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Abstract

In this work we investigate from a computational perspective the efficiency of
the Willshaw synaptic update rule in the context of familiarity discrimination, a
binary-answer, memory-related task that has been linked through psychophysical
experiments with modified neural activity patterns in the prefrontal and perirhinal
cortex regions. Our motivation for recovering this well-known learning prescrip-
tion is two-fold: first, the switch-like nature of the induced synaptic bonds, as
there is evidence that biological synaptic transitions might occur in a discrete step-
wise fashion. Second, the possibility that in the mammalian brain, unused, silent
synapses might be pruned in the long-term. Besides the usual pattern and network
capacities, we calculate the synaptic capacity of the model, a recently proposed
measure where only the functional subset of synapses is taken into account. We
find that in terms of network capacity, Willshaw learning is strongly affected by
the pattern coding rates, which have to be kept fixed and very low at any time
to achieve a non-zero capacity in the large network limit. The information carried
per functional synapse, however, diverges and is comparable to that of the pattern
association case, even for more realistic moderately low activity levels that are a
function of network size.

Keywords: familiarity memory, Willshaw rule, synaptic capacity, sparse cod-
ing

1 Introduction

Observations of psychophysical and neurophysiological order have brought into attention
the so-called familiarity discrimination or detection task, where tested subjects need
only to recognise once-seen objects without being asked to recollect detailed feature or
context descriptions (Xiang and Brown, 1998, 2004; Yakovlev et al, 2008). From the
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computational perspective, the essential aim is to devise a neural network model that
is biologically plausible up to a certain degree of realism and that is able to explain in
part the seemingly limitless memorising ability of the brain to solve this task (Standing,
1973).

As in previous familiarity memory neural network modelling efforts (Bogacz et al,
2001; Greve et al, 2009; Cortes et al, 2010), the formulation of the task that we consider
involves a set of M patterns

S = {x1, . . . ,xµ, . . .xM}, (1)

that have been presented to the network for learning and that ought to be recognised as
familiar in future presentations, while any other pattern not belonging to S should be
classified as novel. Each of the patterns is a binary vector xµ ∈ {0, 1}m, xµi representing
the (silent-firing) activity of the i-th neuron at a given time frame µ; the task itself
is as well binary, in the sense that we seek to decide if a certain presented pattern x̃
is either familiar or novel. The structure of the network is given at any time by the
m × m connectivity matrix W, where the entry wij denotes the strength of the bond
from presynaptic neuron i to postsynaptic neuron j.

To learn the desired mapping, each neuron should be able to determine at the synapse
level (‘locally’) the network connectivity structure so that in subsequent pattern presen-
tations one can extract from the collective activity of the m neurons the desired novel-
familiar response. The model is then characterised by a local synaptic learning rule and
by a discrimination function. On the one hand, given a pattern xµ that should be mem-
orised, the former determines each synaptic weight solely by inspection of the variables
wij, xi and xj; the latter, given a query pattern x̃ and the structure of the network W,
elicits the binary familiarity response.

We focus on modelling long-term memory, in opposition to palimpsestic working mem-
ory (Parisi, 1986; Amit and Fusi, 1994; Leibold and Kempter, 2008; Barrett and van
Rossum, 2008; Yakovlev et al, 2008), where ‘overwriting’ takes place and the familiarity
signal of past memories decays over time. For long-term familiarity detection, a model
that is capable of storing an extensive number of patterns per synapse has been proposed
(Bogacz et al, 2001) and recently shown to correspond to the optimal linear, local fa-
miliarity learning prescription (Greve et al, 2009). However, the network is only capable
of storing a rather small amount of information per synapse, and the proposed synaptic
update scheme requires maintenance of real-valued synapses over a long period of time.

In our work, we consider as an alternative the binary non-linear Willshaw (or Stein-
buch) prescription (Steinbuch, 1961; Willshaw et al, 1969) in the context of familiarity
discrimination. This learning rule has certain properties that have made it desirable
when applied to the associative memory problem, where it has been extensively analysed
(see, e.g., Willshaw et al, 1969; Palm, 1980; Golomb et al, 1990; Nadal and Toulouse,
1990; Palm and Sommer, 1992; Buckingham and Willshaw, 1992; Brunel, 1994; Graham
and Willshaw, 1995; Sommer and Palm, 1999; Knoblauch et al, 2010); namely, the high
storage capacity attained when the model is correctly parametrised, its simplicity, and
the fact that the generated synaptic matrix W is binary. This last feature is particu-
larly interesting since in cortical regions supporting memory-related tasks the synaptic
transitions may operate in a discrete (few steps) or even in a binary switch-like fashion.
There is accumulating experimental evidence supporting discrete transitions at least in
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the initial phase of long-term potentiation, although it remains unclear whether or not
long-term synaptic efficacies may still have a gradual distribution (Petersen et al, 1998;
Montgomery and Madison, 2004; O’Connor et al, 2005).

Furthermore, an inhibitory variant of the Willshaw rule has just been proposed by
Knoblauch et al (2010), motivated by the possibility of structural plasticity by synaptic
pruning and growth as a support for long-term memory encoding in the adult mam-
malian brain (Chklovskii et al, 2004), alongside well-established synaptic weight change
mechanisms such as long-term potentiation and depression. In the associative case, the
inhibitory Willshaw rule has led to the discovery of new efficient working regimes where
few active synapses can carry a high Shannon information content.

In this article we show in a first step that for medium-sized networks the classical
pattern and Shannon capacities of the Willshaw model are comparable to those of the
real-valued network of Bogacz et al (2001), provided that the patterns exhibit low activity
levels at any time (the so-called sparse coding regime), a fact that has already been
pointed out in the dynamical synapse analysis of Barrett and van Rossum (2008). We
also show that in the limit of large networks m → ∞, the network capacity vanishes
unless the coding rates are extremely low.

In line with the recent observations of Knoblauch et al (2010), we then investigate
alternative parametrisations of the Willshaw model. We find that the high pattern load-
ings associated with the familiarity discrimination task lead to dense potentiation of the
memory matrix, a regime where the inhibitory interpretation of the original Willshaw
model is especially efficient. It is shown that if the low cost of silent synapses (which
might even be pruned in the long-term) is neglected, the inhibitory network is capable
of achieving large synaptic capacities that increase with the number of neurons, under
realistic moderately low coding rates. Finally, we take into consideration the effects of
varying the coding level per pattern; at least when the level follows a binomial distri-
bution, introducing a feedforward inhibitory correction in the discriminator compensates
for the additional signal variability and the system remains qualitatively intact, albeit
operating with lower overall efficiency in the finite-size case.

2 Results

The simplest possible local, non-linear, binary synaptic rule is the well-known Willshaw
prescription (Steinbuch, 1961; Willshaw et al, 1969; Palm, 1980). Here, the weight update
equation is an extreme case of Hebbian learning, where a single coincidental firing activity
at any given time µ (i.e., xµi = 1 and xµj = 1) is sufficient to arise long-term potentiation
at the synaptic contact i→ j. As there is just one potentiation level, each synapse wij is
a binary variable, either at the 0-state (silent synapse) or at the 1-state (present synapse).
After M pattern presentations, wij is given by

wij = min

(
1,

M∑
µ=1

xµi x
µ
j

)
∈ {0, 1}. (2)

Originally proposed in the context of an associative network with one-step (non-
iterative) synchronous retrieval, the 0-1 Hebb rule (2) has been employed as well to embed
patterns in attractor networks with symmetric couplings wij = wji. In this case, if an
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appropriate retrieval strategy is used so as to form large basins of attraction surrounding
the desired fixed points, iteration generally leads to a more robust recall process, in terms
of allowed cue distortion (given by a metric such as the Hamming distance dH(x̃,xµ) ≡∑

i |x
µ
i − x̃i|) as well as in terms of resistance to stochastic synaptic failure, where the wij

may randomly switch states with a certain probability (Golomb et al, 1990; Schwenker
et al, 1996; Sommer and Dayan, 1998).

For familiarity discrimination, there is no need per se to extract the whole pattern xµ

from the network; rather, what one seeks is a prescription to determine a binary (novel-
familiar) answer starting from a cue x̃, given the information stored in the synaptic
connectivity matrix W.

The discriminator proposed by Bogacz et al (2001) and studied in formal memory
models of familiarity (Bogacz and Brown, 2003; Greve et al, 2010), is based on the
quadratic form

H(x) = −α
∑∑

i 6=j

wij(xi − f)(xj − f) ∈ R, (3)

usually referred to as the energy function1 of the network at a given state x, presented in
its mean corrected form (Amit et al, 1987; Bogacz and Brown, 2002; Greve et al, 2009),
where f ≡ m−1E(

∑
i xi) is the coding rate, i.e., the expected fraction of firing units per

pattern. As it has already been pointed out in the previous works, equation 3 has a
network implementation and it is closely related to other measures of familiarity (see,
e.g., the appendix of Greve et al, 2010).

In the proposed discrimination scheme, the desired binary decision is computed by
‘clamping’ into the network state a certain input pattern x̃ and then, without (or before)
the retrieval dynamics takes place, by thresholding the resulting energy, i.e.

D(x̃) = 1[H(x̃)≤Θ] ∈ {0, 1}, (4)

where 1[·] is the binary random variable which is 1 if the argument holds and 0 otherwise.
An appropriate choice of α and Θ should ensure that, given a weight matrix W encoded
according to a certain synaptic learning rule, as many as possible patterns belonging to
S are assigned one of the two decision outcomes (say, one), and all the others to the
opposite class (say, zero).

It has been recently shown by Greve et al (2009) that for such discriminator, the
asymptotically optimal (m → ∞ and a size-dependent load M) local linear synaptic
weight setting when we allow the wij to assume real values is given by the covariance
learning rule (Amit et al, 1987; Tsodyks and Feigel’man, 1988; Dayan and Willshaw,
1991; Palm and Sommer, 1996):

wij ∝
M∑
µ=1

(xµi − f)(xµj − f) ∈ R. (5)

In this article we address the question of how well does the clipped Hebbian rule (2)
fare with a discriminator of the form (4). Specifically, for simplicity we redefine H letting

1As for bipolar patterns and symmetrical networks (wij = wji) with no self-couplings (wii = 0) there
is a strong analogy with the Hamiltonian of the zero-temperature Ising model (Hopfield, 1982; Amit
et al, 1985).
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α = 1, performing the double summation over all i, j, and dropping the mean correction,

H(x) = −
m∑
i=1

m∑
j=1

wijxixj ∈ Z, (6)

recalling that each weight wij is now a 0-1 binary variable.
Following the analysis of the associative Willshaw network carried out by Knoblauch

et al (2010), we proceed by calculating three essential quantities: the maximal number
of patterns Mε that the system can discriminate allowing a certain (known) error level,
the network capacity C (in bits per synaptic contact), and the synaptic capacity CS (in
bits per active synapse). We will then see that the Willshaw model becomes especially
interesting regarding the latter quantity, as a modification to the clipped rule leads to
the activation of a subset of few synapses within the full contact space of order m2.

2.1 Maximal pattern load calculation for low activity levels

The calculation of the maximal pattern load Mε when the average activity is low (f � 1)
can be performed analytically using a series of approximations which have been shown
to be near-exact even for finite networks where m is not large (Palm, 1980; Knoblauch,
2008; Knoblauch et al, 2010).

We consider the two usual simplified binary pattern generation scenarios: first, we
deal with the case where every pattern xµ presented to the network for learning has a
fixed, known a priori activity level |xµ| ≡

∑m
i=1 xi = k as in the analysis of Palm (1980);

later (in section 2.4), we consider patterns where |xµ| is a binomially-distributed random
variable with characteristic probability equal to the coding rate f = k/m, k being again
a fixed known a priori parameter. In this case, although the activity of each pattern is
allowed to vary, by construction the average level is mf = k and all neurons are activated
equally and independently (Buckingham and Willshaw, 1992).

With these statistics at hand we can determine the average weight matrix load,

p1 ≡ E(wij) = P(wij = 1) = 1− P(wij = 0) (7)

= 1− (1− f 2)M = 1− exp(M ln(1− f 2)) (8)

≈ 1− exp(−f 2M). (9)

The approximation assumes that the coding rates are low, i.e., f 2 � 1.
Clearly, as observed when employing the Willshaw rule to solve the associative task,

p1 is a critical quantity: to recover information about the patterns in S one must control
both the cardinality M and the sparseness parameter f so as to avoid p1 = 1. It is useful
to calculate M given p1,

ln(1− p1) ≈ −Mf 2 ⇔M ≈ −f−2 ln(1− p1). (10)

Regarding familiarity detection in general, two types of error may occur: omission
errors (denoted as ‘10’ errors) whenever x̃ ∈ S but the system fails to classify the pattern
as familiar; conversely, commission errors (denoted as ‘01’ errors) when x̃ /∈ S but the
discriminator indicates familiarity. For patterns with fixed (for all µ) activity k and W
set according to the Willshaw rule (2), there is a simple threshold setting which avoids
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omission errors at all, i.e., a Θ such that for all µ we have with probability one D(xµ) = 1.
For a familiar cue x̃ ∈ S corresponding to a certain learned xµ we have

H(x̃) = −
m∑
i=1

m∑
j=1

wijx̃ix̃j (11)

= −
m∑
i=1

m∑
j=1

xµi x
µ
j = −k2 ≡ ΘW , (12)

where the equality from (11) to (12) is valid since wij = 1⇔ ∃µ, xµi = 1 ∧ xµj = 1. In a
sense, ΘW is the familiarity discrimination threshold which corresponds to the classical
Willshaw threshold |x̃| = k for the noise-free associative task (Willshaw et al, 1969; Palm,
1980).

When ΘW is the discrimination threshold and x̃ is a novel pattern, generated according
to the same statistics as the xµ but not presented for learning, if the non-zero wij coincide
with active i, j units enough such that H(x̃) reaches −k2, a commission error will occur.
We can calculate this error probability resorting to p1; assuming that the ‘ones’ in W
were randomly and independently set2,

p01 ≡ P(D(x̃) = 1 | x̃ /∈ S) ≈ P(D(x̃) = 1) (13)

≈ p1
(−ΘW−k)/2 (14)

≈ p1
k2/2, (15)

where the 1/2 correction comes from the symmetry in W. To reach our final expression
(15), we approximate (k2 − k)/2 by the leading term k2/2, although equation 14 would
yield a better approximation to the true value of p01 as the learning rule (2) sets the
diagonal entries of W to one with high probability.

While parametrising a memory device, to ensure the system performs the desired task
correctly it is common to require that the probability of error remains below a certain
bound. In the associative memory literature there are many criteria to enforce a quality
level in the process; usually, the task parameters are found so that the error probability
grows according to some controlled function of network size and the expected pattern
activity level (Palm, 1980; Knoblauch et al, 2010). In the familiarity detection task,
however, as there is no obvious reason to couple the probabilities to the parameters k
and m, it seems reasonable to maintain p01 and p10 below a fixed level (Bogacz and
Brown, 2002).

To keep the error probability p01 lower than a desired level p01ε, we establish the
‘breakdown’ value Mε for the pattern load, as a function of the coding rate f . Using the
binomial approximation given by equation 15, we have

p01 ≈ p01ε ⇔
(
1− exp

(
−f 2M

))k2/2 ≈ p01ε, (16)

yielding, with respect to M ,

M ≈ −m
2

k2
ln
(

1− p01ε
2/k2
)
≡Mε, (17)

2A well-known approximation employed e.g. in the analyses of Willshaw et al (1969); Palm (1980);
Knoblauch et al (2010), which is valid for sparse patterns with activity levels that are sublinear in m
(Knoblauch, 2008).
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which is the pattern capacity we sought. Note that in the large network limit m → ∞,
for any coding rate such that k → ∞, Mε is independent of the fixed error bound p01ε,
as we have

Mε ≈
2m2 ln k

k2
. (18)

Notice how the maximal pattern load is a function of k and m. This result is in
contrast with the real-valued network employing the covariance rule, where the familiarity
discrimination capacity is essentially independent of the pattern activity level (Bogacz
and Brown, 2002). Just as in the analyses of the Willshaw rule for the associative case
(Willshaw et al, 1969; Palm, 1980; Nadal and Toulouse, 1990; Knoblauch et al, 2010),
however, we find a dependence of Mε on k. With the binary synapses induced by Willshaw
learning, it is clear that Mε is maximised in the sparse coding regime f � 1; the actual
optimal activity level parameter kopt is just a function of p01ε and can easily be found
numerically. To gain additional insight on the typical size of kopt, let us obtain an
approximation for the pattern capacity,

Mε ≈
m2

k2
(2 ln k − ln (−2 ln p01ε)) , (19)

which is maximal when

k = exp

(
1

2
(1 + ln (−2 ln p01ε))

)
≈ kopt. (20)

Recalculating Mε with k = kopt, we find that

max
k
Mε ≈ −

1

2e ln p01ε

m2 (21)

≈ 0.18(− ln p01ε)
−1m2. (22)

Just to illustrate the result above, if one sets the desired error rate at p01ε = 0.01, the
obtained breakdown quantity of patterns per synapse becomes about Mε/m

2 ≈ 0.04.
Although ‘greedily’ maximising Mε leads to an extensive quantity of patterns per

synapse, this approach also imposes a heavy coding restriction in the form of quite small
values for k and an optimising expression that does not vary with m, a parametrisation
that is referred to by Knoblauch et al (2010) as the ultra-sparse coding regime. In the
next sections we proceed to richer performance measures where the required underlying
resources and the Shannon information of the task are also taken into account.

2.2 Classical network capacity

The commission error probability p01 can as well be used to calculate the traditional
network capacity measure C in bits per synaptic contact. Here there is a fundamental
difference between the associative and familiarity tasks, as observed by Barrett and van
Rossum (2008); Greve et al (2009): a familiarity discrimination network can only ‘trans-
mit’ at most one bit per learned pattern (the perfect output of D(x̃)), instead of order
k bits per pattern as in the associative case (Palm, 1980; Knoblauch et al, 2010). The
optimal local, linear, additive covariance rule (that induces real-valued synaptic weights)
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can then only obtain 0.057 bits per synapse in the M →∞ errorful regime (Greve et al,
2009), which is rather low when compared to the 0.72 bits per synapse that the same rule
can achieve in the high fidelity pattern association task (Palm and Sommer, 1996).

The analogy at hand is to interpret the familiarity network as a discrete binary chan-
nel which transmits novel and familiar patterns with a certain error probability, and then
calculate the information-theoretic channel capacity, which is the maximal mutual infor-
mation (Shannon, 1948; Cover and Thomas, 2006) normalised by the number of required
synaptic contacts,

C =
I(X1, . . . , Xω, . . . , XΩ;Y 1, . . . , Y ω, . . . , Y Ω)

m2
. (23)

Here Xω ∈ {0, 1} is a binary random variable indicating whether the ω-th presented
pattern is familiar (Xω = 1) or novel (Xω = 0), and Y ω ≡ D(xω) ∈ {0, 1} is the network
output for the ω-th pattern. As in previous work (Barrett and van Rossum, 2008; Greve
et al, 2009), we assume that Ω = 2M patterns are presented and an equal prior probability
of a pattern being familiar or novel P (Xω = 0) = P (Xω = 1) = 1/2. Besides allowing
for a direct fair comparison with the previously obtained results, a prior model with
equiprobable pattern classes maximises the channel capacity when the conditional error
probabilities are equal p10 = p01. In our case, assuming the network is parametrised for
high fidelity, this choice is approximately optimal, as we have p10 = 0 and p01 ≈ 0.

Since we are ‘transmitting’ M learned and M novel patterns independently gener-
ated according to the statistics of section 2.1, the process can be decomposed into 2M
transmissions of a single (say, the ω-th) pattern,

C =
2M

m2
I(Xω;Y ω) (24)

=
2M

m2

[
1− 1

2

(
(1 + p01) ld(1 + p01)− p01 ld p01

)]
, (25)

where p01 is the commission error probability, defined in (15) as a function of the task
parameters m, k, M . The derivation of the single-pattern mutual information is given in
appendix A; a similar calculation has been carried out in the single-neuron information
maximisation framework of Barrett and van Rossum (2008), in a comparison of the
Willshaw rule with more elaborate stochastic synaptic learning.

Unfortunately, unlike the network capacity achieved in the associative case, in our
task C is largest for finite small m (see figure 1), but vanishes when m → ∞, for any
activity level function k that increases with m.

To show this, let us take an arbitrary, finite probability p01ε close to zero, to keep
the discrimination error from growing large; in this case, the bracketed quantity in (25)
becomes approximately one. Then, the capacity becomes

C ≈ −2k−2 ln
(

1− p01ε
2/k2
)
. (26)

In the limit k,m → ∞, we can take Mε from equation 18; the capacity C no longer
depends on the error bound p01ε and is given by

C ≈ 4 ln k

k2
. (27)
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k = ld m

k = m
2�3

k = m

8 10 12 14 16 18 20
ld m

0.01

0.02

0.03

0.04

0.05

0.06

0.07

C

Figure 1: Network capacity C in bits per synaptic contact vs. network size m (in loga-
rithmic scale) for a variety of activity level orders, with pattern load Mε given by (17) at
conditional error rate p01ε = 0.01. For k of order logm the capacity is stable, yet slowly
decreasing towards zero as predicted by the asymptotic analysis. Less sparse patterns
(e.g., when k =

√
m) lead to low capacity even for small m. When the activity level

increases to k = m2/3 the network capacity becomes near-zero for any network size. For
p01ε = 0.01, integer-constrained numerical optimisation of C with respect to k while M
is accordingly set at Mε reveals that the maximum C ≈ 0.11 is achieved when k = 4,
a result which is in agreement with the previous findings of Barrett and van Rossum
(2008).

We have reached a result which describes a qualitative behaviour that is rather differ-
ent from the one found in the typical long-term associative memory task, where capacity
is clearly a function of network size, and an increasing one when the activity level k is of
correct order (Willshaw et al, 1969; Palm, 1980; Dayan and Willshaw, 1991). For a given
fixed probability error p01ε, the capacity C of the Willshaw network for discrimination is
not directly a function of network size m. In our case, for any order of k as an increasing
function of m, in the limit of m → ∞, the capacity of the system collapses, even if the
limit is reached slowly. One can avoid near-zero capacity for large networks only in the
ultra-sparse regime, where k is kept small and constant (e.g., k = 4) and the capacity
remains non-zero (and independent of m).

2.3 Synaptic capacity

Let us consider now the synaptic capacity measure CS (in bits per active synapse) recently
suggested by Knoblauch et al (2010). Here, only functional synapses (i.e., non-zero
synaptic connections wij which play a role in the network task) are considered to count;
silent synapses are either assumed to be wired but metabolically cheap to maintain or
even that the network is endowed with structural plasticity and is able to prune irrelevant
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synapses and rewire new connections as needed (e.g., Poirazi and Mel, 2001; Chklovskii
et al, 2004; Holtmaat and Svoboda, 2009). In the simple pattern statistics we consider,
we obtain CS by renormalising the network capacity C (as given by equation 25) by a
factor F denoting the fraction of functional synapses:

CS =
C

F
=

2M

Fm2
I(Xω;Y ω). (28)

In the classical Willshaw model, the functional elements correspond to the 1-synapses,
the expected fraction of which is p1 (our F , then) as defined in equation 8. However, at
the maximal pattern load Mε, even when the discrimination error bound p01ε is kept low,
most synapses are in the potentiated state. We can see this by rewriting p1 as a function
of p01ε; when M is given by Mε, combining equations (15) and (16), we obtain

p1 ≈ p01ε
2/k2 � 1/2, (29)

which approaches unity as we let k → ∞ and is already larger than 1/2, even for small
p01ε close to zero and low activity k. Once again, in the limit m → ∞, when k is
allowed to vary as a function of m, we have Fm2 → m2, which implies a capacity collapse
CS → C → 0. The differences between CS and C for finite m are also rather small, as
illustrated by figure 2.

k = m

k = ld m

8 10 12 14 16 18 20
ld m

0.85

0.90

0.95

1.00

p1

k = m2�3

Figure 2: The ratio F ≡ C/CS = p1 between network and synaptic capacities for the
Willshaw model, when the error probability bound is p01ε = 0.01, shown for different
activity functions k(m). Since the maximal network capacity for each pair (m, k(m))
is achieved at a higher connectivity level p1 as the coding rate increases, the relative
advantage of considering only functional synapses becomes negligible.

However, parametrisations leading to the so-called dense potentiation regime p1 → 1
(as m→∞) can be quite advantageous in terms of synaptic capacity when the connectiv-
ity matrix W is set according to the inhibitory Willshaw learning rule. In the associative
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task, this rule is able to achieve a synaptic capacity already an order of magnitude larger
than that of the original excitatory model for reasonable pattern activity k and plausible
network size, and arbitrarily higher values in large networks with appropriate activity
levels (Knoblauch et al, 2010). Furthermore, it is one of the limit cases of the optimal
non-linear Bayesian local synaptic update (Knoblauch, 2011).

The inhibitory rule is a subtle variation of equation (2), as the synaptic states set by
the original rule are simply switched: each 0-synapse (encoding non-coincidental activ-
ity) becomes functional as an inhibitory synapse wij = −1; conversely, each 1-synapse
becomes silent wij = 0. We denote the synaptic connectivity matrix of the inhibitory
variant by W̃; after M pattern presentations, the state of synapse i→ j is

w̃ij = wij − 1 = max

(
−1,

M∑
µ=1

xµi x
µ
j − 1

)
, (30)

where wij is the 0-1 weight that would be induced by the excitatory rule.
The energy for a familiar cue x̃ ∈ S is now ΘI ≡ H(x̃) = 0, following the reasoning

which led to the derivation of ΘW . Novel patterns should activate the inhibitory synapses
so that for a given x̃ /∈ S, H(x̃) > 0 = ΘI ; thus, the discrimination function (4) remains
unchanged. The (classical) network capacity of the inhibitory network is

Notice that the excitatory and inhibitory networks are functionally equivalent and
that the (classical) network capacities of both implementations are equal, i.e., C̃ = C.
It is the synaptic capacity C̃S of the inhibitory network the fundamental quantity to
observe, as it is inversely proportional to the fraction F̃ of inhibitory synapses

C/C̃S = P(w̃ij = −1) = 1− p1 = (1− f 2)M (31)

≈ exp(−f 2M) ≡ F̃ , (32)

where we have used approximation (9) for p1.
Alternatively, F̃ can be obtained as a function of the error probability bound p01ε

from (29),

F̃ = 1− p1 ≈ 1− p01ε
2/k2 . (33)

Expanding the network capacity C as in (26) and inserting in (28) the factor F̃ we have
just derived, we arrive at the synaptic capacity of the inhibitory network as a function of
k and p01ε:

C̃S ≈ −
2 ln

(
1− p01ε

2/k2
)

k2 (1− p01ε
2/k2)

, (34)

which is approximately

C̃S ≈ −2 ln k − ln (−2 ln p01ε)

ln p01ε

, (35)

the approximation improving as k increases.
Asymptotically, letting k →∞, the capacity further simplifies to

C̃S ≈ − 2 ln k

ln p01ε

. (36)
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Figure 3: Synaptic capacity C̃S (in bits per synapse) for the inhibitory Willshaw rule in
the same conditions of figure 1, calculated through normalisation of C (cf. equation 25)
by F̃ ≡ 1− p1. In the moderately-sparse coding regime (supra-logarithmic k(m)), which
would otherwise lead to quickly vanishing C and CS in the excitatory Willshaw model,
the inhibitory network is capable of storing more than one bit per functional synapse
already at surprisingly small m. As discussed in the main text, the synaptic capacity
increases with m, as long as k is as well an increasing function of m.

Notice that for large k, the k−2 factor that was hampering the capacity in the excitatory
model has disappeared, both in the finite case (35) and in the large network limit (36).

What is remarkable is that as m → ∞, the synaptic capacity C̃S diverges for any
k that increases with m, assuming that the binomial approximative theory we employ
remains valid. For finite networks and activity levels of order mp with 0 < p < 1, C̃S

already surpasses unity for small- and medium-sized systems (see figure 3). Even for
‘classical’ sparseness where k is of logarithmic size, the capacity increases with network
size (recall that C was always vanishing for any non-constant k) and is always well above
zero.

To picture the difference in capacities, for a network of size m = 106, an error rate
of p01ε = 0.01 and a logarithmic activity level k = lnm ≈ 14, we obtain the network
capacity C ≈ 0.03, while the synaptic capacity is C̃S ≈ 0.70. If the coding level rises to
a more realistic setting such as k =

√
m = 1000, the difference becomes drastic, as we

have C ≈ 2.4× 10−5 and C̃S ≈ 2.6.
There is a major qualitative change when the excitatory rule is replaced by the in-

hibitory one. Since F̃ → 0 as k → ∞, in the limit of large networks the system is
characterised by few synapses carrying a great amount of information. For moderate
sparseness where k is of the form mp, 0 < p < 1, and any setting of p, the synaptic
capacity is (asymptotically)

C̃S ≈ 2p (− ln p01ε)
−1 lnm, (37)

12



which grows with m as fast as the corresponding asymptotic bound for the associative
case (see Table 1, Knoblauch et al, 2010), although here the high fidelity requirement
enforced through the constant p01ε > 0 affects more strongly the obtained capacity. Note
that the maximal pattern load is still large; substituting k for mp in equation 17 we find

M̃ε ≈ −m2−2p ln
(

1− p01ε
2m−2p

)
, (38)

which becomes, in the limit of large networks m→∞,

M̃ε ≈ 2p ·m2−2p · lnm. (39)

When k is of order
√
m, asymptotically we obtain the pattern capacity M̃ε = m lnm,

which is still supralinear in m, while the number of required functional synapses F̃ tends
to zero.

In summary, considering that only functional synapses are relevant for the capacity
measure, the Willshaw-type inhibitory learning rule leads to efficient familiarity discrim-
ination in the limit of synaptic precision (two-state synapses). Interestingly, as in the
pattern association task (Knoblauch et al, 2010), the network achieves high storage ca-
pacities for coding rates of the form f = k/m = mp−1 = m−α, 0 < α < 1, which for most
cortical regions are (arguably) more realistic than the logarithmic levels required by the
excitatory rule. If one accepts the logarithmic coding requirement, then the inhibitory
model offers a pattern load that grows as 2m2 ln lnm (lnm)−2 (see equation 18), still
achieving capacities around one bit per synapse while maintaining high fidelity in the
discriminator output and low anatomical connectivity.

2.4 Corrections for binomially-distributed activity levels

To reach the former results we have assumed that the activity level per pattern was fixed
at exactly k firing neurons, at any given time, i.e., |x̃| = |xµ| = k was kept constant across
all µ. Thus, all patterns were permutations of each other chosen from the

(
m
k

)
possible

configurations as in the analysis of Palm (1980). However, from the biological modelling
perspective it might be more reasonable to take the assembly size as a random variable.
In this section we let |xµ| and |x̃| assume a binomial distribution with characteristic
probability f ≡ k/m, so that the mean activity level is still k/m, but the activity levels
are allowed to vary.

In this case, the treatment is harder since we have to replace the constant parameter
k in the capacity analyses by a random variable. We denote by a star superscript ‘∗’
whenever appropriate to differentiate quantities where |x̃| and |xµ| are random variables.

First, since the patterns have varying activity levels, to recover the ‘no-omission-
errors’ property p10 = 0, we adjust the discrimination threshold for the excitatory network
accordingly on a cue-by-cue basis,

Θ∗W (x̃) = |x̃|2 = Z2, (40)

denoting the binomially-distributed pattern activity level by random variable Z. The
variable threshold could be implemented, alternatively, introducing an external feedfor-
ward inhibition field in the energy read-out, corresponding to a translation in the energy
function,

H∗(x̃) = H(x̃)−Θ∗W (x̃), (41)
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implying H∗(x̃) = 0 for familiar x̃ ∈ S, as in the inhibitory Willshaw network implemen-
tation.

When the weights are set according to the inhibitory rule (30), there is no need for the
explicit external field, as the energy reads immediately H(x̃) = H∗(x̃) and the threshold
can be simply set fixed Θ∗I = ΘI = 0 as before. For the excitatory network, however,
the variable threshold control is fundamental to stabilise the energy, as can be seen for
instance through inspection of the variances of non-translated vs. translated energies
(not shown here).

In the following, pB(x;n, p) =
(
n
x

)
px(1− p)n−x is the probability mass function of the

binomial distribution. We first approximate the conditional error probability by

p∗01 = P(D(x̃) = 1 | x̃ /∈ S) (42)

≈
M−1∑
i=0

pB(i;M − 1, f)×

×
m∑
z=1

pB(z;m, f)
(

1− (1− f)i
)(z2−z)/2

, (43)

which is the expression found by Buckingham and Willshaw (1992) for the associative
task under the same statistical assumptions, now adjusted to the quadratic familiarity
discriminator; the full analysis of the distribution is due to Knoblauch (2008). Notice
that equation 43 is just an approximation, as the analyses of the associative case assume
independence among the columns of W. To compute the exact conditional error proba-
bility of the quadratic discriminator, however, would require analysing a k×k sub-matrix
of W, which is a difficult combinatorial problem we do not solve.

Approximating the exponent and employing the binomial approximation, as in (15),
we obtain

p∗01 ≈
m∑
z=1

pB(z;m, k/m)p1
z2/2 ≥ p1

k2/2, (44)

p1 being the expected matrix load as given by (8). Notice that in general, as expected
and as in the case of the covariance rule (Bogacz and Brown, 2002; Greve et al, 2009),
the error probability is never smaller than when the activity level is kept constant.

It is hard to obtain the pattern load M∗ as a function of p∗01 without writing the
summation in (44) in closed-form, which is difficult to accomplish due to the quadratic
exponent. However, we can find numerically the M∗ such that the commission error
probability p∗01 is approximately equal to some arbitrary bound close to zero (say, p01ε =
0.01), from which we compute the corresponding synaptic capacity C̃S∗. Then, to assess
the impact of letting k vary, we can see how the ratio γ ≡ C̃S∗/C̃S evolves as m grows,
for different mean activity levels.

As plotted in figure 4, γ approaches unity as the network size parameter m increases,
and quickly so when the patterns are moderately sparse (k = mp). For small, finite m
there is a rather large factor affecting M∗ that originates in the disorder introduced by the
variability in the activity levels. This factor can be (approximately) as large as 1/5 for k
of logarithmic size but attenuates as m grows. Our numerical analysis strongly suggests
then that the system remains qualitatively intact and the former conclusions drawn for
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Figure 4: The ratio γ = C̃S∗/C̃S between the obtained synaptic capacities (calculated
through normalisation by F̃ of the network capacity of equation 25) in the binomial- and
fixed-activity pattern generation scenarios. Connecting (interpolating) lines are visual
aids; solid markers represent the ratio of capacities computed for actual measured M∗

(binomially-distributed Z) vs. theoretical maximal Mε (fixed z = k) as given by (17).
The pattern load M∗ was found numerically by bisecting search over equation 44 with
the target p∗01 set at p01ε = 0.01. The relative difference between CS∗ and C fades as m
grows and when the expected activity level order k(m) increases.

fixed k should hold, even for finite networks, although the discriminator is subject to a
correcting factor which decreases the capacity of the model.

3 Discussion

If one restricts the model to operate with two-state synapses, a well-known and simple lo-
cal update scheme can offer a surprising familiarity discrimination capacity, provided that
the firing rates are kept low. We have analysed both the original Willshaw rule (Willshaw
et al, 1969) and a variation for inhibitory synapses recently proposed by Knoblauch et al
(2010).

At high pattern loads, the traditional excitatory implementation imposes high con-
nectivity and a heavy coding restriction; we have seen that for large enough networks
the network capacity eventually approaches zero unless the activity levels are kept con-
stant (independent of network size) and very low at all times. For neural populations
of moderate size and low activity levels (e.g., of logarithmic order), one can obtain in
the high-fidelity regime information and pattern capacities that are comparable to those
found for the optimal linear rule. In this case, we find a rather low overall stored informa-
tion content per synapse in comparison to the typical values achieved in the associative
memory task, a fact that has already been discussed by Barrett and van Rossum (2008);
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Greve et al (2009).
Taking into consideration that in the long-term the brain might prune silent synapses

(that play a non-functional role and are mere spatial candidates for future potentiation)
in stable memories and then place synapses in new locations as needed, Knoblauch et al
(2010) suggested the so-called synaptic capacity measure where only functional resources
are taken into account. The critical observation we reach in our work is that the familiarity
detection task parametrisation leads naturally to the dense potentiation regime, even for
logarithmic sparse coding, which explains the large capacities achieved by the inhibitory
Willshaw rule. In this case, we recover the increasing capacity function (with respect to
network size) that is typical of the associative task.

Of course, another question altogether is to locate such structures in the actual central
nervous system, and to ascertain if the less conservative inhibitory rule (where connec-
tions corresponding to previous coincidental activity are depressed and then pruned) is
plausible and if it is actually observed in real synapses. It is worth noting that we have
switched to an inhibitory circuit so that the energy ‘readout’ mechanism (4) could remain
intact, except for a change in the threshold. However, one could consider a sign-reversed
connectivity matrix, i.e., an excitatory network implementation with exactly the same
couplings as the inhibitory one. In this case, the less well-known inhibitory synaptic
plasticity processes would be avoided, but the task would change, as a stronger excita-
tory signal would be elicited in the presence of novel patterns. Such a model could be
appropriate to describe a novelty detection mechanism in regions where stronger excita-
tory activity is observed as a response to non-familiar stimuli. Our analysis should hold,
as only the number (and not the type) of required functional synapses matters for the
synaptic capacity measure we have considered.

Following the previous studies of familiarity detection, our analysis has focused on
simple high-level modelling assumptions that could be refined if the biological implications
require so. For instance, one could consider incorporating well-known features of more
realistic or detailed models, such as stochastic synaptic transmission, arbitrary query
noise, or spiking neurons.
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A Derivation of the mutual information per pattern

For a given pattern transmission described by the true class (novel-familiar) of the pattern
Xω and the network output Y ω, we can define the mutual information I(Xω;Y ω) in
terms of the discriminator entropy I(Y ω) and the conditional entropy I(Y ω | Xω) of the
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discrimination outcome given the correct classification,

I(Xω;Y ω) = I(Y ω)− I(Y ω | Xω). (45)

Let us denote by I(p) = −p ld p − (1 − p) ld(1 − p) the Shannon entropy in bits of a
binary random variable X with P(X = 1) = p and P(X = 0) = 1 − p. Then, we can
write the entropies in (45) with respect to the prior probability p ≡ P (Xω = 1) and the
error probabilities p10 and p01 (Cover and Thomas, 2006), leading to

I(Y ω) = I(p(1− p10) + (1− p)p01) = I(p+ (1− p)p01), (46)

and
I(Y ω | Xω) = pI(p10) + (1− p)I(p01) = (1− p)I(p01), (47)

recalling that p10 = 0 under the threshold setting (11).
Inserting the expanded entropies into expression 45, and substituting p = 1/2 (the

probability of a pattern being familiar), we obtain

I(Xω;Y ω) = I

(
1

2
(1 + p01)

)
− 1

2
I(p01) (48)

= 1− 1

2

(
(1 + p01) ld(1 + p01) + (1− p01) ld(1− p01)

)
− 1

2

(
− p01 ld p01 − (1− p01) ld(1− p01)

)
(49)

= 1− 1

2

(
(1 + p01) ld(1 + p01)− p01 ld p01

)
, (50)

which is the expression presented in the main text (equation 25).
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