Skip to main content
Log in

Visually guided gait modifications for stepping over an obstacle: a bio-inspired approach

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

There is an increasing interest in conceiving robotic systems that are able to move and act in an unstructured and not predefined environment, for which autonomy and adaptability are crucial features. In nature, animals are autonomous biological systems, which often serve as bio-inspiration models, not only for their physical and mechanical properties, but also their control structures that enable adaptability and autonomy—for which learning is (at least) partially responsible. This work proposes a system which seeks to enable a quadruped robot to online learn to detect and to avoid stumbling on an obstacle in its path. The detection relies in a forward internal model that estimates the robot’s perceptive information by exploring the locomotion repetitive nature. The system adapts the locomotion in order to place the robot optimally before attempting to step over the obstacle, avoiding any stumbling. Locomotion adaptation is achieved by changing control parameters of a central pattern generator (CPG)-based locomotion controller. The mechanism learns the necessary alterations to the stride length in order to adapt the locomotion by changing the required CPG parameter. Both learning tasks occur online and together define a sensorimotor map, which enables the robot to learn to step over the obstacle in its path. Simulation results show the feasibility of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aoi S, Tsuchiya K (2005) Locomotion control of a biped robot using nonlinear oscillators. Auton Robots 19(3):219–232

    Article  Google Scholar 

  • Aoi S, Tsuchiya K (2007) Adaptive behavior in turning of an oscillator-driven biped robot. Auton Robots 23(1):37–57

    Article  Google Scholar 

  • Albiez, J, Ilg W, Luksch T, Berns K, Dillmann R (2001) Learning a reactive posture control on the four-legged walking machine bisam. In: IEEE/RSJ international conference on intelligent robots and systems, 2001. Proceedings, vol 2, pp 999–1004. IEEE

  • Aoi S, Sasaki H, Kazuo TA (2007) Multilegged modular robot that meanders: investigation of turning maneuvers using its inherent dynamic characteristics. SIAM J Appl Dyn Syst 6(2):348–377

    Article  Google Scholar 

  • Aoi S, Ogihara N, Funato T, Sugimoto Y, Tsuchiya K (2010a) Evaluating functional roles of phase resetting in generation of adaptive human bipedal walking with a physiologically based model of the spinal pattern generator. Biol Cybern 102(5):373–387

    Article  PubMed  Google Scholar 

  • Aoi S, Yamashita T, Ichikawa A, Tsuchiya K (2010b) Hysteresis in gait transition induced by changing waist joint stiffness of a quadruped robot driven by nonlinear oscillators with phase resetting. In: Proceedings of the 2010 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 1915–1920

  • Aoi S, Fujiki S, Yamashita T, Kohda T, Senda K, Tsuchiya K (2011b) Generation of adaptive splitbelt treadmill walking by a biped robot using nonlinear oscillators with phase resetting. In: Proceedings of the 2011 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 2274–2279

  • Berns K, Ilg W, Deck M, Dillmann R (2008) Adaptive control of the four-legged walking machine BISAM. In: Proceedings of the 1998 IEEE international conference on control applications, vol 1, pp 428–432

  • Brown TG (1911) The intrinsic factors in the act of progression in the mammal. In: Proceedings of the Royal Society of London. Series B, containing papers of a biological character, vol 84, pp 308–319

  • Buchli J, Ijspeert AJ (2008) Self-organized adaptive legged locomotion in a compliant quadruped robot. Auton Robots 25:331–347

    Article  Google Scholar 

  • Burke RE (2007) Sir Charles Sherrington’s The integrative action of the nervous system: a centenary appreciation. Gait Brian 130(4):887–894

    Article  Google Scholar 

  • Büschges A, Borgmann A (2013) Network modularity: back to the future in motor control. Curr Biol 23(29):R936–R938

    Article  PubMed  Google Scholar 

  • Cruse H, Kindermann T, Schumm M, Dean J, Schmitz J (1998) Walknet–a biologically inspired network to control six-legged walking. Neural Netw 11(7):1435–1447

    Article  PubMed  Google Scholar 

  • Doshi F, Brunskill E, Shkolnik A, Kollar T, Rohanimanesh K, Tedrake R, Roy N (2007) Collision detection in legged locomotion using supervised learning. In: IEEE/RSJ international conference on intelligent robots and systems, 2007. IROS 2007, pp 317–322, Oct 2007

  • Drew T, Andujar J-E, Lajoie K, Yakovenko S (2008) Cortical mechanisms involved in visuomotor coordination during precision walking. Brain Res Rev 57:199–211

    Article  PubMed  Google Scholar 

  • Endo G, Morimoto J, Nakanishi J, Cheng G (2004) An empirical exploration of a neural oscillator for biped locomotion control. In: Proceedings of the 2004 IEEE international conference on robotics and automation, ICRA 2004, New Orleans, LA, USA, 26 April–1 May, pp 3036–3042

  • Endo G, Nakanishi J, Morimoto J, Cheng G (2005) Experimental studies of a neural oscillator for biped locomotion with QRIO. In: Proceedings of the 2005 IEEE international conference on robotics and automation, ICRA 2005, pp 596–602

  • Forssberg H (1979) Stumbling corrective reaction: a phase-dependent compensatory reaction during locomotion. J Neurophysiol 42(4):936–953

    CAS  PubMed  Google Scholar 

  • Fukuoka Y, Kimura H, Cohen A (2003) Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts. Int J Robot Res 22(3–4):187

    Article  Google Scholar 

  • Geng T, Porr B, Wörgötter F (2006) Fast biped walking with a sensor-driven neuronal controller and real-time online learning. Int J Robot Res 25(3):243–259

    Article  Google Scholar 

  • Geyer H, Herr H (2010) A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities. IEEE Trans Neural Syst Rehabil Eng 18(3): 263–273

    Google Scholar 

  • Gritsenko V, Yakovenko S, Kalaska JF (2009) From integration of predictive feedforward and sensory feedback signals for online control of visually guided movement. J Neurophysiol 102:914–930

    Article  CAS  PubMed  Google Scholar 

  • Held R (1961) Sensory deprivation: facts in search of a theory. Exposure-history as a factor in maintaining stability of perception and coordination. J Nerv Ment Dis 132:26–32

    Google Scholar 

  • Heliot R, Espiau B (2008) Multisensor input for cpg-based sensory—motor coordination. IEEE Trans Robot 24(1):191–195

    Article  Google Scholar 

  • Hoffmann H (2007) Perception through visuomotor anticipation in a mobile robot. Neural Netw 20(1):22–33

    Article  PubMed  Google Scholar 

  • Ijspeert A (2008) special issue: Central pattern generators for locomotion control in animals and robots: a review. Neural Netw 21(4):642–653

    Article  PubMed  Google Scholar 

  • Ilg W, Albiez J, Jedele H, Berns K, Dillmann R (1999) Adaptive periodic movement control for the four legged walking machine bisam. In: IEEE international conference on robotics and automation. Proceedings, vol 3, pp 2354–2359. IEEE

  • Ishii T, Masakado S, Ishii K (2004) Locomotion of a quadruped robot using CPG. In: Proceedings in 2004 IEEE international joint conference on neural networks, vol 4, pp 3179–3184

  • Kalakrishnan M, Buchli J, Pastor P, Mistry M, Schaal S (2010) Fast, robust quadruped locomotion over challenging terrain. In: IEEE international conference on robotics and automation (ICRA), 2010, pp 2665–2670. IEEE

  • Kiehn O (2006) Locomotor circuits in the mammalian spinal cord. Annu Rev Neurosci 29(1):279–306

    Article  CAS  PubMed  Google Scholar 

  • Kimura H, Fukuoka Y (2004) Biologically inspired adaptive dynamic walking in outdoor environment using a self-contained quadruped robot: ‘Tekken2’. In: Proceedings. 2004 IEEE/RSJ international conference on intelligent robots and systems, 2004. (IROS 2004), vol 1, pp 986–991

  • Kimura H, Fukuoka Y, Cohen A (2007a) Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts. Int J Robot Res 26(5):475

    Article  Google Scholar 

  • Kimura H, Fukuoka Y, Cohen AH (2007b) Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts. Int J Robot Res 26(5):475–490

    Article  Google Scholar 

  • Komatsu T, Usui M (2005) Dynamic walking and running of a bipedal robot using hybrid central pattern generator method. In: Proceedings of the 2005 IEEE international conference mechatronics and automation, vol 2, pp 987–992

  • Lee DN, Lishman JR, Thomson JA (1982) Regulation of gait in long jumping. J Exp Psychol Hum Percept Perform 8(3):448

    Article  Google Scholar 

  • Lewis M (2002) Detecting surface features during locomotion using optic flow. In: IEEE international conference on robotics and automation, 2002. Proceedings. ICRA ’02, vol 1, pp 305–310

  • Lewis M, Simó L (1999) Elegant stepping: a model of visually triggered gait adaptation. Connect Sci 11(3):331–344

    Article  Google Scholar 

  • Lewis MA, Simó LS (2001) Certain principles of biomorphic robots. Auton Robots 11(3):221–226

    Article  Google Scholar 

  • Lewis M, Bekey G (2002) Gait adaptation in a quadruped robot. Auton Robots 12(3):301–312

    Article  Google Scholar 

  • Maes P, Brooks R (1990) Learning to coordinate behaviors. In: Proceedings of the eighth national conference on artificial intelligence, pp 796–802

  • Manoonpong P, Wörgötter F (2009) Efference copies in neural control of dynamic biped walking. Robot Auton Syst 57(11):1140–1153

    Article  Google Scholar 

  • Manoonpong P, Geng T, Kulvicius T, Porr B, Wörgötter F (2007) Adaptive, fast walking in a biped robot under neuronal control and learning. PLoS Comput Biol 3(7):e134

    Article  PubMed Central  PubMed  Google Scholar 

  • Manoonpong P, Parlitz U, Wörgötter F (2013) Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines. Front Neural Circuits 7:12 doi 10.339/fncri.2013.00012

    Google Scholar 

  • Marder E, Bucher D, Schulz DJ, Taylor AL (2005) Invertebrate central pattern generation moves along. Curr Biol 15(17):R685–R699

    Article  CAS  PubMed  Google Scholar 

  • Matos V, Santos C (2011) Omnidirectional locomotion in a quadruped robot: a cpg-based approach. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), 2010, pp 3392–3397. IEEE

  • Matsubara T, Morimoto J, Nakanishi J, Sato M, Doya K (2005) Learning CPG-based biped locomotion with a policy gradient method. In: Proceedings of the 2005 5th IEEE-RAS international conference on humanoid robots, pp 208–213

  • Maufroy C, Nishikawa T, Kimura H (2010a) Stable dynamic walking of a quadruped robot Kotetsu; using phase modulations based on leg loading/unloading. In: Proceedings of the 2010 IEEE international conference on robotics and automation, ICRA 2010, pp 5225–5230

  • Maufroy C, Kimura H, Takase K (2010b) Integration of posture and rhythmic motion controls in quadrupedal dynamic walking using phase modulations based on leg loading/unloading. Auton Robots 28(3):331–353

    Article  Google Scholar 

  • McVea D, Pearson K (2007a) Contextual learning and obstacle memory in the walking cat. Integr Comp Biol 47(4):457–464

    Article  CAS  PubMed  Google Scholar 

  • McVea DA, Pearson KG (2007b) Long-lasting, context-dependent modification of stepping in the cat after repeated stumbling-corrective responses. J Neurophysiol 97(1):659–669

    Article  CAS  PubMed  Google Scholar 

  • Miall R, Wolpert DM (1996) Forward models for physiological motor control. Neural Netw 9(8):1265–1279

    Article  PubMed  Google Scholar 

  • Michel O (2004) Webots: professional mobile robot simulation. J Adv Robot Syst 1(1):39–42

    Google Scholar 

  • Morimoto J, Hyon S, Atkeson CG, Cheng G (2008a) Low-dimensional feature extraction for humanoid locomotion using kernel dimension reduction. In: Proceedings of the 2008 IEEE international conference on robotics and automation, ICRA 2008, pp 2711–2716

  • Morimoto J, Endo G, Nakanishi J, Cheng GA (2008b) Biologically inspired biped locomotion strategy for humanoid robots: modulation of sinusoidal patterns by a coupled oscillator model. IEEE Trans Robot 24(1):185–191

    Article  Google Scholar 

  • Ogino M, Katoh Y, Aono M, Asada M, Hosoda K (2004) Reinforcement learning of humanoid rhythmic walking parameters based on visual information. Adv Robot 18(7):677–697

    Article  Google Scholar 

  • Orlovskii GN, Deliagina TG, Grillner S (1999) Neuronal control of locomotion: from mollusc to man. Oxford University Press, Oxford

    Book  Google Scholar 

  • Pastor P, Kalakrishnan M, Chitta S, Theodorou E, Schaal S (2011a) Skill learning and task outcome prediction for manipulation. In: IEEE international conference on robotics and automation (ICRA), pp 3828–3834. IEEE

  • Pastor P, Righetti L, Kalakrishnan M, Schaal S (2011b) Online movement adaptation based on previous sensor experiences. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 365–371. IEEE

  • Pearson K (2004) Generating the walking gait: role of sensory feedback. Brain mechanisms for the integration of posture and movement, vol 143, Elsevier, Amsterdam, pp 123–129

  • Prochazka A (2002) The man-machine analogy in robotics and neurophysiology. J Autom Control 12:4–8

    Article  Google Scholar 

  • Prochazka A, Gritsenko V, Yakovenko S (2002) Sensory control of locomotion: reflexes versus higher-level control. Sensori-motor control, vol 57. Kluwer, New York

    Google Scholar 

  • Righetti L, Ijspeert A (2008) Pattern generators with sensory feedback for the control of quadruped locomotion. In: IEEE international conference on robotics and automation, 2008. ICRA 2008, pp 819–824, May 2008

  • Rossignol S, Dubuc R, Gossard J-P (2006) Dynamic sensorimotor interactions in locomotion. Physiol Rev 86(1):89–154

    Google Scholar 

  • Santos CP, Matos V (2012) Cpg modulation for navigation and omnidirectional quadruped locomotion. Robot Auton Syst 60(6):912–927

    Article  Google Scholar 

  • Schenck W, Möller R (2007) Training and application of a visual forward model for a robot camera head. In: Butz MV, Sigaud O, Pezzulo G, Baldassarre G Anticipatory behavior in adaptive learning systems, pp 153–169. Springer, Berlin

  • Schröder-Schetelig J, Manoonpong P, Wörgötter F (2010), Using efference copy and a forward internal model for adaptive biped walking. Auton Robots 29:1–10

    Google Scholar 

  • Shimada S, Egami T, Ishimura K, Wada M (2002) Neural control of quadruped robot for autonomous walking on soft terrain. In: Asama H, Arai T, Fukuda T, Hasegawa T (eds) Distributed autonomous robotic systems, vol 5. Springer, Japan, pp 415–423

  • Silva P, Matos V, Santos CP (2012) Adaptive quadruped locomotion: learning to detect and avoid an obstacle. In: Ziemke T, Balkenius C, Hallam J (eds) From animals to animats, vol 12. Springer, pp 361–370

  • Sousa J, Matos V, Peixoto dos Santos C (2010) A bio-inspired postural control for a quadruped robot: an attractor-based dynamics. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 5329–5334. IEEE

  • Sugimoto N, Morimoto J (2011) Phase-dependent trajectory optimization for CPG-based biped walking using path integral reinforcement learning. In: Proceedings of the 11th IEEE-RAS international conference on humanoid robots, pp 255–260

  • Sutton R, Barto A (1998) Reinforcement learning: An introduction, vol 1. Cambridge University Press, Cambridge

    Google Scholar 

  • Taga G, Yamaguchi Y, Shimizu H (1991) Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment. Biol Cybern 65(3):147–159

    Google Scholar 

  • Taga G (1995a) A model of the neuro-musculo-skeletal system for human locomotion–I. Emergence of basic gait. Biol Cybern 73(2):97–111

    Article  CAS  PubMed  Google Scholar 

  • Taga G (1995b) A model of the neuro-musculo-skeletal system for human locomotion—II. Real-time adaptability under various constraints. Biol Cybern 73(2):113–121

    Article  CAS  PubMed  Google Scholar 

  • Taga G (1998) A model of the neuro-musculo-skeletal system for anticipatory adjustment of human locomotion during obstacle avoidance. Biol Cybern 78(1):9–17

    Article  CAS  PubMed  Google Scholar 

  • Takemura H, Deguchi M, Ueda J, Matsumoto Y, Ogasawara T (2005) Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment. Slip-adaptive walk of quadruped robot. Robot Auton Syst 53:124–141

    Article  Google Scholar 

  • Takemura H, Ueda J, Matsumoto Y, Ogasawara T (2002) A study of a gait generation of a quadruped robot based on rhythmic control–optimization of CPG parameters by a fast dynamics simulation environment. In: Proceedings of 5th international conference on climbing and walking robots (CLAWAR 2002), pp 759–766

  • von Holst E, Mittelstaedt H (1950) Das Reafferenzprinzip. Naturwissenschaften 37(20):464–476

    Article  Google Scholar 

  • Wilkinson EJ, Sherk HA (2005) The use of visual information for planning accurate steps in a cluttered environment. Behav Brain Res 164(2):270–274

    Article  PubMed  Google Scholar 

  • Wolpert D, Kawato M (1998) Multiple paired forward and inverse models for motor control. Neural Netw 11(7–8):1317–1329

    Article  CAS  PubMed  Google Scholar 

  • Yakovenko S, Gritsenko V, Prochazka A (2004) Contribution of stretch reflexes to locomotor control: a modeling study. Biol Cybern 90(2):146-155

    Google Scholar 

Download references

Acknowledgments

We thank Keir Pearson, Arthur Prochazka and Trevor Drew for their suggestions related to the work. This work is funded by FEDER Funding supported by the Operational Program Competitive Factors—COMPETE and National Funding supported by the FCT—Portuguese Science Foundation through projects PEst-OE/EEI/LA0009/2011 and PTDC/EEACRO/100655/ 2008. Pedro Silva is supported by Grant CRO-BI-2012(2), and Vitor Matos is supported by SFRH/BD/62047/2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina P. Santos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mpg 8298 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, P., Matos, V. & Santos, C.P. Visually guided gait modifications for stepping over an obstacle: a bio-inspired approach. Biol Cybern 108, 103–119 (2014). https://doi.org/10.1007/s00422-014-0586-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-014-0586-6

Keywords

Navigation