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Draft

Abstract

Human interaction partners tend to synchronize their movements during repet-

itive actions such as walking. Research of inter-human coordination in purely

rhythmic action tasks reveals that the observed patterns of interaction are domi-

nated by synchronization effects. Initiated by our finding that human dyads syn-

chronize their arm movements even in a goal-directed action task, we present a

step-wise approach to a model of inter-human movement coordination. In an ex-

periment, the hand trajectories of ten human dyads are recorded. Governed by a

dynamical process of phase synchronization, the participants establish in-phase as

well as anti-phase relations. The emerging relations are successfully reproduced

by the attractor dynamics of coupled phase oscillators inspired by the Kuramoto

model. Three different methods on transforming the motion trajectories into in-

stantaneous phases are investigated and their influence on the model fit to the ex-

perimental data is evaluated. System identification technique allows us to estimate

the model parameters, which are the coupling strength and the frequency detuning

among the dyad. The stability properties of the identified model match the rela-

tions observed in the experimental data. In short, our model predicts the dynamics

of inter-human movement coordination. It can directly be implemented to enrich

human-robot interaction.

1 Introduction

People coordinate their movements in many situations of daily life. This movement co-

ordination can be intrapersonal, e.g. coordination of one’s left with one’s right arm or

interpersonal, i.e. coordination with another person. There is a wide range of actions

that people can do together and for all these actions movements need to be coordinated.

Examples range from handing over objects, manipulating a common workpiece to set-

ting up a table. In order to prevent collisions and injuries in the worst case, the agents

are required to keep certain spatial and temporal relations of their actions. People often

seem to achieve such coordination without much effort in a smooth manner.
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1.1 Synchronization – a ubiquitous feature of human movement

coordination

Coordination often comes about as movement synchronization during repetitive ac-

tion. Synchronization can be understood as the establishment of a bounded temporal

relationship between the interacting entities, which is brought about and sustained by

a convergent dynamical process. Many examples in literature provide evidence for

movement synchronization. When walking in a group, people tend to synchronize

their gait [van Ulzen et al., 2008]. In experiments requiring relatively simple move-

ments, synchronization is found to be a stable pattern in human behavior. Richardson

et al. [2007] introduce a paradigm in which two people are moving next to each other

in rocking chairs. They unintentionally rock in synchrony, although different weights

attached to the chairs manipulate the frequencies at which they would naturally oscil-

late without human effort. Similar behavior is observed in tasks in which people have

to swing handheld pendulums [Richardson et al., 2005] or are merely moving their

legs [Schmidt et al., 1990]. Besides these behavioral effects, synchronization affects

social relationships. It is found that falling into synchrony with somebody else serves a

purpose: it enhances perceptual sensitivity towards each other, fosters cooperative abil-

ities [Valdesolo et al., 2010] and leads to the attribution of more positive characteristics

to the interaction partner [Miles et al., 2009]. All in all synchronization of movements

seems to play an important role in human interactive behavior.

The contribution of this article is a systematic approach to describe human-human

interaction (HHI) in a quantitative way. Our goal is to provide a description that can

be applied directly in human-robot interaction (HRI) for its evaluation. We therefore

address three research questions in this article: First, is movement synchronization in

HHI a phenomenon that also holds in goal-directed tasks? Second, if yes, when does

synchronization between humans emerge during such a task and which strategy is ap-

plied to do so? Third, how can we capture the observed effects in a mathematical

model which is transferable to a robotic agent? The analysis of the experimental data

gathered in our previous study [Lorenz et al., 2011] shows that people also synchronize

their arm movements in a goal-directed task which is characterized by the need for pre-

cise movements. These findings are in line with previous studies on the topic [Schmidt

et al., 1990, Richardson et al., 2005, 2007]. In general, movement synchronization is

found to be a guiding dynamical process which leads to stable coordination patterns in

natural HHI. With our approach, we characterize the emerging patterns and the quality

of coordination by the extent of phase synchronization. Through system identification

based on the experimental data we obtain a parameterized model which is ready for

implementation and evaluation in HRI.

Since modeling of HHI is the central contribution of this article, an overview on

related work towards the exploration and modeling of human movement coordination

is provided in the following.

1.2 Modeling rhythmic movement coordination

Movement synchronization - as a basic principle of human interactive behavior - is in-

vestigated by means of dynamical systems that model interconnected perception-action
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loops and generate dynamical patterns [Schöner and Kelso, 1988, Beek et al., 1995b].

Warren [2006] provides a detailed introduction on behavioral dynamics in this con-

text. Pioneering work on modeling intrapersonal coordination of limbs is conducted by

Haken et al. [1985]. The authors propose a minimal dynamical model of coupled non-

linear oscillators – known as the Haken-Kelso-Bunz (HKB) model – which successfully

reproduces the transition between stable coordination patterns during bimanual finger-

tapping when changing the cycle frequency as the control parameter. The observed

change of attractor basins depending on the extrinsic control parameter is qualitatively

described by a sinusoidal potential function.

Several modifications of the HKB model are proposed. Beek et al. [2002] introduce

two additional oscillators to represent the level of movement generation through the end

effectors while explicitly accounting for the mechanical properties of a human limb.

This neuro-mechanical model should foster the fundamental analysis of the interplay

between the neural and the effector level during purely rhythmic simple movements. In

order to gain deeper insights into the dynamics of human coordination, experimental

paradigms which utilize a human’s periodical input to drive oscillatory mechanical

systems with different eigenfrequencies are applied repeatedly. Schmidt et al. [1993]

employ the task paradigm of swinging pendulums originally introduced by Turvey et al.

[1986]. An extension of the HKB coupling function by a frequency detuning term

similar to the coupling function proposed by Cohen et al. [1982] is found to account

for both the effects of different eigenfrequencies and external forcing frequencies.

Originally developed to model intrapersonal coordination of movements, dynami-

cal models of coupled oscillators are found to qualitatively explain interpersonal coor-

dination as well. While participants had to swing hand-held pendulums, Schmidt and

O’Brien [1997] show the emergence of unintended coordination in a laboratory task.

It is argued that the same mechanisms of dynamical self-organization as observed in

intrapersonal coordination apply. In a subsequent study, Schmidt et al. [1998] com-

pare the characteristics of intended intra- and interpersonal coordination by applying

the same pendulum paradigm. Frequency detuning imposed through different eigen-

frequencies and frequency levels are introduced as control parameters. Depending on

the frequency level and the intended phase relation, the authors obtain the coupling

strength of a local dynamical model similar to Cohen et al. [1982]. The number of

coordination breakdowns, the phase fluctuation and the coupling strength reveal in-

terpersonal coordination to be weaker than intrapersonal coordination. However, the

regression method to identify the coupling strength relies on a-priori knowledge of the

pendulum-wrist system’s frequency detuning, which limits the approach to oscillatory

effector systems.

Fundamental research work on fitting nonlinear dynamic models to trajectories of

human rhythmic movements is conducted by Kay et al. [1987]. Observed functional

relationships between the external driving frequency and the amplitudes and peak ve-

locities of the movements are found to be reproduced well by a mixture of van der Pol

and Rayleigh oscillators with stable parameter fits. The model is fitted to the limit cycle

data in the position-velocity phase plane. In a more general approach, Eisenhammer

et al. [1991] propose a reconstruction method of time series data based on polynomial

dynamical models which are fitted to the vector field of an appropriate state-space rep-

resentation of the data. While also transients of a pair of coupled oscillators can be
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reconstructed from simulated data, the method is rather sensitive to noise and requires

extensive observation of transient regimes to yield stable results, since the whole state-

space region is reconstructed. Inspired by the numerous variations of coupled oscilla-

tors models of rhythmic limb movements, Beek et al. [1995a] systematically analyze

how different components such as linear and nonlinear elastic and friction terms con-

tribute to the composition of rhythmic movement. Jirsa and Kelso [2005] show in their

work on dynamical movement models how the attractor landscape in its state space can

be formed to reproduce a variety of both discrete and rhythmic movement behaviors,

using their so-called excitators. Elementary human movement trajectories in response

to different stimuli are replicated qualitatively by stimulating the respective excitator

model. The authors show that their approach extends to coupled dynamical systems as

well, yet given a certain action task it may require sophisticated design to obtain the

desired features of coordinated movement behavior. The aforementioned approaches

accurately model basic human motor behavior in rhythmic tasks, yet the movement

reproduction and coordination is tightly encoded by the functional state-space repre-

sentation of the oscillator dynamics, making them less flexible in their application to

constrained, goal-directed tasks.

Similar to Beek et al. [2002], de Rugy et al. [2006] propose a neuro-mechanical

unit per agent which employs a cross-coupled pair of self-sustained oscillators. The

intended modes of coordination while swinging pendulums are replicated as well as

the effect of resonance tuning when the pendulums were manipulated individually.

Rocking side-by-side in chairs is introduced in a task paradigm involving whole-body

movements by Richardson et al. [2007]. Analytical results on observed coordination

patterns are also related qualitatively to the features of the HKB model, yet explicit

modeling is not conducted.

Common to the fundamental research work on rhythmic movement coordination

between humans, the exploration and modeling is mostly approached by means of

combined oscillatory task-effector systems, such as hand-held pendulums. However,

little is known about the coordination behavior of humans in more realistic action tasks,

to what extent the fundamental findings and modeling approaches on movement coor-

dination apply, and how the observed effects can be described in a quantitative way.

The remainder of this article is organized as follows: In Sect. 2 we review the de-

sign of our experimental task and outline the pursued modeling approach. The reader

is provided with the methods used for data reduction and analysis in Sect. 3. Analyt-

ical findings, development of the model structure and the parameter identification are

presented in Sect. 4. After discussing the results on dyadic movement coordination in

Sect. 5 we draw our conclusions in Sect. 6.

2 Approach

In this section, a brief description of the experimental task is given. Movement data of

the experiment also described in [Lorenz et al., 2011] are the basis for the investiga-

tion of our research questions. We further provide a sketch of our modeling approach

including the mathematical definition of synchronization we refer to in this article.

4



2.1 Experimental task

The investigation of our questions on human movement synchronization places certain

requirements on the design of an experimental task. We consider the following points

to be relevant for synchronization:

• The task paradigm should integrate goal-directed as well as repetitive actions

which similarly appear in real-life settings. To keep things simple, the task is to

execute a repetitive sequence consisting of a forward and a backward movement

in a closed trajectory, which we call a cycle in the following. Multiple cycles

are to be completed in a continuous manner, which allows synchronization to

emerge among the agents. The forward as well as the backward movement (half-

cycles) are point-to-point arm movements while carrying a tool in hand. This is

where goal-directedness comes into play: the tool (a pen) has to be placed on two

marked positions on a table alternately. Note that the agents perform identical

tasks.

• The topology of workspaces is arranged without overlap of the movement trajec-

tories. This enables the agents to perform in parallel without any interference or

demand for collision avoidance, which could restrict movement synchronization.

• During task execution the agents’ movements might be affected by sensory in-

formation that is available of the other agent’s movements In order to provide

full visual information, the agents are facing each other without any occlusions.

Since they are always able to observe their opponents’ movements as well as

start and target positions, synchronization is made as easy as possible.

The setup of the laboratory task involving the actions of two agents is depicted in Fig. 1.

To investigate how movement synchronization is initialized, the action start off

among the dyad is modulated by triggering it acoustically. Among all possible start

off relations, three conditions are supposed to be capable of being differentiated in

our experimental task. They are picked as follows: 1) both agents are triggered at the

same time (zero-cycle). 2) the second agent is triggered when the first agent has passed

a quarter of the first cycle, i.e. half the distance between start and target (quarter-

cycle). 3) the second agent is triggered when the first agent has passed half of the first

cycle, i.e. reached the target (half-cycle). After the performance of ten cycles a trial is

completed and the agents are triggered to return to their start positions. For details on

the experiment the reader is referred to the appendix.

2.2 Synchronization of coupled dynamical systems

Our goal is to capture the temporal relationship between the dyads’ end effector mo-

tions in our experiment. To that extent we propose a modeling approach based on the

synchronization of coupled dynamical systems.
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Figure 1: Experimental setup with two human agents. Participants are sitting face
to face. The task is to alternately tap with a pen on two assigned points marked
at the table. The action start off is triggered acoustically via headphones. Motion
trajectories of the pens are captured by a visual tracking system

2.2.1 Defining synchronization among coupled oscillators

In this article, we adopt the dynamical systems approach to describe movement syn-

chronization: the emerging coordination patterns are represented by the attractors of

a dynamical system. Thereby attractors denote the regions in the dynamical system’s

state-space to which the system’s trajectories are attracted. In particular, we treat the

observed phenomena of movement coordination in an action task as a synchronization

problem of two coupled oscillators forming a coupled dynamical system, which is in

line with existing modeling approaches [Haken et al., 1985, Rand et al., 1988, Schmidt

et al., 1993]. The general dynamical equations of two limit cycle oscillators that are

mutually coupled are given by

ξ̇1 = F1(ξ1)+G1(ξ1,ξ2) (1)

ξ̇2 = F2(ξ2)+G2(ξ2,ξ1), (2)

where ξi is a vector of variables of any dimension for oscillator i, Fi represents the limit

cycle and Gi is the coupling function that bidirectionally links the oscillators. If the

oscillators are harmonic, we can simply write Fi = ωi and ξi = θi, with the oscillator’s

natural frequency ωi and its phase θi. Depending on the coupling function Gi, the
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Phase synchronization of coupled oscillators

with individual and joint behavioral dynamics

PhasePhase

MotionMotion

Agent 1’s

action task
Agent 2’s

action task

HHI HRI

Action
observation/

generation

Action
coordination

Figure 2: Overview scheme depicting the two-layered model of movement coordina-
tion. Agent 1 and 2 jointly engage in repetitive actions. The observed actions are
transformed to phases in the lower layer. In the upper layer, the action coordination
is governed by the individual and joint behavioral dynamics modeled as coupled
phase oscillators. Dark arrows represent the modeling stage conducted in this arti-
cle (HHI). Light arrows outline the envisaged stage of action generation when the
scheme is deployed to a robotic agent 2 (HRI)

oscillators may interact such, that

|Φn,m(t)|< ε , with Φn,m(t) = nθ1(t)−mθ2(t) (3)

holds, with the generalized phase difference Φn,m(t) and a positive constant ε ∈ R.

Positive constants n,m ∈ N allow to detect synchronization of orders n : m. Thus,

if Φn,m(t) becomes constant or fluctuates within some bounds, Fi are synchronized,

which is also called phase locking [Pikovsky et al., 2001].

Note: Since Φn,m(t) quantifies the interaction in a single variable, it is also called

collective in dynamical systems theory. The dynamics of phase synchronization are

then described by the trajectory Φn,m(t) and its attractors determine the collective be-

havior of the coupled dynamical system.

2.2.2 From coupled oscillators to movement coordination

Following the definition of phase synchronization, the concept of our systematic ap-

proach to model HHI is outlined in Fig. 2. Each of the action tasks 1 and 2 is repre-
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sented by the agent’s end effector positions over time, which we call the motion trajec-

tory in the following. Since the interaction of the coupled oscillators is described by the

evolution of its phases, the transformation between motion trajectories and phases is

required. It provides the phase of an action task, which models one agent’s observation

of the other’s action. If the transformation is bijective, it can also provide the motion

trajectory of a robotic agent and model the generation of actions in HRI, see e.g. Lorenz

et al. [2011] for our experimental setup for investigation of human-robot movement co-

ordination. Within this study, we restrict the investigation of these transformations to

model action observation in HHI.

Note: As indicated in Fig. 2, the agents’ action tasks do not necessarily need to be

identical, as long as the motion trajectories can be transformed to phase representations.

Each agent’s individual behavior regarding the task progress is represented by a

self-sustained phase oscillator with a constant natural frequency. Interaction is mod-

eled through the coupling function, hence temporal coordination patterns as a result of

the agents’ joint behavior are resembled by phase synchronized oscillators. Both the

above transformations as the required analytical tool and the dynamical system model

designed to capture the agents’ interactive behavior are presented in the following.

3 Analytical methods

In this section, we provide a set of analytical tools to capture and characterize move-

ment synchronization between the agents, a prerequisite to the model design. Note

that for reasons of clarity, the presented methods are derived for a single agent unless

otherwise stated. If necessary, subscripts 1,2 are used to indicate correspondence to

agent 1 and 2 respectively. For illustration purposes, parts of the presented methods are

exemplified based on the experimental data.

3.1 Data reduction to the effective task space

The experimental data gathered within this study consist of the agents’ end effector po-

sitions over time, i.e. the motion trajectories expressed in a three-dimensional Cartesian

frame C (see Fig. 3). Data complexity can be reduced to simplify the analysis, if only

the information of the data required for a minimal description of the task is kept. The

three-dimensional motion trajectory of each agent is projected into a one-dimensional

subspace spanned by the vector difference of the respective target and starting point, as

illustrated in Fig. 3. This projection preserves the temporal relation of the agents’ end

effectors regarding the action task, and thus represents the effective task space. Further

analysis is conducted based on the one-dimensional motion trajectory x(t). The move-

ment onset is defined as the instant of time when the difference between the position of

the end effector x and its initial starting position exceeds 5mm for the first time.

3.2 Transforming the motion trajectory to phase

In order to investigate dyadic phase synchronization, we present three methods trans-

forming the motion trajectory x(t) into a phase θ(t). Since we are not only interested
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(a)

(b)
C

Start
Target0

Figure 3: (a) Sample three-dimensional motion trajectory and (b) projected one-
dimensional trajectory x(t) between the agent’s start and target point. The origin 0

of the task space is set such that x(t) is zero-mean

in steady-state synchronization, but also in the potentially transient process leading to

phase synchronization, appropriate techniques have to be able to reflect non-stationary

features of the data into an instantaneous phase.

3.2.1 State-space method

Assuming harmonic or quasi-harmonic movements, a two-dimensional state-space (x, ẋ)
can be defined. It is sufficient to describe the state of a one-dimensional oscillatory sys-

tem. When the motion trajectory is plotted in its state space, the cyclic nature of the

movements becomes obvious, see Fig. 4. The phase of the oscillatory system

θ(t) = arctan

(

nẋ(t)

−nx(t)

)

, (4)

can be extracted from the state-space trajectory, with

nẋ(t) =
ẋ(t)

| ˆ̇x|
and nx(t) =

x(t)

|x̂|

being the normalized velocity and position. The constants ˆ̇x and x̂ denote the extrema of

the velocity and position respectively observed in the motion trajectory, which can be

updated on-line after each half-cycle. In this context, Varlet and Richardson [2011] pro-

vide a benchmark on continuous phase computation using non-stationary, oscillatory

test signals and emphasize the superior performance when half-cycle normalization is

applied. The state normalization provides a phase characteristics widely independent

of the actual physical constraints of human movements, i.e. the peak amplitudes and

velocities.

Note: The state-space method is especially well-suited for real-time analysis as

long as the motion trajectory is quasi-harmonic. For more complex tasks, the state-

space trajectories will differ from simple circular shapes. In such case, the only way to

obtain a meaningful phase with this method is band-pass filtering, which selects only

a single frequency component or feature of the motion trajectory respectively to be

represented in the phase. If the measurements are noisy, low-pass filtering of ẋ may be

required, which introduces an additional phase lag in real-time estimation.
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Figure 4: Normalized state-space trajectory for an experimental trial with ten cycles,
where the normalized velocity is plotted against the normalized position. Trajectories
form a closed curve with an approximately circular shape between movement start
and end. The position x is inverted to obtain a phase θ increasing over time

3.2.2 Spectral method

Comparisons of the spectral signal analysis methods (short-time) Fourier-, Hilbert- and

wavelet-transform show equivalent results due to their formal equivalence when their

filter kernels are parameterized respectively [Bruns, 2004]. In this article, we adopt the

analytic signal concept based on the Hilbert transform for computing a phase [Rosen-

blum and Kurths, 2007]. The Hilbert transform provides the instantaneous phase and

amplitude of the signal1 x(t) via construction of an analytic signal ζ (t), which is a

complex function of time defined as

ζ (t) = x(t)+ jx̃(t) = A(t)e jθ(t), (5)

where x̃(t) is the Hilbert transform of x(t). It is given by

x̃(t) =
1

π
P.V.

∫ ∞

−∞

x(τ)

t − τ
dτ , (6)

where P.V. means that the integral is taken in the sense of the Cauchy principle value.

The instantaneous amplitude A(t) and phase θ(t) of the signal x(t) are uniquely defined

1The motion trajectory x(t) is treated as a signal.
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by (5). Since we focus on the analysis of phase synchronization, we are interested in

the phase only given by

θ(t) = arg(ζ (t)) . (7)

Fourier-spectra of the motion trajectories x captured in our experiment show a single

sharp peak denoting the mean cycle frequency. Thus, the motion trajectories can be

treated as narrow band signals and a meaningful phase can be obtained via the spectral

method.

Note: The spectral method is nonlocal in time due to the infinite integral bounds

in (6). Therefore, its applicability to real-time phase estimation is limited, although it

is a well-suited tool for off-line analysis. Both the state-space and the spectral method

presented above require zero-mean motion trajectories to obtain phases that cover an

angular range of π per half-cycle, i.e. the movement from the starting to the target

point or vice versa respectively.

3.2.3 Hybrid method

Both the state-space and spectral method perform well only for quasi-harmonic motion

trajectories. In our experimental task paradigm, this requirement is fulfilled. How-

ever, repetitive action tasks generally comprise a sequence of heterogeneous action

primitives which compose the overall motion trajectory, such as elementary point-to-

point movements, or even static dwelling periods where the position remains rather

constant. Inspired by the fundamental signal-theoretic idea to capture an oscillation’s

cyclic progress in a continuous instantaneous phase, a novel approach is proposed here

that extends the notion of phase to describe the instantaneous progress of an arbitrary

cyclic action. The goal is to construct an instantaneous, linear phase θ(t) in [0,2π]
from the motion trajectory x(t) previously observed for a single cycle in time t = [0,T ]
with cycle period T . First, the trajectory has to be segmented into a sequence of P

action primitives such that for each primitive p = 1...P an invertible representation

xp(t) = fp(χp) (8)

can be found, where xp(t) approximates the motion trajectory and χp represents the

relative time in p. In a second step, a piecewise continuous phase

θp(t) = Kp f−1
p (xp(t)) (9)

can be obtained, where f−1
p is the inverse of fp and Kp is a factor scaling χp to angular

values. Guided by switching conditions between the primitives which can be derived

from the segmentation, the phase θp(t) of the current primitive is determined by (9)

and accumulated over p in order to obtain a continuous phase θ(t) of the whole motion

trajectory.

In the following, we exemplify the idea of the hybrid method. In Fig. 5, a close-up

of a representative trajectory showing the first cycle is given. To assure that invertible

representations (8) exist, the motion trajectory can be segmented into four primitives

per cycle and parameterized as follows: the forward movement (p = 1) in time Tf (k) ,

the dwell at the target point (p = 2) for Tt(k), the backward movement (p = 3) in Tb(k),
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Figure 5: The first cycle of a representative trajectory with the durations and pa-
rameters used for segmentation. Vertical dashed lines indicate the threshold-based
segmentation into four primitives per cycle. The dwelling periods are considered as
separate action primitives

and the dwell at the starting point (p = 4) for Ts(k), where k denotes the cycle index.

This kind of trajectory segmentation can be performed on-line based on a threshold ∆xth

with respect to the start and target extrema x̂s(k) and x̂t(k), as visualized by horizontal

lines in Fig. 5.

A possible representation (8) for primitive 1 is the minimum jerk model validated

for point-to-point hand movements by Flash and Hogan [1985]. It approximates the

motion trajectory

x1(t) = (x̂t(k)− x̂s(k))g(χ1)+ x̂s(k), (10)

with the fifth-order polynomial

g(χ1) = 6χ5
1 −15χ4

1 +10χ3
1 (11)

minimizing jerk, and χ1 ∈ [0,1] being the relative movement time. In a next step, the

minimum jerk model needs to be inverted, which can be done by finding the real root χ1

of the polynomial (11) in each time step. The phase for primitive 1 can then be written

as

θ1(t) = K1
χ1 − χth

1−2χth

, (12)

with the scaling factor

K1 =
2πTf (1)

T (1)
(13)
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depending on the movement time Tf (1) and the cycle period T (1). Note that the

threshold-based segmentation cuts off the beginning and the end of motion, thus in (12)

the relative time χ1 is re-normalized by a transformation with χth. The value χth is the

real root of (11) at the value ∆xth.

Since the primitive 2 is characterized by dwelling without considerable motion, a

phase representation purely depending on time is proposed

θ2(t) = K2χ2 +θ1, (14)

with the scaling factor

K2 =
2π −θ1

T (1)−Tf (1)
. (15)

Note that here, χ2 is the relative time w.r.t. the primitive entry. The offset θ1 in (14)

accounts for the phase accumulated previously in primitive 1 and enables a contin-

uous switching of the primitives. Due to symmetry of the primitive sequence, the

phases θ3(t) and θ4(t) are calculated analogously to θ1(t) and θ2(t). If the primitive

durations vary between cycles, the phase does not exactly evaluate 2πk after the com-

pletion of cycle k.

Note: Arbitrary complex action sequences can be described on-line with the hybrid

method if a feasible segmentation and hybrid representation of the action primitives

is found. The estimated phase is an indicator of a repetitive task’s relative temporal

progress, which is affected however by the chosen parameterization. The approach can

be enhanced by learning and prediction techniques to improve the estimation perfor-

mance.

3.3 Measuring synchronization

In the following, the analytical tools and requirements to detect and measure synchro-

nization based on the agents’ phases θ1(t) and θ2(t) are presented.

3.3.1 Relating the phases - dyadic phase difference

Synchronization between the agents can be detected when their phases are related to

each other through the generalized phase difference Φn,m(t) given in the definition of

synchronization (3). In general, boundedness of the phase difference can be found

also for different cycle frequencies of the coupled oscillatory system. For example,

one agent performing one cycle while the other completing two cycles can be still

referred to synchronization, which would be called synchronization of order 1:2. The

participants in our experiment were performing at similar cycle frequencies, which is

indicated by the standard deviation SD = 0.12Hz at a mean M = 0.73Hz over all trials.

Thus, the analysis of synchronization can be restricted to the order 1:1 by calculating

the dyadic phase difference

Φ(t) = Φ1,1(t) = θ1(t)−θ2(t). (16)

Note: Since the phase representations in Sec. 3.2 yield angular values defined on

the circle [0,2π], the phase is unwrapped, i.e. 2π-jumps are removed such that Φ ∈ R.
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The time series Φ(t) start at the movement onset of the delayed agent and end after

completion of ten cycles.

3.3.2 Experimental observation of synchronization

In theory, a coupled oscillatory system is synchronized, if its phase difference stays

bounded for all times. However in our experimental setting, we are obliged to apply a

weaker criterion to investigate synchronization due to a limited available observation

length of human movements: a thorough trade-off between capturing a potential pro-

cess of phase convergence and the influence of the participants’ fatigue increasing over

time has to be made. With an observation length of ten cycles chosen in our experi-

ment, we are able to show that the transient process of synchronization is happening in

the first few cycles of the task. The temporal differences between the actions of both

agents at key events, such as the time of target entry are decreasing within the first

three cycles only [see also Lorenz et al., 2011], which makes a length of ten cycles a

reasonable choice.

3.3.3 Quantification with the synchronization index

Numerous approaches on measuring synchronization from time series can be found in

literature, see e.g. Kreuz et al. [2007] for a comprehensive comparison. Since the in-

stantaneous phases represent the oscillatory entities in this article, we follow a common

approach to quantify phase synchronization: given the time series Φ(t) consisting of N

directional observations Φ(t j), directional statistics provides a synchronization index

SI =

∣

∣

∣

∣

∣

1

N

N

∑
j=1

eiΦ(t j)

∣

∣

∣

∣

∣

= 1−CV, (17)

where CV denotes the circular variance of an angular distribution.2 The synchroniza-

tion index SI is the length of the mean resultant vector of the phase difference samples

Φ(t j) transformed into unit vectors in the complex plane.

Note: SI lies in the interval [0,1]. Given a perfectly uniform distribution of phase

differences, it would equal zero. In perfect synchronization it would equal one, which

means that all samples of Φ point to the same direction.

4 Coordination model of the interacting dyad

In this section, we present the steps taken towards a model of interpersonal movement

coordination. Starting with an investigation of the experimental data regarding the

characteristics of movement synchronization, the model structure is developed and the

model parameters are identified.

2the synchronization index SI is also called mean phase coherence.
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Figure 6: How did synchrony evolve? This Figure contains a frequency distributions
(of all trials) of the hand position of person 2 relative to that of person 1 [see also
Lorenz et al., 2011]. The hand positions are one-dimensional positions between the
start (= 0 m) and target (= 0.35 m). The brighter a location in this picture is, the
more often that positional relationship occurred. Relative movements (between the
two participants) show up as lines. Perfect in-phase and anti-phase synchrony would
be straight diagonal lines, see upper right. The pictures show that the participants
tended to synchronize already early in the trial. Data are plotted separately for
the first, third, sixth and ninth cycle. In the zero condition (upper panels), phase
relationships already appear like in-phase and anti-phase relationships in the third
cycle. In the other two conditions (quarter-cycle in the middle panels and half cycle
conditions in the lower panel) roughly the same happens, but there appear to be
slightly stronger and more deviations

4.1 Experimental results

In a first step, we elucidate the temporal process leading to synchronization and the

phase relations emerging among the partners by plotting the data and analyzing the

phase difference.

4.1.1 Patterns of movement synchronization

In our study of human movement behavior in a goal-directed task we found rela-

tions between the movements of dyads which were established over the course of a

trial [Lorenz et al., 2011]. In order to visualize these findings, a frequency distribution

is plotted as a heat map of all movement signals. Here the movement x2 of person 2

is represented as a function of the movement x1 of person 1. For each trial and cy-

cle the actual position of person 2 is calculated as a function of person 1’s position.

The resulting curve is sampled with an underlying grid of 100 × 100 cells and the

number of times each cell in the grid is hit by a curve is determined. Those binned

counts are plotted for each forward and backwards movement separately into a heat

map in which brightness codes frequency of cell hits, see Fig. 6. In these plots, perfect
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in-phase or anti-phase synchrony appear as straight diagonal lines. During in-phase

relation the movements have no phase shift, e.g. if person 1 is in the starting position

at 0m person 2 is there as well. On their way to the target participants are always at the

same point in their trajectory. Thus, when dyads are perfectly in-phase during forward

movements, a line goes from top left to bottom right. During backwards movements–

where the abscissa labeling goes down–the plot shows a straight line from the bottom

left to the top right if the interaction partners are perfectly synchronized. In perfect

anti-phase, this pattern is mirrored horizontally because when one person is at the start

position, the other person is in the target position and vice versa. When participants

are not perfectly synchronized, data appear curved. Note that only the in-phase and

the anti-phase relation are easy to identify in this graphical representation because they

appear as straight lines. Other stable phase relations would show a more complicated

pattern and thus can not be determined as intuitively.

Most importantly, the heat map visualizes that in-phase and anti-phase relationships

are already established early in the trial. During the first cycle, data tend to be curved

for all conditions. After that, movements are quickly adapted, which is depicted by

the curves becoming straighter. Data of the zero-cycle condition shows that people

are already almost perfectly adapted to each other after performing the third cycle.

Straight lines become prevalent indicating in-phase movements. In contrast, during the

half-cycle condition both the in-phase and anti-phase relation are established roughly

equally often until the ninth cycle. This is interesting because one might have expected

that if starting off at the same time mainly leads to in-phase relations, starting off

at opposite positions should mainly lead to anti-phase relations. Roughly the same

result is observed for the quarter-cycle condition. The difference to half-cycle is that in

comparison more curved lines appear during the quarter-cycle condition and constant

phase relations are established later there. This indicates that it is more difficult to

establish a stable in-phase or anti-phase relation when starting off in an odd temporal

ratio.

4.1.2 Characterization of the attractor regimes

In addition to the graphical representation of synchronization in the heat maps, the

analysis of the phase difference allows to further characterize the attractive domains of

the synchronization process.

Any prevalent phase relation can be made visible by histogram representations of

the phase difference time series, see Fig. 7 (a)-(c). Since the attractor regime is char-

acterized by the relative phase relation within the dyad, we define the relative phase

difference

Φr(t) =

{

|Φ(t) mod 2π| , if |Φ(t) mod 2π| ≤ π

2π −|Φ(t) mod 2π| , otherwise.

The data samples of Φr(t) are assigned to 40 equally spaced bins in [0,π] and accumu-

lated over all trials. Distinct peaks at angular values around multiples of π are com-

mon to the histograms of the three conditions zero-cycle, quarter-cycle and half-cycle.

They become even sharper if only the second half of each trial is considered where
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Figure 7: The histograms (a)-(c) of the relative phase difference Φr show clear peaks
at values around 0 and π, which suggest multiples of π as preferred phase relations
or attractors respectively. The heat maps (d)-(f) depict the transient process of
the relative phase difference towards its attractor (ordinate), which is indexed by
the phase angle of the delayed person θi (abscissa). Frequency of the relative phase
difference is coded by brightness. The time series of Φr and θi are generated with
the spectral method and accumulated over all trials in the three conditions

transient processes are nearly completed. Totally uncorrelated phases would cause ap-

proximately uniform distributions, whereas perfectly synchronized phases would result

in sharp vertical lines. The center values of such peaks can thus be treated as features

appropriate for modeling. The width of the peaks is associated with the variance and

the synchronization index (17) respectively.

With a closer look at the distributions, it can be stated that in the zero-cycle con-

dition (Fig. 7a) the participants’ phase difference predominantly stays in one single

regime at Φr = 0, which refers to the in-phase relation. Starting off in-phase means

attaining an in-phase relation in nearly all of the trials. In the quarter-cycle condi-

tion (Fig. 7b), two different attractor regimes become visible: the in-phase attractor

but also an attractor at Φr = π , which refers to the anti-phase relation. Starting off in

quarter-cycle leads to both the in-phase and anti-phase relation, while it seems as if the

latter was preferred. In condition half-cycle (Fig. 7c), the same attractors as in quarter-

cycle appear. Starting off in half-cycle leads idem to both the in-phase and anti-phase

relation.

Note that the histograms only show the prevalent relative phase relations over trials,

which are Φr = 0 and Φr = π . Though two attractors in Fig. 7(b) and (c) can be

clearly identified, it can not be determined from the histograms if spontaneous switches

between them occur within trials. Therefore, we investigate the convergence of the

relative phase difference
∣

∣Φr(t)−Φr

∣

∣ as a function of cycles, where

Φr =
1

N −
⌊

2N
3

⌋

+1

N

∑
j=⌊ 2N

3 ⌋

Φr(t j)

denotes the mean of each time series Φr(t) taken over the last third of the total sam-

ples N of each trial. The distributions in Fig. 7(d)-(f) are nicely aligned around zero
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Figure 8: Actual initial phase differences Φ0 = Φ(t = 0) over trials calculated with
the spectral method for the conditions zero-cycle (zc), quarter-cycle (qc) and half-
cycle (hc). Time t = 0 dentoes the movement onset of the delayed person. Dashed
lines indicate the phase relations triggered by the start off conditions

between cycle 6 and 9 for most of the trials, which illustrates overall convergence to

the preferred attractors. The distributions are scattered between 0 and π up to cycle 6,

as an indication of the process of convergence happening in the first few cycles of in-

teraction. No preferred clusters around π can be detected in these distributions. Thus,

we can conclude that besides the initial convergent process, within-trial switches be-

tween the two preferred attractors rarely take place during the experimental observation

length.

Both the heat map representation and the phase difference distribution provide clear

evidence of synchronization in our goal-directed experimental task. The process of

synchronization is characterized by two attractor points of the relative phase difference,

namely the in-phase and the anti-phase relation.

4.1.3 Initial phase difference

Though in the half-cycle condition the dyads are triggered to start of in the anti-phase

relation, both the anti-phase and the in-phase attractor can be identified in the his-

togram 7(c), with even a prevalence of the latter. For clarification, the actual initial

phase difference of each trial is illustrated in Fig. 8. The distribution shows clusters

for the different conditions, yet under quarter-cycle and half-cycle with an additional

phase delay around π with respect to the phase relation triggered by the respective start

off condition. These delays are mainly caused by the participants’ reaction and dwell

times when engaging jointly in action. Especially in the half-cycle condition, the ac-

tual initial phase differences are often close to the in-phase relation, which explains the

frequently appearing in-phase attractor in the histogram 7(c). Due to the simultaneous
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Figure 9: Synchronization index SI for the conditions zero-cycle, quarter-cycle and
half-cycle averaged over all trials. For comparison, SI is calculated separately for
the phases estimated by the state-space, spectral and hybrid method. The bars
represent standard errors of the means

start off trigger in the zero-cycle condition, the actual initial phase difference is af-

fected less by the delay. In brief, the applied conditions are shown to effectively trigger

a distribution of different initial phase relations, which enables to perform a parameter

estimation based on the response dynamics of the dyads.

Note: In goal-directed tasks, a leadership among the dyad can be defined when the

sign of the phase difference Φ = θ1 −θ2 is evaluated: person 1’s phase θ1 larger than

person 2’s phase θ2 means that person 1 is leading the task by preceding person 2’s

action and vice versa. The symmetry of Φ0 observed in Fig. 8 is due to the initial

trigger of action start off, which is equally often assigned to each of the partners.

4.1.4 Evaluation of the synchronization index

The synchronization index SI given by (17) provides a quantification of synchroniza-

tion in a single number. Based on the definition that a collective remaining constant

over time yields the highest degree of synchronization, the measure penalizes any vari-

ability of the collective including e.g. the transient process when getting synchronized

and also transitions between attractors. Therefore, it has to be considered that the

choice of the variables constituting the system’s collective affects the characteristics of

the measure. When looking at the scores of the synchronization index SI in Fig. 9, the

influence of the method used to estimate the phase variables becomes obvious. A one-

way repeated measures ANOVA was performed to assess the difference between SIs

obtained with the state-space, spectral and hybrid method. As the sphericity criterion

was not met, Greenhouse-Geisser correction was applied. SIs differed quantitatively,

F(1.2,34.9) = 66.78, p < .001, which can be explained by a differing sensitivity of the
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method to the variabilities in the movement profiles. Only the dominating frequency

determines the phase of the spectral method (M = 0.84), which makes it rather in-

sensitive to small, local movement variabilities. In contrast, such variabilities directly

influence the instantaneous phase of both the state-space (M = 0.81) and the hybrid

method (M = 0.77). The inferior score of the hybrid method suggests that the param-

eterization of the minimum jerk model chosen as the primitive representation does not

perfectly match the movement profiles observed in our experiment.

The indexes given in Fig. 9 consider whole trials including the transient process

of synchronization. If the transient process is neglected and the synchronization in-

dex is calculated only on the second half of each trial, similar qualitative results can

be obtained. In condition zero-cycle, the highest index values are achieved on av-

erage. Thus, starting off in zero-cycle enables the partners to reach highest quality

of synchronization. Starting off in quarter-cycle yields lowest values due to a rather

high phase variability within the dyads, which is in agreement with the distribution

Fig. 7(b). Medium index values are attained in half-cycle. The resulting indexes show

similar trends within methods, yet the one-way repeated measures ANOVAs with the

within-subject factor condition (zero-cycle, quarter-cycle, half-cycle) performed for

every method did not reveal any significant differences between start off conditions, all

p> .05. If we interpret the synchronization index as an analytical indication of strength

of the involved attractors, it can not be clearly stated that the attractor strengths of the

in-phase and the anti-phase relation differ in our goal-directed experiment. In contrast,

research work on interpersonal movement synchronization in purely rhythmic tasks

provides evidence of different attractor strengths, i.e. the anti-phase attractor has a

strong tendency to be weaker than the in-phase attractor or even disappears [Schmidt

and O’Brien, 1997, Richardson et al., 2007].

4.2 Modeling approach

The analysis of the phase variables reveals temporal interaction between the partners

which is closely related to the definition of phase synchronization. The emerging syn-

chronization effects can be modeled as a synchronization problem of two mutually

coupled oscillators. In a next step towards the coordination model, we set up an ade-

quate model structure and investigate its relevant properties.

4.2.1 Model of two coupled oscillators

First we recall the general equations of motion of two limit cycle oscillators (1) and (2)

that are mutually coupled. Under the assumption that the coupling functions Gi are

weak and the oscillatory dynamics are harmonic [Kuramoto, 1984], the above equa-

tions can be reduced to a simpler set written in terms of the oscillators’ phase angles θi

as

θ̇1 = ω1 +H1(θ2 −θ1) (18)

θ̇2 = ω2 +H2(θ1 −θ2), (19)

where ωi are the natural frequencies of the oscillators and the coupling functions Hi

depend on the phase difference between the oscillators.
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Note: In our modeling approach the phase θi(t) is assumed to be quasi-harmonic.

Harmonicity is either fulfilled due to the harmonic nature of the movements the phase

is constructed from or it can be achieved by an appropriate phase transformation, e.g.

the hybrid method presented in Section 3.2.3.

4.2.2 Extending the Kuramoto model

Several candidates for the coupling functions Hi in (18), (19) have been proposed in the

context of movement synchronization. One of them is the sinusoidal function proposed

by Rand et al. [1988] which yields the model equations

θ̇1 = ω1 +K sin(θ2 −θ1) (20)

θ̇2 = ω2 +K sin(θ1 −θ2). (21)

It is also known as the classical Kuramoto model [Kuramoto, 1984], where K is the

coupling gain between the oscillators. It is assumed to be isotropic for both oscillators.

We adopt the model of coupled Kuramoto oscillators for the following reasons:

• Despite its simplicity, the observed main effects of synchronization are repli-

cated: The natural frequencies refer to the agents’ individual frequency levels

as an individual behavior, whereas the additive non-linear coupling term allows

synchronization between the agents to emerge.

• Emerging synchronization is explained as an effect of co-adaptation with an

isotropic bidirectional coupling. Directionality of coupling characteristics would

be hard to identify from short-time bivariate data recorded during natural HHI,

since unsynchronized regimes have to be observed extensively [Smirnov and An-

drzejak, 2005].

• The goal-directedness of the task constrains the amplitudes of movements, thus

only the quasi-harmonic phases are considered. The two-degrees-of-freedom

model fosters parameter identification from noisy data.

The phase difference dynamics between the two oscillators are obtained by subtract-

ing (21) from (20) and can be compactly written as

Φ̇ = ∆ω −2K sinΦ, (22)

with Φ̇ = θ̇1 − θ̇2 and the frequency detuning

∆ω = ω1 −ω2 (23)

The analytical results from Sect. 4.1 show that the phase relation between the interact-

ing agents ends up predominantly either in in-phase (Φ = 0) or in anti-phase (Φ = π).

Therefore, we extend the phase difference dynamics (22) by two additional equilibrium

points per period of Φ, which yields the differential equation of the phase difference

Φ̇ = h(Φ) = ∆ω −2K sin(2Φ) (24)
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with the model equations

θ̇1 = ω1 +K sin [2(θ2 −θ1)] (25)

θ̇2 = ω2 +K sin [2(θ1 −θ2)] , (26)

called the extended Kuramoto model in the following.

4.2.3 Stability analysis

Next, the stability of the equilibrium points of the extended Kuramoto model (24) is

investigated. Setting Φ̇ = 0, one obtains

2K sin(2Φe) = ∆ω. (27)

The equilibrium points Φe are then given by the solutions of (27) or graphically repre-

sented, by the points of intersection of the curves 2K sin(2Φ) and ∆ω , see Fig. 10.

Note: Equilibrium points Φe, i.e. solutions of (27) exist, if the parameter set (∆ω,K)
satisfies the inequality

|∆ω|−2 |K|< 0. (28)

Let η = Φ−Φe be a small perturbation away from Φe. In order to analyze the

stability of the equilibrium points, we investigate whether the perturbation grows or

decays. First we derive a differential equation for η given by

η̇ =
d

dt
(Φ−Φe) = Φ̇ = h(Φe +η).

Using Taylor’s expansion and noting that h(Φe) = 0 one gets

η̇ = ηh′(Φe)+O(η2),

where O(η2) gathers quadratically small terms in η . The gradient

h′(Φe) =
d

dΦ
h|Φ=Φe =−4K cos(2Φe) (29)

denotes the attractor strength of Φe. If h′(Φe) 6= 0, the approximation can be written

as

η̇ = ηh′(Φe). (30)

It can be seen from (30) that the perturbation η grows exponentially, i.e. the equilib-

rium Φe is unstable if h′(Φe)> 0 and decays, i.e. Φe is stable if h′(Φe)< 0. The stabil-

ity analysis can be visualized by investigating the dynamics of the vector field on the

abscissa as shown in Fig. 10, where the solid and open dots represent the stable and un-

stable equilibrium points respectively. Two stable and two unstable equilibrium points

exist per period of Φ. The attractor strength h′(Φe) given by (29) depends not only on

the coupling gain K but also on the frequency detuning ∆ω , since it shifts Φe. Grow-

ing/decaying values of ∆ω move the stable equilibrium points in the positive/negative

direction along the abscissa; i.e. the model explains a positive/negative shift of the
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Figure 10: Stability of the equilibrium points of the extended Kuramoto model.
The phase difference between the two oscillators converges close to 0 (in-phase)
or π (anti-phase) depending on the strength of coupling K and the frequency de-
tuning ∆ω

steady-state phase difference by a positive/negative frequency detuning among the

dyad.

Note: The stable equilibrium points around Φ= 0,π have the same attractor strength

and therefore equal stability properties due to the 2π-periodicity of (29). The model

structure is chosen, since the analysis of the data gathered in our experimental paradigm

does not provide clear evidence for attractor switches or different attractor strengths in

our goal-directed task. The extended Kuramoto model can be modified to address dif-

ferent attractor strengths, yielding the phase difference dynamics

Φ̇ = ∆ω −2K sin(2Φ)−2K0 sin(Φ)

with an additional sine term and coupling parameter K0, which is obviously the HKB

model structure extended for different eigenfrequencies [Haken et al., 1985, Fuchs and

Kelso, 1994].

4.2.4 Natural frequencies of the oscillators

Investigation of the relation between the frequency detuning ∆ω and the equilibrium

frequency ωe of the coupled oscillators in the extended Kuramoto model allows us to

derive the natural frequencies ωi, which describe the uncoupled oscillators. In equilib-

rium, we can write

Φ̇ = θ̇1 − θ̇2 = 0,
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which is satisfied for the frequency

ωe = θ̇1 = θ̇2. (31)

The frequency ωe is the common frequency during synchronized regimes and can be

determined through measurement. Plugging (31) into the model equations (25), (26)

and applying (23) yields

ω1,2 = ωe ±
1

2
∆ω.

Thus, ωe is the mean of ω1 and ω2, which is a common property of the Kuramoto

model. The natural frequency ωi predict agent i’s individually preferred cycle fre-

quency, which is assumed to be a constant parameter within the joint action context.

When modeling human motor behavior, the individual cycle frequencies predicted by

the model have to be interpreted carefully; it is known for example that working speeds

differ when humans perform a motor task alone and jointly with others [see e.g. Vesper

et al., 2009].

4.3 Parameter identification

In the following, the requirements and technique to obtain the parameter values (∆ω,K)
of the model structure and the results of the parameter identification are presented.

4.3.1 Observation of the natural response dynamics

A general requirement for a successful parameter identification is the perturbation of

the system and the observation of the system’s response, which can be achieved either

by an externally applied excitation or by an initial perturbation of the system from its

equilibrium. The latter provokes the system’s natural response dynamics; e.g. when

a pendulum is pulled back from its equilibrium state and released in a different initial

state, its natural frequency can be determined by measuring the frequency it swings at.

Since any externally applied excitations such as enforcing frequencies or an imposed

frequency detuning [Schmidt et al., 1998] could hinder natural HHI, we decided not to

actively control the interaction of the partners during our experiment, rather to observe

it. Thus, the experiment can be classified as passive, which includes that parameters of

the systems can not be changed and only bivariate data are available [see also Pikovsky

et al., 2001]. With our experimental design, the idea is to trigger different initial phase

differences Φ0 = Φ(t = 0) (c.f. Fig. 8). The dyad’s natural response to the applied start

off conditions in the experiment serves then for the identification of the parameter sets.

Note: If the frequency detuning ∆ω within the interacting system is known, e.g.

the eigenfrequencies of oscillatory mechanical systems can be controlled, the coupling

strength K could be alternatively identified from the phase difference Φe during equi-

librium Φ̇= 0 observed for different values of ∆ω via the regression method of Schmidt

et al. [1998].
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Figure 11: Comparison of the phase differences Φ(t) analytically derived with
the spectral method and simulated with the parameterized model. The parame-
ters [rad·s−1] of the trial are ∆ω = -0.49 and K = 0.41 at an RMSE = 0.23

4.3.2 Estimation of the model parameters

The model structure which is given by the non-linear dynamical equation (24) and

the time series of the phase difference Φ(t) enables an estimation of the parame-

ters (∆ω,K) for each trial. The estimation problem is solved with the iterative prediction-

error minimization method (PEM), which minimizes an error objective function de-

pending on the simulated model output and the time series data [Ljung, 1999]. A

so-called grey box model which implements (24) is fed into the PEM-algorithm of

MATLAB’s System Identification Toolbox and the initial state of the model is esti-

mated jointly with the parameter set to achieve best fitting. Both the time-series data of

the analytically derived phase difference and the simulated model output after the pa-

rameter estimation are illustrated for a representative trial in Fig. 11. The dynamics of

the trial investigated here are judged to be stable according to (28), hence the simulated

phase difference converges to the attractor point close to π . Possible reasons for the

oscillatory phase fluctuations (c.f. Fig. 11) present in most of the trials are discussed in

Sect. 5.

4.3.3 Results of the parameter estimation

For comparison, the model parameters estimated for phase difference time series ac-

quired with the state-space, spectral and hybrid method are summarized in Table 1.

Since the transformation of motion trajectories to phases is not unique but based on

certain assumptions as introduced in Sec. 3.2, the applied method affects the modeling

results and makes it part of the modeling approach. More than two thirds of the trials

yield parameter sets with stable point attractors of the resulting dynamical system ac-

cording to the stability criterion (28). Thus, it can be stated that the synchronization
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Table 1: Estimated model parameters, RMSE assessing model fit and number of tri-

als Nstable with stable parameter sets. Means are taken over Nvalid = 294 trials. SDs

are taken over dyads. The results [rad·s−1] are presented separately for the state-space,

spectral and hybrid method

Method Mean |K| SD |K| Mean |Ks| Mean ∆ω SD ∆ω Mean RMSE Nstable

State-space 0.29 0.14 0.34 -0.08 0.19 0.41 218

Spectral 0.20 0.05 0.24 -0.06 0.14 0.26 223

Hybrid 0.29 0.11 0.33 -0.09 0.15 0.59 202

effects visible in Fig. 6 and 7 are reproduced by stable parameter sets in a majority of

the trials.

For statistical analysis of the obtained results, one-way repeated measures ANOVAs

with the within-subject factor method (spectral, hybrid, state-space) were performed. In

order to compare the methods, data was averaged over start off conditions. Greenhouse-

Geisser correction was applied when the sphericity criterion was not met. The influence

of the unstable parameter sets on the overall coupling gain is rather small; if only the

trials are considered, in which the partners synchronize according to (28), the cou-

pling gain (denoted with |Ks| in Table 1) is not much higher than |K|. In both cases

a significant main effect between methods is observed, |K|: F(2,18) = 3.87, p < .05,

|Ks|: F(2,18) = 3.88, p < .05. Contrasts show that the spectral method results in the

smallest coupling gain on average compared to both the hybrid, |K|: F(1,9) = 8.37,

p < .05, |Ks|: F(1,9) = 6.09, p < .05, and the state-space method |K|: F(1,9) = 7.15,

p < .05, |Ks|: F(1,9) = 7.50, p < .05, with the latter not being different from each

other. This illustrates that the commonly detected synchronization effects are explained

by a non-zero coupling term, though no instructions are given which actively modulate

the interaction in the experiment.

A mean ∆ω close to zero indicates a rather balanced frequency detuning over all

dyads. No significant differences between methods are found, p > .6. However, a

small negative component of ∆ω points to the trend that the individual cycle frequency

preferred by person 2 is on average slightly higher than person 1’s frequency. The

considerably high SD ∆ω leads to the conclusion that the frequency detuning predicted

by the model is an individually varying parameter.

4.3.4 Evaluation of the model fit

For comparison of the root-mean-square-error of model prediction and measurement (RMSE

in Table 1) a one-way repeated measures ANOVA with the within-subject factor method

(spectral, hybrid, state-space) was performed. Degrees of freedom were corrected with

the Greenhouse-Geisser method. Here, highly significant differences between methods

are observed, F(1.1,9.7) = 28.37, p < .001. Best model fit is achieved by the combi-

nation of the extended Kuramoto model and the spectral method. It differs significantly

from the RMSE obtained with the state-space method, F(1,9) = 167.47, p < .001, or

the hybrid method, F(1,9) = 38.53, p < .001. Furthermore, RMSE is lower with the
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Table 2: Results of the trial-wise regression: R2 represents the percentage of the vari-

ance explained by the model, Nvalid is the number of valid trials which were included

into analysis for the respective condition and Np<.001 list how many times the model fit

is above chance (at p < 0.001)

Method Condition Median R2 Nvalid Np<.001

State-space zero-cycle 0.313 98 98

quarter-cycle 0.994 97 97

half-cycle 0.996 99 99

Spectral zero-cycle 0.350 98 97

quarter-cycle 0.971 97 96

half-cycle 0.998 99 99

Hybrid zero-cycle 0.223 98 98

quarter-cycle 0.904 97 97

half-cycle 0.995 99 99

state-space than with the hybrid approach, F(1,9) = 11.20, p < .01. This is due to

the filtering property of the Hilbert transform, as the frequency at the maximum of the

power spectrum determines the instantaneous frequency and phase respectively. Both

the state-space and hybrid method are applied without any filtering technique and thus

yield a higher phase variability than the spectral method, which is not explained by the

model.

Additionally, the model’s goodness of fit in combination with the three phase es-

timation methods is assessed with the R-square metric (R2), which allows for an esti-

mation of how much variance of the data (in %) are explained by the respective model.

The median values of the trial-wise R2 are summarized in Table 2. In order to find out

how often the variance of the data is explained above chance level, the significance of

each trial’s model fit is tested by calculating the F-ratio. The numbers of significant fits

are reported in Table 2.

5 Discussion

Both the results from data analysis and model synthesis provide evidence for and char-

acterize the emerging synchronization of movements. Treating human dyadic inter-

action in a repetitive, goal-directed task as a synchronization problem with the phase

difference of coupled oscillators as the collective seems to be a valid approach. Its

implications are discussed in the following.

5.1 Performance comparison of the phase transformations

Three different methods on the calculation of instantaneous phases from experimental

movement data are evaluated in this study. Their performance is assessed 1) by look-
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ing at the synchronization index, which penalizes the phase variability and 2) by the

RMSE, which accounts for the residuals after model identification. When comparing

the values of the synchronization index and the RMSE-based model fit, both mea-

sures yield similar performance trends between the methods on phase transformation.

This similarity can be explained by the following fact: the proposed model structure

replicates the dominant process of phase convergence only, and therefore in the model

residuals any additional variance of the collective becomes directly visible, which af-

fects both the RMSE and the synchronization index in the same way. Best performance

results are achieved when the phases are generated by the spectral method. While it

is a powerful tool when it comes to off-line analysis, the spectral method is less suit-

able for on-line application, since a short-time implementation of the Hilbert transform

would be required, at the cost of signal delay. For movement tasks comprised by a

quasi-harmonic action sequence, where a state-space can be defined and its state vari-

ables can be measured, the state-space method is a good alternative, which can be also

deployed on-line. The concept of the hybrid method is superior to both the state-space

and the spectral method, if the phase of arbitrary complex, non-harmonic primitive

sequences is to be estimated on-line. When applied to the experimental data set, the

performance of the hybrid method is inferior to the state-space and the spectral method

in its current implementation. It has to be remarked that task knowledge is encoded by

the mathematical representations (8) and their transitions induced by the segmentation.

Both are not unique but affect the resulting performance of the approach. There are

other representations than the minimum jerk model introduced as an approximation of

the movement primitives in our experiment: e.g. for perfect harmonic movements, re-

sults equivalent to the state-space method could be obtained when the action sequence

is segmented into two movement primitives, each represented by a trigonometric func-

tion. Enhancing the segmentation of the action sequence by predictive parameteriza-

tions as well as improving the primitives’ mathematical representations by estimation

techniques with subsequent evaluations of the hybrid method in complex movement

tasks is a promising way to extend the power of the coordination model.

5.2 Interpretation of the model residuals

The extended Kuramoto model predicts only the dominant component of the collec-

tive’s dynamics by a first-order non-linear dynamical system. The median R2 under

condition zero-cycle is remarkably low regardless of the method. Since the measured

phase difference remains constantly close to the attractor Φ = 0 for most of the zero-

cycle trials, the explanatory power of the extended Kuramoto model in these trials does

not exceed much that of the pure mean value of the measured phase difference. Poten-

tial additional information content might be present in the model residuals. Through

a spectral analysis of the residuals, oscillatory components at frequencies close to the

participants’ cycle frequencies (M = 0.73Hz over all trials) can be discovered in many

of the trials (c.f. Fig. 11), which is in line with the observations made by Schmidt

et al. [1993] during pendulum swinging. These oscillations can be explained by the

following reasons.

First and foremost, the observed phase fluctuations can be artifacts of the phase

estimation. The instantaneous phase of arbitrary oscillatory time series such as human
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movement trajectories can be uniquely determined only over cycles for a discrete event

in the cycle, while the evolution within cycles strongly depends on the reconstruction

method. Neither the movement trajectories of the individuals are purely harmonic nor

the phase estimation techniques achieve perfect harmonic phases. Thus, the state-space

plots are not perfectly circular but slightly distorted, see Fig. 4. Even if we assume

equally distorted state-space plots for both partners, the phase difference Φ(t) will

oscillate at multiples of the cycle frequency for the case Φ(t) 6= 0. In their note on

coordination models, Fuchs and Kelso [1994] show that these phase fluctuations can be

reproduced by the original HKB model comprised by non-harmonic oscillators. Within

our modeling approach, this effect can be accounted for by further development of the

phase estimation techniques with better harmonicity, which is also a prerequisite if

more complex goal-directed tasks should be addressed.

Second, the coupling strength between the agents might not be constant over time

but rather include components depending on the individual phase. This assumption

is backed by the workspace topology of the experimental task investigated here. Since

simultaneous visual attention to one’s own and the opponent’s movement is easier when

getting close to the target area and the partner’s workspace respectively, it might effect

a stronger coupling strength. The integrative role of the visual perception of relative

phase has been shown by Wilson et al. [2005]; it affects the stability of coordination.

5.3 Interpretation of the modeling results

In most of the trials, the participants fall into rhythmic patterns to synchronize as the

effect of an emerging joint behavioral goal, although precision is required as individual

goals for the partners. Since experimental results might be strongly task-dependent,

we put special emphasis on the design of the task paradigm. The experimental setting

is natural in the sense of bearing similarity to repetitive, goal-oriented action tasks.

People are not instructed to synchronize, but only get an instruction required for the

individual task performance, which allowed natural interaction to emerge. Besides the

start off condition, we did not introduce any control variables that artificially modulate

the flow of interaction. This should allow an interpretation of the results in the light of

natural HHI.

As a result of the system identification, values of the parameter set (∆ω,K) are

found per trial. Within our modeling approach, the parameters are assumed to be time-

invariant on a short time scale, i.e. over the course of one experimental trial. The

parameter sets averaged over trials can be treated as behavioral features of the dyads.

However, accidental as well as deliberate parameter variations might be present due to

both environmental influences and intrinsic changes of human behavior.

The frequency detuning ∆ω expresses shifts of the equilibrium points to which the

collective is attracted. It can serve as a measure of discrepancy regarding the agents’

individually desired cycle frequency in the joint action task. Furthermore, hypothetical

natural frequencies of the agents can be determined. Their meaning might extend to

the self-organization of leader and follower roles during movement coordination, which

deserves further investigation in the light of role behavior among the agents.

The coupling gain K quantifies a dyad’s weighing of two potentially competing

goals: just being precise to fulfill the instructed goal versus being synchronized with
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the partner as an additional, voluntary goal. Non-zero mean values of K averaged over

all trials indicate emerging interaction between the partners which leads to the observed

patterns of synchronization. The regression model employed by Schmidt et al. [1998]

to measure coupling strength and the extended Kuramoto model proposed in this paper

are locally identical, hence the resulting coupling from both task paradigms can be

related to each other. The overall mean3 of 2 |K| (0.52rad · s−1) in Table 1 is about

one third of the mean value (1.70rad · s−1) reported by Schmidt et al. [1998] for the

local model coupling strength of (intentional) interpersonal coordination. Since in their

experiments, the participants were instructed to swing pendulums either in in-phase or

anti-phase relation, a coupling stronger than in our setting could be expected.

6 Conclusion

In this article we present a step-wise approach to a model of inter-human movement

coordination. Motion trajectories were recorded in a novel HHI-experiment which

successfully integrates repetitive and goal-directed action. Synchronization is found

to be an essential principle of human movement coordination during goal-directed ac-

tion. The human dyads which participated in our study synchronized their movements.

Governed by a dynamical process they fell into in-phase as well as anti-phase relations

for most of the trials. The emerging relations are successfully replicated by the attrac-

tor dynamics of coupled phase oscillators inspired by the Kuramoto model, which is

an oscillator model described by the evolution of its phases. Three different methods

on transforming the movement trajectories into instantaneous phases are investigated;

closest fitting between experimental data and the model is achieved by the spectral

method, which is well-suited only for the off-line analysis of simple repetitive actions.

While the state-space method extends the phase estimation to on-line application, the

concept of a novel hybrid method is introduced, which allows to derive instantaneous

phases for arbitrary complex action sequences. Using a technique that does not influ-

ence natural HHI, system identification is performed to estimate the model parameters,

which are the coupling strength and the frequency detuning among the dyad. Stable

attractor points resulting from the identified model match the relations observed in the

experimental data.

The presented approach based on coupled phase dynamics facilitates the modeling

of the partners’ interactive behavior even when they are engaged in heterogeneous ac-

tion tasks. The identified model can be readily used to generate the actions of a robotic

agent on-line. In a follow-up study we will deploy the model to an anthropomorphic

robot, in order to answer the question: Does a model of inter-human movement coor-

dination enhance human-robot interaction?

3Values of K have to be doubled for comparison, since K refers to the single agent’s unilateral coupling

in our work.
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Experiment

Participants

In total 20 people (13 male, 7 female) participated in the experiment forming 10 dyads.

They were between 18 and 28 years old (M = 23.5). All were right handed, had normal

or corrected-to-normal vision and were naı̈ve as to the purpose of the experiment. For

participation they were paid 8 ¤ per hour.

Experimental Setup

Participants were sitting face to face at a round table on which four circles were marked

in two different colors, see Fig. 12. Each color was assigned to one person who was

equipped with a marking pen of equal type and size in the respective color. Participants

had to hold the pens in their right hands forming a fist around them with the thumb

pointing upwards. With this it was achieved that the pen was always in a orthogonal

relation to the table surface. We encouraged participants to sit in an upright position

and instructed them to put the left hand on their lap. To reduce tapping sound, pieces

of felt were attached to the pen tips.

During task performance, participants’ hand movements were captured with an

infrared 3D-motion tracking system (PTI VisualEyez II VZ4000) at a sampling rate of

30Hz for acoustical signal triggering and at a sampling rate of 200Hz for data analysis.

LED markers used for motion capturing were attached to the top end of the pen and to

the participants’ basis thumb joint. Both participant had to wear a pair of stereo phones

(SONY MDR-XD200) used to present an individual acoustic trigger signal. For being

able to review task performance later, hand movements were additionally recorded by

a video camera.

Procedure and Design

The experiment started with capturing the individual calibration positions for each

dyad. For this purpose participants had to put their pen to their individual start and

target point one time respectively. The written instruction included a description of

the task which was to alternately tap the individual start and target point with the pen

tip. Furthermore participants were asked to carry the pen from one point to the other.

Sliding the pen over the table was not allowed. No instructions were given regarding

speed in order to provoke natural behavior.

At the beginning of each trial participants were asked to rest in their respective start

position and instructed to start executing the task as soon as they heard the acoustical
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Figure 12: Experimental setup with dimensions. Two agents denoted as person 1
and person 2 performed identical motor tasks while sitting in chairs and facing each
other. The task was to alternately tap on two assigned dots (start and target,
diameter 8mm) with a pen in hand. The dots were marked on a round table and
each one was surrounded by a white area (diameter 60mm)

start signal (high-pitched tone) through their phones. Simultaneously with the start

signal, motion capturing started. The stop signal(low-pitched tone) was presented au-

tomatically after both participants had performed at least 10 cycles each. At the same

time, motion capturing stopped and participants had to move their pen back to the start

point.

Three start off conditions were applied which provoked differing spatial relations:

1) the start signals for both participants were presented simultaneously (zero-cycle),

2) the start signal for the second person was presented when the first person has already

made half the distance between the start and the target point for the first time (quarter-

cycle), 3) the start signal for the second person was presented when the first person had

reached the target point for the first time (half-cycle). Six sets each consisting of six

trials were performed which led to a total of 36 trials. Start off conditions were kept

constant within sets which led to a total of 12 trials per condition. In the conditions

quarter-cycle and half-cycle, the delay of the start signal for the second person was

calculated on-line from the movement data of the first person. Being first person was

randomly assigned to person 1 or person 2 and counterbalanced in each set. The first

trial in each set was excluded from analysis.
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