Skip to main content
Log in

An ideal-observer model of human sound localization

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

In recent years, a great deal of research within the field of sound localization has been aimed at finding the acoustic cues that human listeners use to localize sounds and understanding the mechanisms by which they process these cues. In this paper, we propose a complementary approach by constructing an ideal-observer model, by which we mean a model that performs optimal information processing within a Bayesian context. The model considers all available spatial information contained within the acoustic signals encoded by each ear. Parameters for the optimal Bayesian model are determined based on psychoacoustic discrimination experiments on interaural time difference and sound intensity. Without regard as to how the human auditory system actually processes information, we examine the best possible localization performance that could be achieved based only on analysis of the input information, given the constraints of the normal auditory system. We show that the model performance is generally in good agreement with the actual human localization performance, as assessed in a meta-analysis of many localization experiments (Best et al. in Principles and applications of spatial hearing, pp 14–23. World Scientific Publishing, Singapore, 2011). We believe this approach can shed new light on the optimality (or otherwise) of human sound localization, especially with regard to the level of uncertainty in the input information. Moreover, the proposed model allows one to study the relative importance of various (combinations of) acoustic cues for spatial localization and enables a prediction of which cues are most informative and therefore likely to be used by humans in various circumstances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Algazi VR, Avendano C, Duda RO (2001) Elevation localisation and head-related transfer function analysis at low frequencies. J Acoust Soc Am 109:1110–1122

    Article  PubMed  CAS  Google Scholar 

  • Best V, Kalluri S, McLachlan S, Valentine S, Edwards, Carlile S (2010) A comparison of CIC and BTE hearing aids for three-dimensional localisation of speech. Int J Audiol 1–10 (early online)

  • Best V, Brungart D, Carlile S, Jin C, Macpherson E, Martin R, McAnally K, Sabin A, Simpson B (2011) A meta-analysis of localisation errors made in the anechoic free field. In: Principles and applications of spatial hearing. World Scientific, Singapore, pp 14–23

  • Blauert J (1997) Spatial hearing: the psychophysics of human sound localisation. MIT Press, Cambridge, MA

    Google Scholar 

  • Boyd A, Whitmer W, Soraghan J, Akeroyd M (2012) Auditory externalization in hearing-impaired listeners: the effect of pinna cues and number of talkers. J Acoust Soc Am 131:268–274

    Google Scholar 

  • Brungart DS, Rabinowitz WM (1999) Auditory localization of nearby sources. Head-related transfer functions. J Acoust Soc Am 106:1465–1479

    Article  PubMed  CAS  Google Scholar 

  • Carlile S, Pralong D (1994) The location-dependent nature of perceptually salient features of the human head-related transfer function. J Acoust Soc Am 95:3445–3459

    Article  Google Scholar 

  • Colburn HS (1973) Theory of binaural interaction based on auditory-nerve data. I. General strategy and preliminary results on interaural discrimination. J Acoust Soc Am 54(6):1458–1470

    Article  PubMed  CAS  Google Scholar 

  • Colburn HS, Kulkarni A (2005) Models of sound localisation. In: Popper AN, Fay RR (eds) Sound source localisation. Springer, Berlin

  • Dabak AG, Johnson DH (1993) Function-based modeling of binaural processing: level and time cues. J Acoust Soc Am 94(5):2604–2616

    Article  PubMed  CAS  Google Scholar 

  • Dahmen JC, Keating P, Nodal FR, Schulz AL, King AJ (2010) Adaptation to stimulus statistics in the perception and neural representation of auditory space. Neuron 66:937–948

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Domnitz R (1973) The interaural time jnd as a simultaneous function of interaural time and interaural amplitude. J Acoust Soc Am 53(6):1549–1552

    Article  PubMed  CAS  Google Scholar 

  • Duda RO, Hart PE, Stork DG (2001) Pattern classification, 2nd edn. Wiley, New York

    Google Scholar 

  • Hafter ER, De maio J (1975) Difference thresholds for interaural delay. J Acoust Soc Am 57:181–187

    Article  PubMed  CAS  Google Scholar 

  • Hancock KE, Delgutte B (2004) A physiologically based model of interaural time difference discrimination. J Neurosci 24:7110–7117

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hartmann WM, Constan ZA (2002) Interaural level differences and the level-meter model. J Acoust Soc Am 112:1037–1045

    Article  PubMed  Google Scholar 

  • Hofman PM, Van Opstal AJ (2003) Binaural weighting of pinna cues in human sound localization. Exp Brain Res 148:458–470

    PubMed  CAS  Google Scholar 

  • Hofman PM, Van Riswick JG, Van Opstal AJ (1998) Relearning sound localisation with new ears. Nat Neurosci 1:417–421

    Article  PubMed  CAS  Google Scholar 

  • Jin C, Corderoy A, Carlile S, van Schaik A (2004) Contrasting monaural and interaural spectral cues for human sound localisation. J Acoust Soc Am 115:3124–3141

    Article  PubMed  Google Scholar 

  • Kuhn GF (1977) Model for the interaural time differences in the azimuth plane. J Acoust Soc Am 62:157–167

    Article  Google Scholar 

  • Kulkarni A, Colburn HS (1998) Role of spectral detail in sound-source localisation. Nature 396:747–749

    Article  PubMed  CAS  Google Scholar 

  • Langendijk EH, Bronkhorst AW (2002) Contribution of spectral cues to human sound localisation. J Acoust Soc Am 112:1583–1596

    Article  PubMed  Google Scholar 

  • Macpherson EA (1997) A comparison of spectral correlation and local feature-matching models of pinna cue processing. J Acoust Soc Am 101:3104

    Article  Google Scholar 

  • Macpherson EA, Sabin AT (2007) Binaural weighting of monaural spectral cues for sound localization. J Acoust Soc Am 121(6):3677–3688

    Article  PubMed  Google Scholar 

  • Middlebrooks J (1992) Narrow-band sound localisation related to external ear acoustics. J Acoust Soc Am 92:2607–2624

    Article  PubMed  CAS  Google Scholar 

  • Moore BCJ, Glasberg BR (1983) Suggested formulae for calculating auditory-filter bandwidths and excitation patterns. J Acoust Soc Am 74:750–753

    Article  PubMed  CAS  Google Scholar 

  • Mossop JE, Culling JF (1998) Lateralization of large interaural delays. J Acoust Soc Am 104:1574–1579

    Article  PubMed  CAS  Google Scholar 

  • Musicant AD, Butler RA (1984) The influence of pinnae-based spectral cues on sound localisation. J Acoust Soc Am 75:1195–1200

    Article  PubMed  CAS  Google Scholar 

  • Shackleton TM, Meddis R, Hewit MJ (1992) Across frequency integration in a model of lateralization. J Acoust Soc Am 91(4):2276–2279

    Article  Google Scholar 

  • Shinn-Cunningham BG, Santarelli S, Kopco N (2000) Tori of confusion: binaural localization cues for sources within reach of a listener. J Acoust Soc Am 107:1627–1636

    Article  PubMed  CAS  Google Scholar 

  • Stern RM, Colburn HS (1978) Theory of binaural interaction based on auditory-nerve data. IV. A model for subjective lateral position. J Acoust Soc Am 64(1):127–140

    Article  PubMed  Google Scholar 

  • Stern RM, Zeiberg AS, Trahiotis C (1988) Lateralization of complex binaural stimuli: a weighted-image model. J Acoust Soc Am 84:156–165

    Article  PubMed  CAS  Google Scholar 

  • Van Wanrooij MM, Van Opstal AJ (2005) Relearning sound localisation with a new ear. J Neurosci 25:5413–5424

    Article  PubMed  CAS  Google Scholar 

  • Wightman FL, Kistler DJ (1989) Headphone simulation of free-field listening II: psychophysical validation. J Acoust Soc Am 85:868–878

    Article  PubMed  CAS  Google Scholar 

  • Woodworth R (1938) Experimental psychology. Holt, New York

    Google Scholar 

Download references

Acknowledgments

We would like to thank Virginia Best for providing us with Fig. 1 and the data, used in the meta-analysis reported on in Best et al. (2011). We would also like to thank the reviewers for their thorough reading of the manuscript. Their comments and suggestions clearly improved the manuscript. We acknowledge the support of the Australian Research Council Discovery Project funding scheme (ARC DP110102920).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Reijniers.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1254 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reijniers, J., Vanderelst, D., Jin, C. et al. An ideal-observer model of human sound localization. Biol Cybern 108, 169–181 (2014). https://doi.org/10.1007/s00422-014-0588-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-014-0588-4

Keywords

Navigation