Skip to main content
Log in

A novel biologically inspired local feature descriptor

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Local feature descriptor is a fundamental representation for image patch which has been extensively used in many computer vision applications. In this paper, different from state-of-the-art features, a novel biologically inspired local descriptor (BILD) is proposed based on the visual information processing mechanism of ventral pathway in human brain. The local features used for constructing BILD are extracted by a two-layer network, which corresponds to the simple-to-complex cell hierarchy in the primary visual cortex (V1). It works in a similar way as the simple cell and complex cell do to get responses by applying the lateral inhibition from different orientations and operating an improved cortical pooling. To enhance the distinctiveness of BILD, we combine the local features from different orientations. Extensive evaluations have been performed for image matching and object recognition. Experimental results reveal that our proposed BILD outperforms many widely used descriptors such as SIFT and SURF, which demonstrate its efficiency for representing local regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adelson EH, Bergen JR (1985) Spatiotemporal energy models for the perception of motion. J Opt Soc Am A 2(2):284–99

    Article  CAS  PubMed  Google Scholar 

  • Agrawal M, Konolige K, Blas MR (2008) CenSurE: Center surround extremas for realtime feature detection and matching. In: Proceedings of the ECCV, pp 102–115

  • Alahi A, Ortiz R, Vandergheynst P (2012) FREAK: Fast Retina Keypoint. In: Proceedings of the IEEE International Conference on CVPR, pp 510–517

  • Azzopardi G, Petkov N (2012) A CORF computational model of a simple cell outperforms the Gabor function model. Biol Cybern 106(3):177–189

    Article  PubMed  Google Scholar 

  • Azzopardi G, Petkov N (2013) Trainable COSFIRE filters for keypoint detection and pattern recognition. IEEE Trans Pattern Anal Mach Intell 35(2):490–503

    Article  PubMed  Google Scholar 

  • Bay H, Tuytelaars T, Van Gool L (2006) SURF: Speeded up robust features. Proc ECCV, PT 1:404–417

    Google Scholar 

  • Beghdadi A, Larabi MC, Bouzerdoum A, Iftekharuddin KM (2013) A survey of perceptual image processing methods. Signal Process: Image Commun 28(8):811–831

    Google Scholar 

  • Belongie S, Malik J, Puzicha J (2002) Shape matching and object recognition using shape contexts. IEEE Trans Patt Anal Mach Intell 24:509–522

    Article  Google Scholar 

  • Berkes P, Wiskott L (2005) Slow feature analysis yields a rich repertoire of complex cell properties. J Vis 5:579–602

    Article  PubMed  Google Scholar 

  • Calonder M, Lepetit V, Strecha C, Fua P (2010) BRIEF: binary robust independent elementary features. In: Proceedings of the ECCV, pp 778–792

  • Carandini M, Heeger DJ (1994) Summation and division by neurons in primate visual cortex. Science 264(5163):1333–1336

    Article  CAS  PubMed  Google Scholar 

  • Carneiro G, Jepson AD (2003) Multi-scale phase-based local features. In: Proceedings of the IEEE international conference on CVPR, pp 736–743

  • Cui CH, Ngan KN (2013) Global propagation of affine invariant features for robust matching. IEEE Trans Image Process 22(7):2876–2888

    Article  PubMed  Google Scholar 

  • Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. Proc IEEE Int Conf CVPR 1:886–893

    Google Scholar 

  • Daugman JG (1985) Uncertainty relations for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J Opt Soc Am A 2(7):1160–1169

    Article  CAS  PubMed  Google Scholar 

  • Dorko G, Schmid C (2003) Selection of scale-invariant parts for object class recognition. In: Proceedings of the ninth IEEE international conference on computer vision, pp 634–640

  • Fergus R, Perona P, Zisserman A (2003) Object class recognition by unsupervised scale-invariant learning. Proc IEEE Int Conf CVPR 2:264–271

    Google Scholar 

  • Ferrari V, Tuytelaars T, Van Gool L (2004) Simultaneous object recognition and segmentation by image exploration. In: Proceedings of the ECCV, pp 40–54

  • Freeman WT, Adelson EH (1991) The design and use of steerable filters. IEEE Trans Pattern Anal Mach Intell 13:891–906

    Article  Google Scholar 

  • Fukushima K (1980) Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern 36(4):193–202

    Article  CAS  PubMed  Google Scholar 

  • Fukushima K (2003) Neocognitron for handwritten digit recognition. Neurocomputing 51:161–180

    Article  Google Scholar 

  • Van Gool L, Moons T, Ungureanu D (1996) Affine/photometric invariants for planar intensity patterns. Proc ECCV Lect Notes Comput Sci 1064:642–651

    Article  Google Scholar 

  • Griffin G, Holub A, Perona P (2007) Caltech-256 object category dataset. Technical Report 7694, California Institute of Technology

  • Grossberg S (2007) Towards a unified theory of neocortex: laminar cortical circuits for vision and cognition. Prog Brain Res 165:79–104

    Article  PubMed  Google Scholar 

  • Hebb DO (1949) The organization of behavior. Wiley, New York

    Google Scholar 

  • Huang YZ, Huang KQ, Tao DC, Tan TN, Li XL (2011a) Enhanced biologically inspired model for object recognition. IEEE Trans Syst Man Cybern B 41(6):1668–1680

    Article  Google Scholar 

  • Huang KQ, Tao DC, Yuan Y, Li XL, Tan TN (2011b) Biologically inspired features for scene classification in video surveillance. IEEE Trans Syst Man Cybern B 41(1):307–313

    Article  Google Scholar 

  • Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the Cat’s visual cortex. J Physiol 160:106–154

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang AW, Wang CH, Xiao BH, Dai RW (2010) A new biologically inspired feature for scene image classification. In: Proceedings of the IEEE international conference on ICPR, pp 758–761

  • Jones JP, Palmer LA (1987) An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. J Neurophysiol 58:1233–1258

    CAS  PubMed  Google Scholar 

  • Ke Y, Sukthankar R (2004) PCA-SIFT: a more distinctive representation for local image descriptors. Proc IEEE Int Conf CVPR 2:506– 513

    Google Scholar 

  • Kobatake E, Tanaka K (1994) Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. J Neurophysiol 71:856–867

    CAS  PubMed  Google Scholar 

  • Kouh M, Poggio T (2008) A canonical neural circuit for cortical nonlinear operations. Neural Comput 20:1427–1451

    Article  PubMed  Google Scholar 

  • Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proceedings of the IEEE international conference on CVPR, pp 2169–2178

  • Leutenegger S, Chli M, Siegwart R (2011) BRISK: binary robust invariant scalable keypoints. In: Proceedings of ICCV, pp 2548–2555

  • Li J, Allinson NM (2008) A comprehensive review of current local features for computer vision. Neurocomputing 71:1771–1787

    Article  Google Scholar 

  • Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60:91–110

    Article  Google Scholar 

  • Ma BP, Su Y, Jurie F (2012) BiCov: a novel image representation for person re-identification and face verification. Proc British Mach Vis Conf 57:1–11

    Google Scholar 

  • Ma BP, Chai XJ, Wang TJ (2013) A novel feature descriptor based on biologically inspired feature for head pose estimation. Neurocomputing 115:1–10

    Article  Google Scholar 

  • Marino J, Schummers J, Lyon DC, Schwabe L, Beck O, Wiesing P, Obermayer K, Sur M (2005) Invariant computations in local cortical networks with balanced excitation and inhibition. Nat Neurosci 8(2):194–201

    Article  CAS  PubMed  Google Scholar 

  • Mikolajczyk K, Schmid C (2001) Indexing based on scale invariant interest points. Proc 8th IEEE Int Conf Comput Vis 1:525–531

    Article  Google Scholar 

  • Mikolajczyk K, Schmid C (2005a) A performance evaluation of local descriptors. IEEE Trans Pattern Anal Mach Intell 27:1615–1630

    Article  PubMed  Google Scholar 

  • Mikolajczyk K, Leibe B, Schiele B (2005b) Local features for object class recognition. In: Proceedings of the 10th IEEE international conference on computer vision, vols. 1 and 2, pp 1792–1799

  • Moreels P, Perona P (2005) Evaluation of features detectors and descriptors based on 3D objects. In: Proceedings of the 10th IEEE international conference on computer vision, vols. 1 and 2, pp 800–807

  • Mutch J, Lowe DG (2008) Object class recognition and localization using sparse features with limited receptive fields. Int J Comput Vis 80(1):45–57

    Article  Google Scholar 

  • Perrett DI, Oram M (1993) The neurophysiology of shape processing. Image Vis Comput 11:317–333

    Article  Google Scholar 

  • Petkov N (1995) Biologically motivated computationally intensive approaches to image pattern-recognition. Futur Gener Comput Syst 11:451–465

    Article  Google Scholar 

  • Riesenhuber M, Poggio T (1999) Hierarchical models of object recognition in cortex. Nat Neurosci 2:1019–1025

    Article  CAS  PubMed  Google Scholar 

  • Salgian AS (2008) Combining local descriptors for 3D object recognition and categorization. In: Proceedings of the IEEE international conference on ICPR, pp 3217–3220

  • Schaffalitzky F, Zisserman A (2002) Multi-view matching for unordered image sets, or “how do I organize my holiday snaps?”. In: Proceedings of the ECCV, pp 414–431

  • Schmid C, Mohr R (1997) Local gray value invariants for image retrieval. IEEE Trans Pattern Anal Mach Intell 19(5):530–534

    Article  Google Scholar 

  • Sclar G, Freeman RD (1982) Orientation selectivity in the cats striate cortex is invariant with stimulus contrast. Exp Brain Res 46(3):457–461

    Article  CAS  PubMed  Google Scholar 

  • Serre T, Oliva A, Poggio T (2007a) A feedforward architecture accounts for rapid categorization. Proc Natl Acad Sci USA 104:6424–6429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Serre T, Wolf L, Bileschi S, Riesenhuber M, Poggio T (2007b) Robust object recognition with cortex-like mechanisms. IEEE Trans Pattern Anal Mach Intell 29:411–426

    Article  PubMed  Google Scholar 

  • Sillito A (1975) The contribution of inhibitory mechanisms to the receptive field properties of neurons in the striate cortex of the cat. J Physiol 250:305–329

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stringer SM, Perry G, Rolls ET, Proske JH (2006) Learning invariant object recognition in the visual system with continuous transformations. Biol Cybern 94:128–142

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K (1996) Inferotemporal cortex and object vision. Annu Rev Neurosci 19:109–139

    Article  CAS  PubMed  Google Scholar 

  • Tao DC, Tang X, Li XL, Wu XD (2006) Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval. IEEE Trans Pattern Anal Mach Intell 28:1088–1099

    Article  PubMed  Google Scholar 

  • Tao DC, Li XL, Wu XD, Maybank SJ (2007) General tensor discriminant analysis and Gabor features for gait recognition. IEEE Trans Pattern Anal Mach Intell 29:1700–1715

    Article  PubMed  Google Scholar 

  • Terzic K, Lobato D, Saleiro M, Martins J, Farrajota M (2013) Biological models for active vision: towards a unified architecture. Proc ICVS Lect Notes Comput Sci 7963:113–122

    Article  Google Scholar 

  • Trzcinski T, Lepetit V (2012) Efficient discriminative projections for compact binary descriptors. In: Proceedings of the ECCV, pp 228–242

  • Tuytelaars T, Van Gool L (2004) Matching widely separated views based on affine invariant regions. Int J Comput Vis 59:61–85

    Article  Google Scholar 

  • Yang KF, Gao SB, Li CY, Li YJ (2013) Efficient color boundary detection with color-opponent mechanisms. In: Proceedings of the CVPR, pp 2810–2817

  • Yang JC, Yu K, Gong YH, Huang T (2009) Linear spatial pyramid matching using sparse coding for image classification. Proc IEEE Int Conf CVPR 1–4:1794–1801

    Google Scholar 

  • Van der Zant T, Schomaker L, Haak K (2008) Handwritten-word spotting using biologically inspired features. IEEE Trans Pattern Anal Mach Intell 30(11):1945–1957

    Article  PubMed  Google Scholar 

  • Zhang J, Barhomi Y, Serre T (2012) A new biologically inspired color image descriptor. Proc ECCV Lect Notes Comput Sci 7576:312–324

    Article  Google Scholar 

  • Zhang SP, Yao HX, Zhou HY, Sun X, Liu SH (2013) Robust visual tracking based on online learning sparse representation. Neurocomputing 100:31–40

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (NSFC) under the Grant No. 61004111, No. 61273279 and No. 61273241.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delie Ming.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Tian, T., Tian, J. et al. A novel biologically inspired local feature descriptor. Biol Cybern 108, 275–290 (2014). https://doi.org/10.1007/s00422-013-0583-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-013-0583-1

Keywords

Navigation