1999) Autoregressive moving average modeling for finger tapping with an external stimulus. Percept Motor Skills 88: 1331–1346

    PubMed  CAS  Google Scholar 

  • Hastie T, Tibshirani R, Friedman JH (2001) The elements of statistical learning: data mining, inference, and prediction. Springer, New York

    Google Scholar 

  • Kay SM (1993) Fundamentals of statistical signal processing: estimation theory. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Large EW, Jones MR (1999) The dynamics of attending: How we track time-varying events. Psychol Rev 106: 119–159

    Article  Google Scholar 

  • Ljung L (1987) System identification: theory for the user. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Loehr JD, Large EW, Palmer C (2011) Temporal coordination and adaptation to rate change in music performance. J Exp Psychol Hum Percept Perform. doi:10.1037/a0023102

  • Mates J (1994a) A model of synchronization of motor acts to a stimulus sequence. I. Timing and error corrections. Biol Cybern 70: 463–473. doi:10.1007/bf00203239

    Article  PubMed  CAS  Google Scholar 

  • Mates J (1994b) A model of synchronization of motor acts to a stimulus sequence. II. Stability analysis, error estimation and simulations. Biol Cybern 70: 475–484. doi:10.1007/bf00203240

    Article  PubMed  CAS  Google Scholar 

  • McAuley JD, Jones MR (2003) Modeling effects of rhythmic context on perceived duration: a comparison of interval and entrainment approaches to short-interval timing. J Exp Psychol Hum Percept Perform 29: 1102–1125

    Article  PubMed  Google Scholar 

  • Michon JA (1967) Timing in temporal tracking. Van Gorcum, Assen

    Google Scholar 

  • Michon JA, van der Valk NJL (1967) A dynamic model of timing behavior. Acta Psychol 27: 204–212

    Article  CAS  Google Scholar 

  • Pressing J (1998a) Error correction processes in temporal pattern production. J Math Psychol 42: 63–101

    Article  PubMed  Google Scholar 

  • Pressing J (1998b) Referential behavior theory: A framework for multiple perspectives on motor control. In: Piek JP (ed) Motor behavior and human skill: a multidisciplinary approach. Hum Kinetics, Champaign, pp 357–384

    Google Scholar 

  • Pressing J (1999) The referential dynamics of cognition and action. Psychol Rev 106: 714–747

    Article  Google Scholar 

  • Pressing J, Jolley-Rogers G (1997) Spectral properties of human cognition and skill. Biol Cybern 76: 339–347. doi:10.1007/s004220050347

    Article  PubMed  CAS  Google Scholar 

  • Rao CR, Toutenburg H (1999) Linear models: least squares and alternatives. Springer, New York

    Google Scholar 

  • Repp BH (2001a) Phase correction, phase resetting, and phase shifts after subliminal timing perturbations in sensorimotor synchronization. J Exp Psychol Hum Percept Perform 27: 600–621

    Article  PubMed  CAS  Google Scholar 

  • Repp BH (2001b) Processes underlying adaptation to tempo changes in sensorimotor synchronization. Hum Mov Sci 20: 277–312

    Article  PubMed  CAS  Google Scholar 

  • Repp BH (2005) Sensorimotor synchronization: A review of the tapping literature. Psychonom Bullet Rev 12: 969–992. doi:10.3758/bf03206433

    Article  Google Scholar 

  • Repp BH (2008) Perfect phase correction in synchronization with slow auditory sequences. J Motor Behav 40: 363–367

    Article  Google Scholar 

  • Repp BH (2010) Sensorimotor synchronization and perception of timing: Effects of music training and task experience. Hum Mov Sci 29: 200–213

    Article  PubMed  Google Scholar 

  • Repp BH, Keller PE (2004) Adaptation to tempo changes in sensorimotor synchronization: Effects of intention, attention, and awareness. Quart J Exp Psychol 57: 499–521

    Article  Google Scholar 

  • Repp BH, Keller PE (2008) Sensorimotor synchronization with adaptively timed sequences. Hum Mov Sci 27: 423–456

    Article  PubMed  Google Scholar 

  • Repp BH, Keller PE, Jacoby N (2012) Quantifying phase correction in sensorimotor synchronization: empirical comparison of three paradigms. Acta Psychol 139: 281–290

    Article  Google Scholar 

  • Rockafellar RT (1970) Convex analysis. Princeton University Press, Princeton

    Google Scholar 

  • Rudin W (1987) Real and complex analysis. 3rd edn. McGraw-Hill, New York

    Google Scholar 

  • Schulze H-H, Cordes A, Vorberg D (2005) Keeping synchrony while tempo changes: accelerando and ritardando. Mus Percept 22: 461–477

    Article  Google Scholar 

  • Schulze H-H, Vorberg D (2002) Linear phase correction models for synchronization: parameter identification and estimation of parameters. Brain Cog 48: 80–97

    Article  Google Scholar 

  • Semjen A, Schulze H-H, Vorberg D (2000) Timing precision in continuation and synchronization tapping. Psychol Res 63: 137–147. doi:10.1007/pl00008172

    Article  PubMed  CAS  Google Scholar 

  • Thaut MH, Miller RA, Schauer LM (1998a) Multiple synchronization strategies in rhythmic sensorimotor tasks: phase vs period correction. Biol Cybern 79: 241–250. doi:10.1007/s004220050474

    Article  PubMed  CAS  Google Scholar 

  • Thaut MH, Tian B, Azimi-Sadjadi MR (1998b) Rhythmic finger tapping to cosine-wave modulated metronome sequences: evidence of subliminal entrainment. Hum Mov Sci 17: 839–863

    Article  Google Scholar 

  • Torre K, Delignières D (2008) Unraveling the finding of 1/f β noise in self-paced and synchronized tapping: a unifying mechanistic model. Biol Cybern 99: 159–170

    Article  PubMed  Google Scholar 

  • Vapnik VN (1998) Statistical learning theory: adaptive and learning systems for signal processing, communications, and control. Wiley, New York

    Google Scholar 

  • Vorberg D, Schulze H (2002) A two-level timing model for synchronization. J Math Psychol 46: 57–87

    Article  Google Scholar 

  • Vorberg D, Wing A (1996) Modeling variability and dependence in timing. In: Keele S, Heuer H (eds) Handbook of perception and action, vol 2. Academic Press, New York, pp 181–262

    Google Scholar 

  • Wing AM, Kristofferson AB (1973) Response delays and the timing of discrete motor responses. Percept Psychophys 14: 5–12

    Article  Google Scholar 

  • Wing AM, Kristofferson AB (1973) The timing of interresponse intervals. Percept Psychophys 13: 455–460

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nori Jacoby.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacoby, N., Repp, B.H. A general linear framework for the comparison and evaluation of models of sensorimotor synchronization. Biol Cybern 106, 135–154 (2012). https://doi.org/10.1007/s00422-012-0482-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-012-0482-x

Keywords

Navigation