Skip to main content
Log in

Synchronization regulation in a model of coupled neural masses

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

A model of coupled neural masses can generate seizure-like events and dynamics similar to those observed during interictal to ictal transitions and thus can be used for theoretical study of the control of epileptic seizures. In an effort to understand the mechanisms underlying epileptic seizures and how to avoid them, we added a control input to this model. Epileptic seizures are always accompanied by hypersynchronous firing of neurons, so research on synchronization among cortical areas is significant for seizure control. In this study, principal component analysis (PCA) was used to identify synchronization clusters composed of several neural masses. A method for calculating the synchronization cluster strength and participation rate is presented. The synchronization cluster strength can be used to identify synchronization clusters and the participation rate can be employed to identify neural masses that participate in the clusters. Each synchronization cluster is controlled as a whole using a proportional-integral-derivative (PID) controller. We illustrate these points using coupled neural mass models of synchronization to show their responses to increased (between node) coupling with and without control. Experiment results indicated that PID control can effectively regulate synchronization between neural masses and has the potential for seizure prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bartolomei F, Wendling F, Bellanger JJ, Regis J, Chauvel P (2001) Neural networks involving the medial temporal structures in temporal lobe epilepsy. Clin Neurophysiol 112(9):1746–1760

    Article  PubMed  CAS  Google Scholar 

  • Bikson M, Fox JE, Jefferys JGR (2003) Neuronal aggregate formation underlies spatiotemporal dynamics of nonsynaptic seizure initiation. J Neurophysiol 89:2330–2333

    Article  PubMed  Google Scholar 

  • Breakspear M, Roberts JA, Terry JR, Rodrigues S, Mahant N, Robinson PA (2006) A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cereb Cortex 16(9):1296–1313

    Article  PubMed  CAS  Google Scholar 

  • Buzsáki G (2004) Large-scale recording of neuronal ensembles. Nat Neurosci 7:446–451

    Article  PubMed  Google Scholar 

  • Buzsáki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929

    Article  PubMed  Google Scholar 

  • Chakravarthy N, Sabesan S, Tsakalis K, Iasemidis L (2009) Controlling epileptic seizures in a neural mass model. J Comb Optim 17(1):98–116

    Article  Google Scholar 

  • Chawla D, Lumer ED, Friston KJ (1999) The relationship between synchronization among neuronal populations and their mean activity level. Neural Comput 11(6):1389–1411

    Article  PubMed  CAS  Google Scholar 

  • Chawla D, Friston KJ, Lumer ED (2001) Zero-lag synchronous dynamics in triplets of interconnected cortical areas. Neural Netw 14(6–7):727–735

    Article  PubMed  CAS  Google Scholar 

  • David O, Friston KJ (2003) A neural mass model for MEG/EEG: coupling and neuronal dynamics. NeuroImage 20(3):1743–1755

    Article  PubMed  Google Scholar 

  • Desai NS, Rutherford LC, Turrigiano GG (1999) Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nat Neurosci 2:515–520

    Article  PubMed  CAS  Google Scholar 

  • Fox JE, Bikson M, Jefferys JGR (2007) The effect of neuronal population size on the development of epileptiform discharges in the low calcium model of epilepsy. Neurosci Lett 411:158–161

    Article  PubMed  CAS  Google Scholar 

  • Golowasch J, Casey M, Abbott LF, Marder E (1999) Network stability from activity-dependent regulation of neuronal conductances. Neural Comput 11(5):1079–1096

    Article  PubMed  CAS  Google Scholar 

  • Gunduz A, Principe JC (2009) Correntropy as a novel measure for nonlinearity tests. Signal Process 89(1):14–23

    Article  Google Scholar 

  • Houweling AR, Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (2005) Homeostatic synaptic plasticity can explain post-traumatic epileptogenesis in chronically isolated neocortex. Cereb Cortex 15(6):834–845

    Article  PubMed  Google Scholar 

  • Jansen BH, Rit VG (1995) Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol Cybern 73(4):357–366

    Article  PubMed  CAS  Google Scholar 

  • Jansen BH, Zouridakis G, Brandt ME (1993) A neurophysiologically-based mathematical model of flash visual evoked potentials. Biol Cybern 68(3):275–283

    Article  PubMed  CAS  Google Scholar 

  • Kim JW, Roberts JA, Robinson PA (2009) Dynamics of epileptic seizures: evolution, spreading, and suppression. J Theor Biol 257(4):527–532

    Article  PubMed  CAS  Google Scholar 

  • Liley DTJ, Bojak I (2005) Understanding the transition to seizure by modeling the epileptiform activity of general anesthetic agents. J Clin Neurophysiol 22(5):300–313

    PubMed  CAS  Google Scholar 

  • Robinson PA, Rennie CJ, Rowe DL (2002) Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Phys Rev E 65(4):41924

    Article  CAS  Google Scholar 

  • Suffczynski P, Wendling F, Bellanger JJ, Lopes Da Silva FH (2006) Some insights into computational models of (patho) physiological brain activity. Proc IEEE 94(4):784–804

    Google Scholar 

  • Turrigiano GG, Nelson SB (2004) Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci 5(2):97–107

    Article  PubMed  CAS  Google Scholar 

  • Wendling F, Bellanger JJ, Bartolomei F, Chauvel P (2000) Relevance of nonlinear lumped-parameter mod-els in the analysis of depth-EEG epileptic signals. Biol Cybern 83(4):367–378

    Article  PubMed  CAS  Google Scholar 

  • Wendling F, Bartolomei F, Bellanger JJ, Chauvel P (2001) Interpretation of interdependencies in epileptic signals using a macroscopic physiological model of the EEG. Clin Neurophysiol 112(7):1201–1218

    Article  PubMed  CAS  Google Scholar 

  • Wendling F, Bartolomei F, Bellanger JJ, Chauvel P (2002) Epileptic fast activity can be explained by a model of impaired gabaergic dendritic inhibition. Eur J Neurosci 15(9):1499–1508

    Article  PubMed  CAS  Google Scholar 

  • Wendling F, Hernandez A, Bellanger JJ, Chauvel P, Bartolomei F (2005) Interictal to ictal transition in human temporal lobe epilepsy: insights from a computational model of intracerebral EEG. J Clin Neurophysiol 22(5):343–356

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Program of Development of Science and Technology of Shandong under Grant 2010GSF10243 and the Independent Innovation Foundation of Shandong University under Grant 2012DX008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Z., Zhou, W., Geng, S. et al. Synchronization regulation in a model of coupled neural masses. Biol Cybern 107, 131–140 (2013). https://doi.org/10.1007/s00422-012-0541-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-012-0541-3

Keywords

Navigation