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Abstract There are two issues in balancing a stick piv-
oting on a finger tip (or mechanically on a moving cart):
maintaining the stick angle near to vertical and main-
taining the horizontal position within the bounds of reach
or cart track.

The (linearised) dynamics of the angle are second or-
der (although driven by pivot acceleration) and so, as
in human standing, control of the angle is not, by itself
very difficult. However, once the angle is under control,
the position dynamics are, in general, fourth order. This
makes control quite difficult for humans (and even an
engineering control system requires careful design).

Recently, three of the authors have experimentally
demonstrated that humans control the stick angle in a
special way: the closed-loop inverted pendulum behaves
as a non-inverted pendulum with a virtual pivot some-
where between the stick centre and tip and with in-
creased gravity. Moreover, they suggest that the virtual
pivot lies at the radius of gyration (about the mass cen-
tre) above the mass centre.

This paper gives a continuous-time control-theoretical
interpretation of the virtual-pendulum approach. In par-
ticular, by using a novel cascade control structure, it is
shown that the horizontal control of the virtual pivot
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becomes a second order problem which is much easier
to solve than the generic fourth-order problem. Hence,
the use of the virtual pivot approach allows the control
problem to be perceived by the subject as two separate
second order problems rather than a single fourth-order
problem and the control problem is therefore simplified.

The theoretical predictions are verified using the data
previously presented by three of the authors and analysed
using a standard parameter estimation method. The ex-
perimental data indicates that, although all subjects adopt
the virtual pivot approach, the less expert subjects ex-
hibit larger amplitude angular motion and poorly-controlled
translational motion.

It is known that human control systems are delayed
and intermittent, and therefore the continuous-time strat-
egy cannot be correct. However, the model of intermit-
tent control used in this paper is based on the virtual
pivot continuous-time control scheme, handles time-delays
and, moreover masquerades as the underlying continuous-
time controller. In addition, the event-driven properties
of intermittent control can explain experimentally-observed
variability.

1 Introduction

As discussed in a recent survey (Boubaker 2012), the
inverted pendulum has been a standard control engi-
neering laboratory experiment for many years. Typically,
such experiments involve the inverted pendulum being
freely pivoted about a point on an actuated moving ob-
ject (often called the cart); torque is not directly applied
to the pendulum, but indirectly via the acceleration of
the actuated moving object. The dynamical equations
and corresponding control algorithms are presented, for
example, by Astrom and Furuta (2000), Fantoni and
Lozano (2002) and Gawthrop et al. (2009b).

The inverted pendulum has been used as a model of
human standing (Fitzpatrick and McCloskey 1994; Lo-
ram and Lakie 2002) and a number of computational the-
ories have been proposed including those of Bottaro et al.
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(2005, 2008), Asai et al. (2009), Gawthrop et al. (2011),
Kowalczyk et al. (2011) and Suzuki et al. (2012). How-
ever, in the case of human standing the torque is applied
directly to the inverted pendulum via the muscle/tendon
subsystem. Thus the control engineering laboratory ex-
periments referred to in the previous paragraph are not
directly relevant.

A more direct analogy to the inverted pendulum con-
trol experiment is found in the human balancing of a
stick with the base on the finger or the palm of the hand.
Experimental results have been obtained, and theoreti-
cal explanations have been given, by a number of authors
including Cabrera and Milton (2002), Mehta and Schaal
(2002), Milton et al. (2008), Milton et al. (2009) and Lee
et al. (2012).

A key issue in both human and machine stick balanc-
ing is that, in addition to stabilising the angular motion
of the stick around a vertical configuration, the hori-
zontal motion of the stick needs to be stabilised. If the
horizontal motion is unconstrained in the machine case,
the cart will run off the end of the track; in the human
case, the reach of the subject will be exceeded. Thus,
for example, Gawthrop et al. (2009b) include a control
loop to explicitly regulate the horizontal motion in the
context of a control laboratory experiment.

The dynamics of the stick balancing system, includ-
ing both the angular and lateral motion of the stick is
fourth order. Although not an issue for control system
design in the machine case, it is a problem for humans.
Lee et al. (2012) observed that humans oscillate the stick
in such a way that “the behaviour of the balanced stick
resembled angular simple harmonic motion of a torque-
assisted physical pendulum, with a translating suspen-
sion point”. Based on this observation, this paper sug-
gests that humans approximately split the fourth order
system into two, non-interacting second-order systems
separately defining the angular and lateral motions of
the stick. The structure of the two subsystems is such
that they are amenable to cascade control (Goodwin
et al. 2001). It is known that humans can successfully
simultaneously control two non-interacting second-order
systems (Oytam et al. 2005).

The human visuo-motor control system contains time
delays (Kleinman et al. 1970, 1971; Gawthrop et al. 2008;
Loram et al. 2009; Nijhawan and Wu 2009; Scholl et al.
2009; Stepan 2009; Gawthrop et al. 2009a; Volkinshtein
and Meir 2011; Karniel 2011; Milton 2011; Insperger
et al. 2013) and is intermittent (Craik 1947; Vince 1948;
Navas and Stark 1968; Neilson et al. 1988; Cabrera and
Milton 2002; Loram et al. 2012; van de Kamp et al.
2013). For this reason, although a purely continuous-
time control system can be used for machine control,
such an approach cannot explain human stick balanc-
ing. However, the approach to intermittent control pro-
posed by Gawthrop et al. (2011) shows how to convert a
continuous-time controller designed for a delay-free sys-
tem into a predictive intermittent controller. Although,

this intermittent controller introduces both delay and
intermittency, it can masquerade as the underlying con-
tinuous time control system. The current paper proposes
a novel form of cascade intermittent control to explain
the previously observed experimental data presented by
Lee et al. (2012).

The paper is organised as follows. Section 2 presents
the basic equations of the finger-balanced stick. Section
3 presents the decomposition of the fourth order system
into two second order systems and proposes a cascade
control structure based on th4e virtual pivot approach.
Section 4 gives an intermittent version of the continuous
cascade controller of Section 3. Section 5 presents some
illustrative simulation results and Section 6 discusses the
experimental data. Section 7 shows how parameter esti-
mation methods can be used to extract key parameters
from experimental data. Section 8 concludes the paper.

2 Inverted Pendulum Dynamics
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Fig. 1 Balanced Stick at angle θ to the vertical. A: Actual
pivot with position φ and acceleration u = φ̈. C centre of
mass. P centre of percussion; V: virtual pivot location. For
small θ, the horizontal position z of the virtual pivot at V is
given by z = lzθ − φ.

With reference to Figure 1, consider an inverted pen-
dulum comprising a stick which freely rotates (with an-
gle θ measured anti-clockwise from the vertical) about a
pivot A at the lower end, which is in turn constrained to
translate horizontally with distance φ from some refer-
ence. As discussed elsewhere (Astrom and Furuta 2000;
Gawthrop et al. 2009b), the linearised (about θ = 0)
equations of motion are:

Jθ̈ − mgLθ = mLu (1)

and φ̈ = u (2)
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where θ is the pendulum angle measured anti-clockwise
from the vertical, J is the moment of inertia about the
pivot at A, m the pendulum mass, L the distance from
the pivot to the centre of mass at C and g is the gravita-
tional acceleration constant. The control signal u is the
horizontal acceleration φ̈ of the pivot.

It is convenient to define the equivalent length1 Lp

given by:

Lp =
J

mL
(3)

Equation (1) then simplifies to:

Lpθ̈ − gθ = u (4)

The corresponding point P appears in Figure 1.
Using Equations (1) and (2), together with Equation

(3), system transfer functions are:

Gθ =
θ

u
=

1

Lps2 − g
(5)

Gφ =
φ

u
=

1

s2
(6)

The transfer function Gθ has two real poles at s = ±aθ

where

aθ =

√

g

Lp

(7)

The pole at s = aθ corresponds to unstable, or toppling
behaviour; it follows that feedback control is needed to
stabilise this system. The transfer function Gφ has two
poles at s = 0; these correspond to drifting velocity and
position and therefore feedback control is needed to sta-
bilise this system as well.

With reference to Figure 1, and assuming that the
angle θ is small, consider the horizontal motion z of the
point V a distance lz above the pivot at A.

z = lzθ − φ (8)

= [lzGθ − Gφ]u (9)

=

[

lz
1

Lps2 − g
−

1

s2

]

u (10)

= Gzuu (11)

where Gzu =
Lzs

2 + g

s2(Lps2 − g)
(12)

and Lz = lz − Lp (13)

Using Equations (5) and (12), the transfer function Gz

relating z and θ can be written as:

z

θ
= Gz(s) =

Gzu(s)

Gθ(s)
=

Lzs
2 + g

s2
(14)

1 The equivalent length Lp is also the distance from the
pivot to the centre of percussion

Assuming that Lz > 0 (that is lz > Lp), the transfer
function relating θ to z has a pair of imaginary zeros at
s = ±jωz where:

ωz =

√

g

Lz

(15)

The significance of these zeros is that if θ(t) is sinusoidal
with frequency ωz, and the pendulum has been stabilised
so that initial conditions die away, the virtual pivot at
V will be motionless. This point is examined further in
the next section.

3 Continuous-time Control

Gθ(s)Cθ(s)Cz(s)

Gφ(s)

lz
+

−

θθ0 u z
−

+

z0

φ

(a) Basic structure

Gθ(s)Cθ(s)Cz(s) Gz(s)
+

−

θθ0 uz0 z

(b) Simplified structure

Fig. 2 Cascade control structure. (a) Gθ(s) (5) and Gφ(s)
(6) relate the control signal u to the stick angle θ and pivot
position φ respectively. (b) The simplified structure uses
Gz(s) to relate z to θ (14). The transfer function Cθ is then
designed to stabilise the stick in such a way that it appears to
rotate about the virtual pivot point V. The transfer function
Cz is then chosen to stabilise the horizontal motion z of the
virtual pivot.

The control scheme considered in this paper has the
cascade structure of Figure 2. In particular, the inner
loop comprises the transfer function Gθ(s) and the cor-
responding controller transfer function Cθ(s). This is de-
signed as discussed by Lee et al. (2012) to make the stick
appear to behave as a pendulum with pivot point V (Fig-
ure 1); the reference θ0 would be zero if just the pendu-
lum angle were to be controlled. The design of this inner
loop is given in Section 3.1. The outer loop comprises
the controller with transfer function Cz(s) which con-
trols the horizontal position z of the virtual pivot to the
desired value of z0 (typically zero) by manipulating the
reference θ0 of the inner loop. As discussed in Section
3.2 this is simplified by the special properties of the in-
ner loop created by the virtual pivot concept of Lee et al.
(2012).
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Fig. 3 Frequency-matched control of angle. The stick angle
dynamics Gθ(s) of Equation (5) are controlled using the pro-
portional controller Cθ of Equation (17); d represents motor
noise.

3.1 Frequency-matched control of angle

As noted in Section 2, the transfer function relating an-
gle θ to horizontal motion z has a pair of imaginary zeros
corresponding to the frequency ωz of Equation (15). The
purpose of this section is to design a controller which
gives a closed-loop transfer function causing both u and
θ to oscillate at the frequency ωz. This is done by de-
signing a closed-loop transfer function Hθ with a pair of
imaginary poles corresponding to the frequency ωz.

Consider the feedback system of Figure 3 where the
feedback controller2 is

u = Cθ(θ0 − θ) + d (16)

where Cθ = (kθ + 1)g (17)

where θ0 is the reference angle and the disturbance d
is introduced by motor noise. The closed-loop system
relating θ0 to θ is:

θ = Hθ (θ0 + dθ) (18)

where Hθ =
(kθ + 1)g

Lps2 − g + (kθ + 1)g

=
(kθ + 1)g

Lps2 + kθg
(19)

and dθ =
1

(kθ + 1)g
d (20)

Choosing kθ =
1

ρ
(21)

where ρ =
Lz

Lp

(22)

then Hθ =
(1 + ρ)g

Lzs2 + g
(23)

and dθ =
ρ

(1 + ρ)g
d (24)

The denominator of Hθ is identical to the numerator of
Gz (14).

Following Lee et al. (2012), one choice of lz is at the
radius of gyration above the centre of mass; thus lz =

2 This corresponds to Lee et al. (2012), Equation (13),
where k = kθ + 1 and d = θ0 = 0.

L+rg where rg is the radius of gyration about the centre
of mass. Using Equations (3) and (13), this gives

Lz = L + rg − Lp (25)

and the corresponding gain kθ is given by Equation (21).
The closed-loop system poles are the roots of the de-

nominator of Hθ (23) and are at

s = ±jωθ (26)

where ωθ =

√

g

Lz

(27)

Controller design with closed-loop poles on the imagi-
nary axis gives a closed-loop system which is oscillatory
and thus on the boundary of stability. In practice, an
element of damping must be introduced via velocity (or
other phase-advance) feedback. For the purposes of sim-
ulation Equation (26) is replaced by:

s = (−ξθ ± j)ωθ (28)

where ξθ is given in Table 1.

3.2 Control of position.

Gzθ(s)

+

+
Cz(s)

+

−

zz0 θ0

dθ

Fig. 4 Control of position. As shown in Equation (30), the
transfer function Gzθ(s) represents the closed-loop dynamics
of the inner (angle) control of Section 3.1. This can be con-
trolled using the proportional + derivative controller Cz(s)
of Equation (32). dθ represents the effect of d (Figure 3) and
is given by Equation (24).

The horizontal position of the pendulum needs to be
controlled to prevent the pivot position growing without
bound. This task is greatly simplified by the virtual pen-
dulum approach. In particular, the frequency-matched
controller cancels the zero associated with the transfer
function relating the pivot position φ to the virtual pivot
position z. With reference to Figure 4 and using Equa-
tions (14) and (23), the transfer function Gzθ relating
the angle controller reference θ0 to the horizontal dis-
placement z of the virtual pivot is given by

z = Gzθ (θ0 + dθ) (29)

where Gzθ =
z

θ0

= GzHθ

=
Lzs

2 + g

s2

(1 + ρ)g

Lzs2 + g

=
(1 + ρ)g

s2
(30)
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Note that the term Lzs
2+g is cancelled from the numer-

ator and denominator. Thus the transfer function Gzθ re-
lating the virtual pivot position z to the angle set-point
θ0 is just a double integrator with gain (1 + ρ)g; this is
much easier to control than a fourth order system. With
reference to Figure 4, the proportional + derivative con-
troller:

θ0 = Cz(s)(z0 − z) (31)

where Cz(s) =
kvs + kp

(1 + ρ)g
(32)

will give the closed-loop system:

z = Hz (z0 + dz) (33)

where Hz =
kvs + kp

s2 + kvs + kp

(34)

and dz =
(1 + ρ)g

kvs + kp

dθ =
ρ

kvs + kp

d (35)

The closed loop system polynomial is completely speci-
fied by the control gains kp and kv and can be written
as:

s2 + kvs + kp = s2 + 2ξzωz + ω2
z (36)

where ωz =
√

kp (37)

and ξz =
kv

2
√

kp

(38)

The closed-loop transfer function has poles at

s = (−ξz ± j)ωz (39)

3.3 State-space formulation

System

k

x(t)

d(t)

u(t)
+

−

kx(t)

Fig. 5 State-space control formulation. “System” is the
state-space system representation of Equation (43) and the
state-feedback gain vector k is given by Equation (57). Vector
signals are represented by thick lines.

The development in Section 3.1 and 3.2 is expressed
in transfer function terms. This section give an alterna-
tive state-space approach which will be used in Section
4 as the basis for intermittent control.

As discussed in Sections 3.1 and 3.2, the use of the
virtual pivot point at a distance lz from the pivot means
that, with suitable control of angle θ, the dynamics of the
horizontal position z of the virtual pivot become simple.
For this reason the system state x is based on θ and z
and is defined as

x =









θ̇
θ
ż
z









(40)

Using Equations (2), (4) and (8)

z̈ = lz θ̈ − φ̈

=
lzg

Lp

θ +

(

lz
Lp

− 1

)

u (41)

Using Equations (13) and (22), Equation (41) can be
rewritten as:

z̈ = (1 + ρ)gθ + ρu (42)

Using Equation (4) and (42), the open-loop system
can be written in state-space form as:

ẋ = Ax + Bu (43)

where A =









0 g
Lp

0 0

1 0 0 0
0 (1 + ρ)g 0 0
0 0 1 0









(44)

and B =









1

Lp

0
ρ
0









(45)

Turning now to closing the inner (angle) loop, the
control signal defined by Equations (16) and (21) is

u =
1 + ρ

ρ
g(θ0 − θ) + d (46)

= kθ(xθθ0 − x) + d (47)

where kθ =
[

0 1+ρ
ρ

g 0 0
]

(48)

and xθ =
[

0 1 0 0
]T

(49)

Substituting Equation (46) into (43) and using Equa-
tions (44) and (45) gives the partially closed-loop sys-
tem:

ẋ = Aθx + Bθ(θ0 + dθ) (50)

where Aθ = A − Bkθ =







0 −
g

Lz
0 0

1 0 0 0
0 0 0 0
0 0 1 0






(51)

and Bθ = Bkθxθ = (1 + ρ)g









1

Lz

0
1
0









(52)
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The outer loop control is given by (31). In state-space
terms it becomes:

θ0 = kz(xzz0 − x) (53)

where kz =
1

(1 + ρ)g

[

0 0 kv kp

]

(54)

and xz =
[

0 0 0 1
]T

(55)

Finally, when z0 = 0, the overall state feedback con-
troller is given by:

u = kθ(xθθ0 − x) + d

= kθ(−xθkzx − x) + d

= −kx + d (56)

where k = kθ(xθkz + I) (57)

and I is the unit matrix.
The corresponding closed-loop system is then given

by:

ẋ = Acx + Bd (58)

where Ac = A − Bk (59)

Alternatively, using standard pole-placement theory
(Kwakernaak and Sivan 1972; Goodwin et al. 2001), the
4 × 1 gain vector k can be designed to place the four
closed-loop poles at the locations defined by Equation
(28), that is at:

s = (−ξθ + j)ωθ, (−ξθ − j)ωθ, (−ξz + j)ωz, (−ξz − j)ωz

(60)
This continuous time control strategy cannot, by it-

self, explain human control balancing for two reasons:
as discussed in the Introduction, the human visuo-motor
control systems contains time delays which are not in-
cluded in this analysis and human control systems are
known to be intermittent. However, this continuous-time
control system can serve as the underlying design method
of the intermittent controller of Gawthrop et al. (2011).
This is discussed in the next section.

4 Intermittent Control

The paper by Gawthrop et al. (2011) provides a compu-
tational theory of human control systems based on in-
termittent control. As discussed by Shadmehr and Wise
(2005) and Todorov and Jordan (2002), computational
level theories – in the sense of Marr (1982) – try to
explain mathematically why a physiological system be-
haves as it does and provide a computable algorithm to
explain the behaviour. In this section, the general equa-
tions of intermittent control (Gawthrop et al. 2011) are
simplified for the particular case of stick balancing.

Intermittent control – in the sense of Gawthrop et al.
(2011) – is based on an underlying continuous-time sys-
tem and corresponding control design. In the context of

System

PredictorSMH Delay

k
x(t)

x̂p(ti)

ti

d(t)

+

−

u(t)kxhxh

x̂p(ti − td)

Fig. 6 Intermittent Control. In contrast to the continuous-
time control of Figure 5, intermittent control samples the
state x at times ti and reconstructs the state between sam-
ples using a system-matched hold (SMH). The time delay td

is compensated by a predictor. Dashed lines correspond to
sampled signals and firm lines to continuous signals. Vector
signals are represented by thick lines.

this paper, the state-space formulation of Section 3.3, de-
scribing the cascade control structure of Section 3, pro-
vides this underlying design. In particular, the system
with the state space representation of Equations (40)
and (43)–(45), together with the feedback controller of
Equations (56) and (57), defines the underlying design
for this paper. In particular, pole-placement design is
used based on the poles appearing in expression (60).

As described by Gawthrop et al. (2011), Section 3.1,
intermittent control makes use of three time frames:

1. continuous-time, within which the controlled sys-
tem evolves, which is denoted by t.

2. discrete-time points at which feedback occurs in-
dexed by i. Thus, for example, the discrete-time in-
stants are denoted ti and the corresponding estimated
state is x̂i = x̂(ti). The ith intermittent interval ∆i

is defined as
∆i = ti+1 − ti (61)

3. intermittent-time is a continuous-time variable, de-
noted by τ , restarting at each intermittent interval.
Thus, within the ith intermittent interval:

τ = t − ti (62)

It is assumed that the human controller is not only in-
termittent but has a time-delay td.

As discussed by Smith (1967), the psychological re-
fractory period (PRP) of Telford (1931) was used by
Vince (1948) to explain the human response to double
stimuli. In the context of the intermittent control model
of this paper, the computational equivalent of the psy-
chological refractory period is to impose a lower bound
∆min on each intermittent interval ∆i > 0 (61):

∆i > ∆min > 0 (63)

The system-matched hold (SMH) (Gawthrop et al.
2011), Section 3.2, is a model of the closed-loop system
with state xh which is intermittently reset to the pre-
dicted system state xp. Thus xh provides an approximate
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replacement for the predicted state xp of the closed-loop
system in between the intermittent samples of xp. The
equations of the SMH are:

{

d
dτ

xh(τ) = Acxh(τ)

xh(0) = xp(ti − td)
(64)

and Ac is given by Equation (59). The state-based con-
trol signal of Equation (56) is replaced by the hold-based
control:

u = −kxh + d (65)

It is assumed that the controller is associated with
a time-delay td. As described by Gawthrop et al. (2011,
Section 3.3), this delay can be overcome using an inter-

mittent predictor which can be written as

xp(ti) = Eppx(ti) + Ephxh(ti) (66)

where the n × n matrices Epp and Eph are partitions of
the 2n × 2n matrix E:

E =

(

Epp Eph

Ehp Ehh

)

(67)

where E = eAphtd (68)

and Aph =

(

A −Bk

0n×n Ac

)

(69)

The sample instants ti are determined by an event

detector (Gawthrop et al. 2011, Section 3.4). There are
two versions of this event detector: an absolute version
and a relative version. The absolute version monitors the
system state x and is described by:

Ex = xT (t)Qtx(t) − qt (70)

where Qt is a positive semi-definite matrix and qt is a
scalar. The relative version monitors the difference ehp

between the system state x and the state xh of the model
of the closed-loop system embedded in the SMH (64) and
is described by:

Ee = eT
hp(t)Qtehp(t) − q2

t (71)

where ehp(t) = xh(t) − x(t) (72)

In either case, a new sample at time ti is taken if the
error (Ex or Ee as appropriate) exceeds 0 at time ti and
the condition (63) is satisfied.

5 Simulation

This section compares and contrasts the simulated be-
haviour of four feedback controllers; the numerical para-

Symbol Equation Value
L (1) 260mm
Lp (3) 329mm
Lz (13) 92mm
ωz (15) 0.316rads−1

kθ (21) 3.57
ρ (22) 0.280
rg (25) 134mm
ωθ (27) 10.3rads−1

ξθ (28) 0.04
kp (31) 0.100
ξz (38) 0.04

Intermittent only
∆min (63) 250ms
td (64) 200ms

Table 1 Simulation Parameters

-0.4

-0.2

0

0.2

0.4

0 5 10 15 20

z 
(m

)
  

 
t (sec)

-4

-2

0

2

4

0 5 10 15 20

θ 
(d

eg
)

  

 
t (sec)

(a) σd = 0.001

-0.4

-0.2

0

0.2

0.4

0 5 10 15 20

z 
(m

)
  

 
t (sec)

-4

-2

0

2

4

0 5 10 15 20

θ 
(d

eg
)

  

 
t (sec)

(b) σd = 0.3

Fig. 7 Simulation: continuous control. The initial angle is
θ = 2◦. (a) The small disturbance gives a purely transient
response. (b) The larger disturbance drives both angle θ and
translation z to non-zero values. In each case, the angle re-
sponse is oscillatory.
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Fig. 8 Simulation: intermittent control – zero threshold
(qt = 0). The initial angle is θ = 2◦, the sample interval
is fixed at ∆min = 250ms. (a) The small disturbance gives a
purely transient response. (b) The larger disturbance drives
both angle θ and translation z to non-zero values. In each
case, the angle response is oscillatory.

meters appear in Table 1. In each case the input distur-
bance d is the random multisine signal3:

d(t) = σd

√

2

Nd

Nd
∑

i=1

sin ωit + φi (73)

where Nd = 1000, ωi = 0.02πi and the ith phase an-
gle φi is a random number drawn from a uniform dis-
tribution between 0 and 2π. This signal has a band-

3 As discussed by, for example, Kasdin (1995), there are a
number of approaches to the simulation of random processes.
As discussed by, for example Dobrowiecki and Schoukens
(2001) and Pintelon and Schoukens (2001), the random multi-
sine is a well-established method for simulating band-limited
random processes with clearly defined properties. The ran-
dom multisine has been used previously in the intermittent
control context (Gollee et al. 2012).
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(b) σd = 0.01

Fig. 9 Simulation: intermittent control – absolute threshold
qt = 0.5◦. The initial angle is θ = 2◦. The event-driven control
gives similar behaviour for both values of σd.

limited power spectrum characterised by frequency com-
ponents equally spaced on the frequency axis at fre-
quencies 0.01, 0.02, . . . , 10Hz. It is periodic with period
1/0.01 = 100sec and the standard deviation is σd.

The initial stick angle is 2◦. The four feedback con-
trollers are:

1. The continuous-time cascade controller of Section 3
with the state-space representation of Section 3.3 shown
in Figure 5 – see Figure 7.

2. The intermittent control of Section 4 shown in Figure
6 with zero threshold (qt = 0) which implies a fixed
sample interval of ∆min – see Figure 8.

3. The intermittent control of Section 4 with an absolute

threshold (Equation (70)) of qt = 0.5◦– see Figure 9.
This gives a variable sample interval.

4. The intermittent control of Section 4 with a relative

threshold (Equation (71)) of qt = 0.5◦– see Figure
10. This also gives a variable sample interval.
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(b) σd = 0.01

Fig. 10 Simulation: intermittent control – relative threshold
qt = 0.5◦. The initial angle is θ = 2◦. The event-driven control
gives similar behaviour for both values of σd. The behaviour
in (a) appears similar to that of a human subject given in
Figure 12.

In cases 3&4 the threshold weighting matrix was chosen
to weight the state x2 of Equation (40) corresponding to
θ:

Qt =







0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0






(74)

The simulation results are shown in Figures 7–10. In
Figures 8–10, the sample instants are indicated by •. In
the first two cases, the smaller value of σd gives an es-
sentially deterministic response from the initial condition
whereas the larger value of σd gives more random varia-
tion in θ and z not unlike the real data. The third and
fourth cases have a different behaviour insofar as the sys-
tem response does not go to zero when σd is small. The
fourth case gives a random variation in θ and z which is
visually not unlike the real data.
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log10 σd

Fig. 11 Variability. The simulated stick angle standard de-
viation σθ is plotted against input noise standard deviation
σd when using four different controllers (the same noise se-
quence, suitably scaled, is used in each simulation). The plots
in order from the bottom correspond: to continuous control,
intermittent control with zero threshold (qt = 0), intermit-
tent control with absolute threshold qt = 0.5◦ and intermit-
tent control with relative threshold qt = 0.5◦.

Figure 11 examines this behaviour in more detail
based on simulations of each controller for a range of
σd and a simulation length of 100s. The simulated stick
angle standard deviation σθ is plotted against input noise
standard deviation σd when using four different con-
trollers (with the same noise sequence – suitably scaled
– used in each simulation). The plots in order from the
bottom correspond: to continuous control, intermittent
control with zero threshold (qt = 0), intermittent control
with absolute threshold qt = 0.5◦ and intermittent con-
trol with relative threshold qt = 0.5◦. The first two cases
correspond to linear control systems and so, as predicted
by theory, σθ is proportional to σd for continuous control
and for zero-threshold intermittent control. In contrast,
σθ is independent of σd for small (relative to qt) values of
σd for the two cases of intermittent control with non-zero
threshold.

As discussed in Section 4, zero-threshold intermittent
control corresponds to a fixed sample interval of ∆min

whereas non-zero-threshold intermittent control corre-
sponds to event-driven control leading to a variable sam-
ple interval. The variability of event-driven control can
be intuitively explained as follows. Because the system is
unstable, even a small disturbance is amplified during the
intermittent interval when the control is open-loop and
thus the event-driven intermittent control has relatively
large variance at small disturbance levels. However, for
large σd, the threshold is overwhelmed by the input noise
and thus the two cases of event-driven intermittent con-
trol (non-zero threshold) behave as if the threshold were
zero.

The simulations of Figures 7–10 can be understood
in terms of Figure 11. The continuous-time control of
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Figure 7 has small variability for σd = 0.001 but at σd =
0.3 the angle θ has about the same standard deviation
as the event-driven controllers at σd = 0.001. Similarly,
the intermittent controller with zero threshold of Figure
8 has small variability for σd = 0.001 but at σd = 0.03
the angle θ has about the same standard deviation as
the event-driven controllers at σd = 0.001. In contrast,
the two event-driven controllers of Figures 9 and 10 have
about the same variability at σd = 0.001 and σd = 0.01.

6 Experimental data
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Fig. 12 Real data. The mediolateral motion is shown in
black and the anteroposterior data in grey. The “poor” sub-
ject drops the stick after about 10s. In both cases, the angular
(θ) motion is fast and oscillatory whereas the translational (z)
motion is relatively slow.

As described in detail by Lee et al. (2012), fourteen
right-handed young adults (6 female, 8 male: aged 18–
35 years) performed the task of balancing a stick on the

pad of the middle finger of the right hand while standing
upright, without moving the feet, for 20 seconds. The
stick was a telescopic television antenna (length: 0.52 m,
mass: 0.0338 kg, moment of inertia: 0.0029 kg m2, dis-
tance from base to centre of mass: 0.26 m). A semi-cone
shaped base (diameter: 8 mm), originally the tip of the
antenna, was in full contact with the finger pad, pre-
venting slippage between the finger and the base of the
stick while balancing. The participants practised for 6
weeks (5 minutes per day, totalling 3.5 hours) and were
given a further 10 minutes of practice immediately be-
fore data collection. Twenty trials were performed. The
experimental procedures were approved by the Human
Research Ethics Committee of the University of Sydney
and informed written consent was obtained.

In order to track the three-dimensional (3-D) move-
ment of the stick, reflective markers (25 mm diameter
Styrofoam spheres [0.56 g] covered with retro-reflective
tape) were attached to the stick, one at its tip and the
other around the stick 9 cm above its base. The po-
sition where the tip of the finger contacted the base
of the stick was derived mathematically from the loca-
tion of the two markers on the stick. Ten cameras (Ea-
gle Cameras, Motion Analysis Corporation, Santa Rosa,
CA, USA) were used to track the 3-D movements at 100
Hz. The laboratory coordinate system was defined as ML
(medio-lateral), AP (antero-posterior) and V (vertical)
axes, paralleling the orientation of the participants at
the start of the task.

The subjects were divided into two groups on the
basis of those who balanced the pole for more than 15
seconds in more than 15 trials out of 20 (the ”good”
group) and those who balanced it for less time than this
(the ”poor” group). Figure 12 shows two typical sets of
balancing data in both the mediolateral (ML) and an-
teroposterior (AP) planes4. z is estimated by assuming
Equation (25) and using Equations (13) and (8). Figure
12(a) shows the behaviour of a typical “good” subject;
although the angle has a strong periodic component, it
is kept within about 3◦ and the horizontal motion is con-
trolled to within about 0.2m. In contrast, Figure 12(b)
shows the behaviour of a typical “poor” subject; the stick
is dropped after about 10s and both the angle and hori-
zontal motion are larger than that of the “good” subject.

In Figure 12(a) and (b) it can be seen that θ changes
more rapidly than z. This reflects the difference between
rotational and translational movements of the stick. The
movement of the stick approximates to pure transla-
tion when the finger (hence the stick base) and stick tip
move equal distances in the same direction. In practice,
quasi-pure translation can only occur when θ is small,
the corresponding gravitational torque on the stick is
small and the movements of the finger and stick tip are
slow. As the finger moves faster (in response to increased
θ), the torque applied to the stick exceeds the gravi-

4 In this context, mediolateral corresponds to left-right mo-
tion and anteroposterior to forward-backwards motion.
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tational torque and the stick undergoes rotational mo-
tion opposite in direction to that of the finger move-
ment. Hence, at low frequencies the relation between
finger position and stick tip position is dominated by
translational movement, while at high frequencies the
relation between finger position and stick angle is dom-
inated by rotational movement. This was confirmed by
cross-correlational and spectrographic analyses of the re-
lation between finger position and stick tip position and
between finger position and stick angle. The finger and
stick tip positions were highly coupled, in phase (0◦),
with coherence square values close to unity at frequen-
cies below 0.75 Hz, above which frequency the coherence
dropped progressively towards zero by 3 Hz. In contrast,
the finger position and stick angle were poorly coupled
at low frequencies (coherence < 0.5) but by 0.75 Hz and
above, the finger movements were highly coupled (coher-
ence 0.9), out of phase (180◦), to stick angle. Thus, the
changes in z are slow compared to the changes in θ.

7 Parameter Estimation

This section shows how standard parameter estimation
methods (described in Section 7.1) can be used to extract
key parameters from experimental data.

This paper suggests that human stick balancing con-
trol can be modelled by the intermittent controller of
Section 4 which uses the continuous cascade controller
of Section 3, in the state-space form of Section 3.3, as
the underlying design method. The dynamic response
of a closed-loop system containing an intermittent con-
troller can be deduced when the intermittent interval ∆i

(61) is constant (Gawthrop 2009); there is, as yet, no
clear result for the more general case. However, in a spe-
cial case, it has been shown by Gawthrop et al. (2011)
that intermittent control masquerades as the underly-
ing continuous-time design. Guided by this result, and
in the absence of a clear theoretical result, the following
assumption is made:

Assumption 1 The signals arising from the closed-loop

system of the intermittent control of Figure 6 can be ap-

proximated by those arising for the underlying continu-

ous time design of Figure 5.

As discussed in Section 3, the damping terms ξθ and ξz

must be non-zero for practical reasons. However, to sim-
plify the subsequent data analysis a further assumption
is made:

Assumption 2

ξθ = ξz = 0

The inner-loop of the cascade control of Figure 2 is driven
by the outer loop signal θ0. As discussed in Section 6, it
is assumed that the outer loop is slow compared to the
inner-loop. This leads to a further assumption:

Assumption 3

θ0 = 0

Using Assumptions 1–3, the continuous-time controller
of Section 3.1 implies a closed-loop system where the
stick angle θ depends on two signals: the disturbance
d and the outer-loop setpoint θ0. From Equations (23)
and (24), and using Assumption 3, θ is related to d by a
second-order transfer function:

θ =
ρ

Lzs2 + g
d (75)

Similarly, using Equations (34) and (35) and setting z0 =
0 and kv = 0, z is also related to d by a second-order
transfer function:

z =
ρ

s2 + kp

d (76)

The parameter estimation method used here is de-
scribed in Section 7.1 and the validity of Equations (75)
and (76) is tested using simulation in Section 7.2. The
approach is applied to the real data (described in Section
6) in Section 7.3.

7.1 The state-variable filter method

Parameter estimation in the context of continuous-time
systems is a well established topic (Young 1981; Johans-
son 1994; Unbehauen and Rao 1990; Garnier et al. 2003;
Rao and Unbehauen 2006; Garnier and Wang 2008).
One approach is based on the state-variable filter sug-
gested by Young (1965). Rather than present the general
method, this section gives a specific implementation for
the systems discussed in this paper.

Define the second-order polynomial cθ(s) as

cθ(s) = s2 + c1s + c2 (77)

Then equation (75) can be rewritten as:

Lzs
2 + g

cθ(s)
θ =

ρ

cθ(s)
d (78)

Defining:

θf =
1

cθ(s)
θ (79)

θ′′

f =
s2

cθ(s)
θ (80)

and df =
ρ

gcθ(s)
d (81)

Equation (75) can be rewritten as:

θf = λθ′′

f + df (82)

where λ = −
Lz

g
(83)



12 Gawthrop, Lee, Halaki & O’Dwyer

The filtered signals θf and θ′′

f are obtained by passing
the measured signal θ through appropriate filters. Given
a set of N samples θfi and θ′′

fi of the filtered signals

indexed by i, an estimate λ̂ of λ can be obtained from
the standard least squares method:

λ̂ =

∑N
i=1

θ′′

fiθfi
∑N

i=1
θ′′2

fi

(84)

Using equation (83), an estimate L̂z of Lz is given by
Equation (84) and

L̂z = −gλ̂ (85)

In a similar fashion define zf and z′′

f as

zf =
1

cz(s)
z (86)

z′′

f =
s2

cz(s)
z (87)

where cz(s) = s2 + cz1s + cz2 (88)

Then using Equation (76), a least-squares estimate k̂p of
kp is given by:

k̂p =

∑N
i=1

z′′

fizfi
∑N

i=1
z′′2
fi

(89)

where zfi and z′′

fi are the ith samples of zf and z′′

i re-
spectively.

In the case of real data, z is not measured. However,
it can be approximately deduced from equations (8) and

(13) and the estimate L̂z from Equation (85) as:

ẑ = l̂zθ − φ (90)

where l̂z = L̂z + Lp (91)

Thus, in the case of real data, z is replaced by ẑ in Equa-
tions (86) and (87).

7.2 Simulated data

Figure 13 shows the results of the parameter estimation
of Section 7.1 based on the simulations of Section 5. The
four simulated “subjects” correspond to

1. continuous-control (Figure 7(b)) with disturbance stan-
dard deviation σd = 0.3,

2. zero-threshold intermittent control (Figure 8(b)) with
disturbance standard deviation σd = 0.03,

3. absolute threshold intermittent control with qt = 0.5◦

(Figure 9(a)) and with disturbance standard devia-
tion σd = 0.001 and

4. relative threshold intermittent control with qt = 0.5◦

(Figure 10(a)) and with disturbance standard devia-
tion σd = 0.001.
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Fig. 13 Parameter estimation: simulated data. Simulated
“subjects” 1–4 are continuous-control (Figure 7(b)), zero-
threshold intermittent control (Figure 8(b)), absolute thresh-
old intermittent control (Figure 9(a)) and relative threshold
intermittent control (Figure 10(a)) respectively. There are 20
sets of data for each. (a) Lz is estimated from simulated θ,
using SVF-based least squares given by Equations (84) and
(85). (b) kp is estimated from simulated z using the estimate
of Lz and SVF-based least squares given by Equation (89).
The simulated values of Lz and kp (see Table 1) are marked
on (a) and (b) respectively as horizontal lines. Each box plot
depicts the median, minimum and maximum values, and the
lower and upper quartiles.

With reference to Figure 11, the four values of σd cor-
respond to the same order of magnitude angle standard
deviation of about σθ = 2◦; this value was chosen to cor-
respond approximately to the behaviour of real subjects.

Each simulation was for 20 sec and 20 sequences were
generated for each simulated “subject”; this choice cor-
responds to the real data. Parameters were identified for
each subject and each sequence and the results are shown
as box plots in Figure 13.

Although simulated “subjects” 2, 3 and 4 correspond
to intermittent, not continuous, control, the estimated
parameters correspond closely to those of the underlying
continuous-time controller. This phenomenon is related
to masquerading (Gawthrop et al. 2011) and has been
observed in other contexts (Gollee et al. 2012). The vari-
ance of the estimate of kp is quite large; this is because
the data length is quite short compared to the time con-
stants of the horizontal dynamics.
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7.3 Real data

As discussed by Lee et al. (2012), data are available in
both the mediolateral (ML) and anteroposterior (AP)
planes. The data were analysed as discussed above for
each of the two groups, and separately in ML and AP
directions, and the results displayed in Figure 14 for the
“good” group and in Figure 15 for the “poor” group.

The 5 subjects of the “good” group shown in Fig-
ure 14, and the 9 subjects of the “poor” group shown in
Figure 15, have different estimated values of Lz which
are consistent for each subject. Thus angle control us-
ing a virtual pivot seems to be a common strategy for
all subjects. However, as seen in Figures 14 and 15, the
amplitude of the angular motion is larger for the “poor”
group than for the “good” group. The 5 subjects of the
“good” group shown in Figure 14 again show consistent
values for the estimate of kp in the ML direction, but
the value for kp in the AP direction is more variable as
measured by both mean and variance. As discussed by
Lee et al. (2012), this may be due to the fact that it is
harder for the subject to judge horizontal motion in the
AP direction. The 9 subjects of the “poor” group shown
in Figure 15 appear to be less consistent in the control of
horizontal motion (as evinced by kp) than the 5 subjects
of the “good” group. Moreover, as in the “good” group,
control in the AP direction is less consistent than that
in the ML direction.

It appears that subjects in both the “good” and “poor”
groups adopt the virtual pivot strategy as the values of
Lz are consistent for each subject. However, the sub-
jects in the “good” group exhibit smaller angular and
translational amplitudes, and more consistent values for
the estimate of the translational controller gain kp, than
subjects of the “poor” group.

8 Conclusions

In the context of stick balancing, the virtual pivot of
Lee et al. (2012) has been reinterpreted as the key to
simultaneously controlling the pendulum angle and the
horizontal pendulum position. In particular, the control
problem decomposes into the cascade control of two sec-
ond order systems: control of angle using finger acceler-
ation at an appropriate frequency to create the virtual
pivot and control of the horizontal position of the virtual
pivot using the pendulum angle controller setpoint.

The continuous cascade controller has been shown to
have an intermittent implementation which: accounts for
the known intermittency and delay in human control sys-
tems, masquerades as a continuous-time controller and
explains variability by the event-driven properties of in-
termittent control rather than by added noise. In prac-
tice, the finger/hand/arm system will have dynamics to
be included in the design. This could either be achieved
explicitly as described by Gawthrop et al. (2011) or im-
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Fig. 14 Parameter estimation: better subjects. The best (see
text) 5 out of 14 subjects are used. (a)&(c) are based on medi-
olateral (ML) data and (b)&(d) are based on anteroposterior
(AP) data. (a)&(b) Lz is estimated from measured θ, using
SVF-based least squares given by Equations (84) and (85).
(c)&(d) kp is estimated from measured φ using the estimate
of Lz and SVF-based least squares given by Equation (89).
Each box plot depicts the median, minimum and maximum
values, and the lower and upper quartiles ; outliers are plotted
as dots.
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Fig. 15 Parameter estimation: poorer subjects. The worst
(see text) 9 out of 14 subjects are used. (a)&(c) are based on
mediolateral (ML) data and (b)&(d) are based on anteropos-
terior (AP) data. (a)&(b) Lz is estimated from measured θ,
using SVF-based least squares given by Equations (84) and
(85). (c)&(d) kp is estimated from measured φ using the es-
timate of Lz and SVF-based least squares given by Equation
(89). Not only does each poorer subject have more variability
in the estimated parameters than those of the better subjects
of Figure 14, but the mean values are more variable between
subjects.

plicitly by approximating such dynamics by the pure
time delay td discussed in Section 4.

Two versions of event-driven intermittent control were
presented: absolute threshold (70) and relative threshold
(71). Although the parameter estimation results in Fig-
ure 13 are similar in each case, the visual appearance of
the simulations shown in Figures 9 & 10 suggest that the
latter gives behaviour closer to that of human subjects
but both theoretical and experimental research is needed
to clarify this point.

The threshold matrix Qt of Equations (70) and (71)
was chosen in Equation (74) to include only the angle θ.
It would be interesting to examine the effect of including
other terms such as angular velocity θ̇, translation z and
translational velocity ż.

Standard control engineering parameter estimation
methods based on the state-variable filter and least-squares
are evaluated using simulated data and shown to yield
the parameters of the underlying continuous-time con-
troller in the presence of intermittency and delay.

The method is applied to estimate controller parame-
ters from human data. The estimate of Lz (correspond-
ing to the virtual pivot location V) is of low variability
for each subject and of similar value between subjects
in both ML and AP motion. The estimate of kp (corre-
sponding to the virtual pivot translation z) is more vari-
able for each subject; this variability is greater for AP
motion and is greater for subjects categorised as poor in
terms of their ability to stabilise the stick for 20s.

It is known that the standard least-squares approach
may be subject to bias due to the properties of d. This
suggests two lines of future research: to examine the
properties of d corresponding to event-driven intermit-
tent control and to examine more sophisticated parame-
ter identification approaches such as maximum-likelihood
(Ljung 1999) and instrumental variables (Young 2011).

The difference between expert and non-expert sub-
jects is manifest in the variability of the kp estimates.
This suggests one way of tracking the progress of learn-
ing in human subjects.

The data analysis procedure used here does not dis-
tinguish between continuous and intermittent control but
rather relies on the masquerading property of intermit-
tent control (Gawthrop et al. 2011). However, it is known
that experiments can be devised to explicitly show inter-
mittency (Loram et al. 2012; van de Kamp et al. 2013).
It would be interesting to design experiments in the con-
text of stick balancing that could distinguish continuous
from intermittent control.

Figure 11, which illustrates how intermittency can
explain variability, may provide the basis for experiments
that could distinguish event-driven control from continuous-
time or fixed sample-interval intermittent control.
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