Skip to main content

Advertisement

Log in

Evaluation of the criteria to identify single-fibre potentials in human muscle fibres

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The criterion normally used to identify a potential generated by a single muscle fibre (SFAP) is that it must have identical shape at consecutive discharges. Technical problems accompanying the recording of single-fibre electromyographic (SFEMG) potentials introduce certain variability in the shape of these potentials, thereby compromising the ability to detect pure SFAPs. This study aims to determine the conditions necessary for two fibres to generate a compound potential that fulfils the single-fibre criterion. This has been done by analysing the alterations in the waveform of compound spikes formed by the summation of two SFAPs whose relative weight in the composite potential can differ considerably. Several factors responsible for this shape variability, with a geometrical, physiological or accidental origin, have been included in our study. It has been shown that a distant interfering component will be hardly detected in the composite potential if it is smaller than approximately 15 % of the main component. For this interfering component to generate a notch in the rising phase of the compound potential, it must be greater than about 30 % of the main component. A compound potential will fulfil the single-fibre criterion if the time dispersion between the individual components is less than 80–120 μs. These results permit the estimation of the amplitude of interfering potentials so they could be useful in fibre density studies. The article also emphasises the inherent variability of SFEMG potentials and the impact of this variability on jitter estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreassen S, Arendt-Nielsen L (1987) Muscle fibre conduction velocity in motor units of the human anterior tibial muscle: a new size principle parameter. J Physiol 391: 561–571

    PubMed  CAS  Google Scholar 

  • Baker DJ, Cross NL, Sedgwick EM (1987) Normality of single fibre electromyographic jitter: a new approach. J Neurol Neurosurg Psychiatry 50(4): 471–475

    Article  PubMed  CAS  Google Scholar 

  • Bromberg MB, Scott DM (1994) Single fiber EMG reference values: reformatted in tabular form. AD HOC Committee of the AAEM single fiber special interest group. Muscle Nerve 17: 820–821

    Article  PubMed  CAS  Google Scholar 

  • Buchthal F, Guld C, Rosenfalck P (1955) Innervation zone and propagation velocity in human muscle. Acta Physiol Scand 35(2): 174–190

    Article  PubMed  CAS  Google Scholar 

  • Buchthal F, Guld C, Rosenfalck P (1957) Volume conduction of the spike of the motor unit potential investigated with a new type of multielectrode. Acta Physiol Scand 38(3–4): 331–354

    Article  PubMed  CAS  Google Scholar 

  • Daube JR, Rubin DI (2009) Needle electromyography. Muscle Nerve 39(2): 244–270

    Article  PubMed  Google Scholar 

  • Dimitrov GV, Dimitrova NA (1998) Precise and fast calculation of the motor unit potentials detected by a point and rectangular plate electrode. Med Eng Phys 20: 374–381

    Article  PubMed  CAS  Google Scholar 

  • Ekstedt J (1964) Human single fibre action potentals. Acta Physiol Scand 61(226): 1–96

    Google Scholar 

  • Ekstedt J, Stålberg E (1973) How the size of the needle electrode leading-off surface influences the shape of the single muscle fibre action potential in electromyography. Comp Prog Biomed 3: 204–212

    Article  CAS  Google Scholar 

  • Ekstedt J, Nilsson G, Stålberg E (1974) Calculation of the electromyographic jitter. J Neurol Neurosurg Psychiatry 37(5): 526–539

    Article  PubMed  CAS  Google Scholar 

  • Hakelius L, Stålberg E (1974) Electromyographical studies of free autogenous muscle transplants in man. Scand. J Plast Reconstr Surg 8: 211–219

    Article  PubMed  CAS  Google Scholar 

  • Kimura J (1989) Electrodiagnosis in diseases of nerve and muscle. Davis, Philadelphia

  • Lagueny A, Le Masson G, Burbeaud P, Deliac P (1998) Single fibre electromyography in multifocal motor neuropathy with persistent conduction blocks. J Neurol Neurosurg Psychiatry 65(3): 357–361

    Article  PubMed  CAS  Google Scholar 

  • Lange DJ (1992) Single fiber electromyography in normal subjects: reproducibility, variability, and technical considerations. Electromyogr Clin Neurophysiol 32(7–8): 397–402

    PubMed  CAS  Google Scholar 

  • Lööf Y (1990) Improving electromyographic jitter measurements by analysis of the firing pattern. IEEE Trans Biomed Eng 37(11): 1105–1114

    Article  PubMed  Google Scholar 

  • Ludin H (1973) Action potentials of normal and dystrophic human muscle fibres. In: Desmedt JE (ed) New development in electromyography and clinical neurophysiology. Karger, Basel, pp 400–406

  • Morita G, Tu YX, Okajima Y, Honda S, Tomita Y (2002) Estimation of the conduction velocity distribution of human sensory nerve fibers. J Electromyogr Kinesiol 12(1): 37–43

    Article  PubMed  CAS  Google Scholar 

  • Nandedkar S, Stålberg E (1983) Simulation of single muscle fibre action potentials. Med Biol Eng Comput 21: 158–165

    Article  PubMed  CAS  Google Scholar 

  • Nandedkar S, Sanders DB (1988) Simulation of concentric needle EMG motor unit action potentials. Muscle Nerve 11: 151–159

    Article  PubMed  CAS  Google Scholar 

  • Nishizono H, Kurata H, Miyashita M (1989) Muscle fibre conduction velocity related to stimulation rate. Electroencephalogr Clin Neurophysiol 72: 529–534

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez J, Dimitrovna NA, Dimitrov GV, Gila L (2011) Shape variability of potentials recorded by a single-fiber electrode and its effect on jitter estimation. Ann Biomed Eng 39(2): 812–823

    Article  PubMed  Google Scholar 

  • Sanders DB, Howard JF Jr, Johns TR (1979) Single-fiber electromyography in myasthenia gravis. Neurology 29(1): 68–76

    Article  PubMed  CAS  Google Scholar 

  • Sanders DB (1987) The electrodiagnosis of myasthenia gravis. Ann NY Acad Sci 505: 539–556

    Article  PubMed  CAS  Google Scholar 

  • Stålberg E (1966) Propagation velocity in human muscle fibres in situ. Acta Physiol Scand 287: 1–112

    Google Scholar 

  • Stålberg E, Ekstedt J, Broman A (1971) The electromyographic jitter in normal human muscles. Electroencephalogr Clin Neurophysiol 31(5): 429–438

    Article  PubMed  Google Scholar 

  • Stålberg E, Ekstedt J, Broman A (1974) Neuromuscular transmission in myasthenia gravis studied with single fibre electromyography. J Neurol Neurosurg Psychiatry 37(5): 540–547

    Article  PubMed  Google Scholar 

  • Stålberg E (1977) Electrogenesis in human dystrophic muscle. In Rowland LP (ed) Pathogenesis of human muscular dystrophies. Excerpta Medica, Amsterdam, pp 570–587

  • Stålberg E, Trontelj J (1979) Single fibre electromyography. Old Woking, Mirvalle, Surrey

  • Stålberg E, Dioszeghy P (1991) Scanning EMG in normal muscle and in neuromuscular disorders. Electroencephalogr Clin Neurophysiol 81(6): 403–416

    Article  PubMed  Google Scholar 

  • Stålberg E, Sonoo M (1994) Assessment of variability in the shape of the motor unit action potential, the “jiggle,” at consecutive discharges. Muscle Nerve 17(10): 1135–1144

    Article  PubMed  Google Scholar 

  • Stålberg E, Sanders B (2009) Jitter recordings with concentric needle electrodes. Muscle Nerve 40: 331–339

    Article  PubMed  Google Scholar 

  • Schwartz MS, Stålberg E (1975) Myasthenia gravis with features of the myasthenic syndrome. An investigation with electrophysiologic methods including single-fiber electromyography. Neurology 25(1): 80–84

    Article  PubMed  CAS  Google Scholar 

  • Wallinga W, Gielen FLH, Wirtz P, de Jong P, Broenink J (1985) The different intracellular action potentials of fast and slow muscle fibres. Electromyogr Clin Neurophysiol 60: 539–547

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Rodriguez-Falces.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez-Falces, J., Gila, L. & Dimitrova, N.A. Evaluation of the criteria to identify single-fibre potentials in human muscle fibres. Biol Cybern 106, 323–338 (2012). https://doi.org/10.1007/s00422-012-0500-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-012-0500-z

Keywords

Navigation