Skip to main content
Log in

Insect-inspired high-speed motion vision system for robot control

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The mechanism for motion detection in a fly’s vision system, known as the Reichardt correlator, suffers from a main shortcoming as a velocity estimator: low accuracy. To enable accurate velocity estimation, responses of the Reichardt correlator to image sequences are analyzed in this paper. An elaborated model with additional preprocessing modules is proposed. The relative error of velocity estimation is significantly reduced by establishing a real-time response-velocity lookup table based on the power spectrum analysis of the input signal. By exploiting the improved velocity estimation accuracy and the simple structure of the Reichardt correlator, a high-speed vision system of 1 kHz is designed and applied for robot yaw-angle control in real-time experiments. The experimental results demonstrate the potential and feasibility of applying insect-inspired motion detection to robot control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aggarwal J, Nandhakumar N (1988) On the computation of motion from sequences of images: a review. Proc IEEE 76(8): 917–935

    Article  Google Scholar 

  • Barfoot T (2005) Online visual motion estimation using FastSLAM with SIFT features. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, Edmonton, pp 579–585

  • Barron J, Fleet D, Beauchemin S (1994) Performance of optical flow techniques. Int J Comput Vis 12(1): 43–77

    Article  Google Scholar 

  • Beauchemin S, Barron J (1995) The computation of optical flow. ACM Comput Surv (CSUR) 27(3):433–466

    Article  Google Scholar 

  • Bermudez i Badia S, Pyk P, Verschure P (2007) A fly-locust based neuronal control system applied to an unmanned aerial vehicle: the invertebrate neuronal principles for course stabilization, altitude control and collision avoidance. Int J Robot Res 26(7): 759

    Article  Google Scholar 

  • Borst A, Egelhaaf M (1989) Principles of visual motion detection. Trends Neurosci 12(8): 297–306

    Article  PubMed  CAS  Google Scholar 

  • Borst A, Haag J (2002) Neural networks in the cockpit of the fly. J Comp Physiol A: Neuroethol, Sens, Neural, Behav Physiol 188(6): 419–437

    Article  CAS  Google Scholar 

  • Borst A, Haag J, Reiff D (2010) Fly motion vision. Ann Rev Neurosci 33: 49–70

    Article  PubMed  CAS  Google Scholar 

  • Borst A, Weber F (2011) Neural action fields for optic flow based navigation: a simulation study of the fly lobula plate network. PloS one 6(1): 247–254

    Article  Google Scholar 

  • Brinkworth R, O’Carroll D (2009) Robust models for optic flow coding in natural scenes inspired by insect biology. PLoS Comput Biol 5(11): e1000555

    Article  PubMed  Google Scholar 

  • Cutler R, Davis L (2000) Robust real-time periodic motion detection, analysis, and applications. IEEE Trans Pattern Anal Mach Intell 22(8): 781–796

    Article  Google Scholar 

  • Dror R, O’Carroll D, Laughlin S (2000) The role of natural image statistics in biological motion estimation. Biologically motivated computer vision, Berlin, pp 509–533

  • Dror R, O’Carroll D, Laughlin S (2001) Accuracy of velocity estimation by Reichardt correlators. J Opt Soc Am A 18(2): 241–252

    Article  CAS  Google Scholar 

  • Egelhaaf M, Borst A (1993) Movement detection in arthropods. Visual motion and its role in the stabilization of gaze, pp 53–77

  • Egelhaaf M, Borst A (1989) Transient and steady-state response properties of movement detectors. JOSA A 6(1): 116–127

    Article  CAS  Google Scholar 

  • Egelhaaf M, Borst A, Reichardt W (1989) Computational structure of a biological motion-detection system as revealed by local detector analysis in the fly’s nervous system. JOSA A 6(7): 1070–1087

    Article  CAS  Google Scholar 

  • Field D (1987) Relations between the statistics of natural images and the response properties of cortical cells. J Opt Soc Am A 4(12): 2379–2394

    Article  PubMed  CAS  Google Scholar 

  • Grzywacz N, Yuille A (1990) A model for the estimate of local image velocity by cells in the visual cortex. Proc R Soc London B. Biol Sci 239(1295): 129–161

    Article  CAS  Google Scholar 

  • Harrison R (2005) A biologically inspired analog IC for visual collision detection. IEEE Trans Circ Syst I Regul Papers 52(11): 2308–2318

    Article  Google Scholar 

  • Harris R, O’Carroll D, Laughlin S (1999) Adaptation and the temporal delay filter of fly motion detectors. Vis Res 39(16): 2603–2613

    Article  PubMed  CAS  Google Scholar 

  • Hassenstein B, Reichardt W (1956) Structure of a mechanism of perception of optical movement. In: Proceedings of the 1st international conference on cybernetics, Namur, pp 797–801

  • Horn B, Schunck B (1981) Determining optical flow. Artif Intell 17(1–3): 185–203

    Article  Google Scholar 

  • Lu C, Hager G, Mjolsness E (2000) Fast and globally convergent pose estimation from video images. IEEE Trans Pattern Anal Mach Intell 22(6): 610–622

    Article  Google Scholar 

  • Lucas B, Kanade T (1981) An iterative image registration technique with an application to stereo vision. In: Proceedings of the 7th international joint conference on artificial intelligence

  • Meso A, Zanker J (2009) Speed encoding in correlation motion detectors as a consequence of spatial structure. Biol Cybern 100(5): 361–370

    Article  PubMed  Google Scholar 

  • Nill N (1976) Scene power spectra: the moment as an image quality merit factor. Appl Opt 15(11): 2846–2854

    Article  PubMed  CAS  Google Scholar 

  • Reichardt W, Poggio T, Hausen K (1983) Figure-ground discrimination by relative movement in the visual system of the fly. Biol Cybern 46: 1–30

    Article  Google Scholar 

  • Ruderman D, Bialek W (1994) Statistics of natural images: scaling in the woods. Phys Rev Lett 73(6): 814–817

    Article  PubMed  Google Scholar 

  • Single S, Borst A (1998) Dendritic integration and its role in computing image velocity. Science 281: 1848–1850

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan M, Zhang S, Chahl J, Stange G, Garratt M (2004) An overview of insect-inspired guidance for application in ground and airborne platforms. Proc Inst Mech Eng Part G J Aerosp Eng 218(6): 375–388

    Google Scholar 

  • Stanczyk B (2006) Development and control of an anthropomorphic telerobotic system. PhD thesis, Technische Universität München

  • Straw A, Rainsford T, O’Carroll D (2008) Contrast sensitivity of insect motion detectors to natural images. J Vision 8(3): 1–9

    Article  Google Scholar 

  • Valette F, Ruffier F, Viollet S, Seidl T (2010) Biomimetic optic flow sensing applied to a lunar landing scenario. In: Proceedings of IEEE international conference on robotics and automation, Pasadena, pp 2253–2260

  • Van Santen J, Sperling G (1985) Elaborated Reichardt detectors. J Opt Soc Am A 2(2): 300–321

    Article  PubMed  CAS  Google Scholar 

  • van der Schaaf A, Van Hateren J (1996) Modelling the power spectra of natural images: statistics and information. Vis Res 36(17): 2759–2770

    Article  PubMed  Google Scholar 

  • Zanker J, Srinivasan M, Egelhaaf M (1999) Speed tuning in elementary motion detectors of the correlation type. Biol Cybern 80(2): 109–116

    Article  PubMed  CAS  Google Scholar 

  • Zhang T, Wu H, Borst A, Kuhnlenz K, Buss M (2008) An FPGA implementation of insect-inspired motion detector for high-speed vision systems. In: Proceedings of the IEEE international conference on robotics and automation, Pasadena, pp 335–340

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, H., Zou, K., Zhang, T. et al. Insect-inspired high-speed motion vision system for robot control. Biol Cybern 106, 453–463 (2012). https://doi.org/10.1007/s00422-012-0509-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-012-0509-3

Keywords

Navigation