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Abstract In the past two decades, significant advances have
been made in understanding the structural and functional
properties of biological networks, via graph-theoretic anal-
ysis. In general, most graph-theoretic studies are conducted
in the presence of serious uncertainties, such as major un-
dersampling of the experimental data. In the specific case
of neural systems, however, a few moderately robust exper-
imental reconstructions do exist, and these have long served
as fundamental prototypes for studying connectivity patterns
in the nervous system. In this paper, we provide a compara-
tive analysis of these “historical” graphs, both in (unmod-
ified) directed and (often symmetrized) undirected forms,
and focus on simple structural characterizations of their con-
nectivity. We find that in most measures the networks stud-
ied are captured by simple random graph models; in a few
key measures, however, we observe a marked departure from
the random graph prediction. Our results suggest that the
mechanism of graph formation in the networks studied is
not well-captured by existing abstract graph models, such as
the small-world or scale-free graph.

Keywords graph theory · network structure · random
graphs · scale-free graphs · mammalian brain · C. elegans ·
network models
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1 Introduction

Since Stanley Milgram’s six degrees of separation (Milgram,
1967), characterization of topological structure has become
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a major focus of graph-theoretic investigations in complex
networks (Costa et al., 2007). In recent years, studies of this
kind have begun to play an important role in a wide vari-
ety of disciplines, ranging from communications and power
systems engineering, to molecular and population biology
(Albert et al., 1999; Albert and Barabási, 2002; Dorogovtsev
and Mendes, 2002; Alm and Arkin, 2003; Alon, 2003; Bray,
2003; Newman, 2003; Barabási and Oltvai, 2004). Often, by
applying simple graph-theoretical measures, it is possible to
find similarities in real-world graphs describing systems in
many different domains, and also to separate these graphs
into a number of representative classes, by highlighting their
differences. From this, several studies have moved forward
to connect such shared similarities to abstract, theoretical
models of graph generation, which in turn can then be used
to further investigate real-world graphs beyond the limita-
tions imposed by the technologies currently available.

Two of the most successful of these models are the small-
world and scale-free graphs (Watts and Strogatz, 1998; Al-
bert et al., 1999, for a general review see Boccaletti et al.,
2006; Newman, 2010). In particular, scale-free graphs are
generally viewed as a crucial prerequisite for complex dy-
namical behaviors, and have been identified as a unifying
feature of many real-world graphs (Barabási and Bonabeau,
2003; Amaral and Ottino, 2004). In recent years, however,
several studies have challenged the empirical support for
scale-free properties in many real-world graphs, and their
mechanistic backing (Clauset et al., 2009; Lima-Mendez and
van Helden, 2009; Stumpf and Porter, 2012). There is a
growing consensus that the evidence for scale-free proper-
ties needs to be carefully re-considered. The insights gained
from this may in turn lead to a deeper understanding of the
underlying mechanisms producing the large-scale structure
seen in real-world systems.

Among the most challenging real-world systems for graph-
theoretic characterization are the strongly interconnected net-
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works of the nervous system. Here, the analysis of the struc-
tural makeup of these graphs has shown no consistent ev-
idence for scale-free properties. One of the reasons for this
lack could be the severe undersampling due to technical lim-
itations in the experimental reconstructions. A few moder-
ately robust experimental reconstructions do exist, however,
both of neural connectivity graphs (Varshney et al., 2011)
and areal connectivity maps (Modhaa and Singh, 2010). These
data suggest that scale-free organization is rather unlikely,
as the number of connections per graph node generally does
not span multiple scales. For instance, it is known in the
mammalian cortex that the typical number of synaptic con-
nections for a single neuron varies over one or, at most, two
orders of magnitude (Braitenberg and Shüz, 1998), ruling
out the possibility of power-law organization over multiple
scales in this structural network. While this argumentation
does not necessarily apply to functional brain networks, and
there has been evidence recently presented for their scale-
free organization (e.g., see Eguı́luz et al., 2005), other stud-
ies have report conflicting observations (Lima-Mendez and
van Helden, 2009; Stumpf and Porter, 2012), and this re-
mains an open question (for review, see Bullmore and Sporns,
2009).

In this study, we provide a comparative analysis of sev-
eral “historical” reconstructions of structural neural graphs,
including areal connectivity maps of the cat and macaque
monkey cortex, as well as the neural connectivity graph of
the nematode Caenorhabditis elegans. The general subject
of interest here is the assessment of the structural connec-
tivity pattern in these graphs. To this end, we make use of
a set of simple measures, which characterize various as-
pects of the connectivity pattern. Specifically, we consider
the node degree distributions, the structural equivalence of
graph nodes, as well as a nearest neighbor degree and as-
sortativity. Throughout this work, all measures are defined
in their most general fashion, for directed graphs, but yield
their forms known from the literature when applied to undi-
rected graphs. By applying the same measures to both the
original directed and symmetrized undirected versions of
each considered graph, we demonstrate that the process of
symmetrization not only places limits on the characteriza-
tion of graphs, but also introduces a systematic bias in mea-
surement.

We find that the investigated networks share a strong
component of randomness in their structural makeup, sug-
gesting a mechanism of their formation which is much less
constrained than that required for scale-free graphs. How-
ever, the observed graph structures differ from that of the
Erdős-Rényi random graphs most widely used in computa-
tional and theoretical studies of neural networks, by their
specific node degree distribution and strong correlations of
in-coming and out-going connections for individual nodes.

2 Methods

2.1 Graph theory preliminaries

A graph or network is comprised of a set of nodes which
are linked by a set of edges. Two general types of graphs
can be distinguished: undirected graphs, for which all edges
act as bidirectional links between two nodes, and directed
graphs (digraphs), in which case each edge is endowed with
a direction pointing from a source node to a target node. In
both cases, the spatial position of nodes can be considered
(spatial graphs), and edges can exhibit properties such as
a delay (delayed graphs) or weight (weighted graphs). Rela-
tional graphs are those excluding these additional properties,
taking only the relations, or adjacencies, between nodes into
account.

In this work, only relational graphs will be considered.
In this case, the relationship between nodes can be math-
ematically formulated using an adjacency matrix ai j, i, j ∈
[1,NN ], where NN denotes the number of nodes in the given
graph. If node i makes a connection to node j, then ai j = 1,
otherwise ai j = 0. Undirected graphs are a special case of
digraph with symmetric adjacency matrix, i.e. ai j = a ji.

Special attention is required for the diagonal elements
aii of the adjacency matrix, which describe self-loops. In
the case of digraphs, a self-looped node acts both as target
and source, so that non-zero diagonal elements contribute al-
ways two edges to a graph. For undirected graphs, this also
leads to the contribution of two edges per self-looped node.
This definition, however, deviates from that commonly used,
because historically, undirected graphs were considered first,
and most notions in modern graph theory will use only one
edge per undirected link. In this paper we will follow the lat-
ter notion with the exception of self-loops, which contribute
two edges, and present all measures utilized in both their
undirected and directed form.

For a general introduction to graph theory, its measures
and applications, we refer to (Diestel, 2000; Boccaletti et al.,
2006; Newman, 2010).

2.2 Analysis methods

In this study, we used graph data which are publicly avail-
able. No modifications of the original data were performed.
However, some of the graphs experienced a certain level of
modifications since their first investigation. Therefore, nu-
merical results reported in this study might deviate slightly
from results reported in earlier studies.

It is a common practice in applying graph-theoretic mea-
sures to empirical data to symmetrize the adjacency matrix
prior to analysis. Throughout this paper, both the original,
directed graphs and their undirected, symmetrized versions
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are considered. Undirected graphs were symmetrized by set-
ting each pair (i, j) with ai j = 1, a ji to 1. The reduction to
the giant component and subsequent analysis was performed
on the symmetrized versions of the original graphs.

In some cases, we constructed corresponding Erdős-Rényi
graph models for the given graphs with the same number
of nodes, edges and node degree distributions (node in/out-
degree distributions for digraphs). These exact degree-matched
Erdős-Rényi graph models (EDM) were obtained using the
cygraph implementation of a sophisticated model introduced
in Del Genio et al. (2010) and Kim et al. (2012). When con-
sidering EDM graphs, 1,000 random realizations were used
for each parameter set to ensure statistical stability.

Numerical analysis was performed using the custom soft-
ware cygraph and Mathematica. A cygraph binary (Mac OSX),
all graph data and analysis protocols are available for down-
load1.

2.3 “Historical” biological neural graphs

We study structural aspects of a number of publicly avail-
able biological neural graphs used in the literature in the
past two decades. These include areal connectivity graphs of
the cat and macaque monkey cortex, as well as the neuronal
connectivity graph of the nematode C. elegans. Below we
briefly describe these graphs, and the notation used through-
out this paper. More information on the data sources can be
found in the references.

Cat neural graphs

The first set contains the areal connectivity graph including
all cortical and thalamic areas of the cat brain (CC1), and a

1 http://www.cydyns.com; http://www.newscienceportal.com/MLR

Table 1 Basic graph-statistical measures were applied to the original
directed and symmetrized (undirected) versions of the considered neu-
ral graphs. Shown are values for the number of nodes NN , number of
self loops NL, total adjacency A (Eq. 1; NE given in Eq. 2), asymmetry
index A (Eq. 3; A = 0 for undirected graphs) and connectedness Co
(Eq. 4).

directed undirected
NN NL A A Co A Co

CC1 95 0 2126 0.1829 0.2331 2340 0.2566
CC2 52 0 818 0.4117 0.2968 1030 0.3737
CE1 306 0 2345 0.9083 0.0250 4296 0.0457
CE2 297 0 2345 0.9083 0.0265 4296 0.0486
CE3 279 3 2996 0.6917 0.0384 4580 0.0586
MB1 383 0 6602 0.7323 0.0449 10416 0.0708
MC1 71 0 746 0.2968 0.1459 876 0.1714
MC2 94 0 2390 0.4224 0.2676 3030 0.3393
MNC1 47 0 505 0.3866 0.2238 626 0.2775
MVC1 30 0 311 0.3632 0.3344 380 0.4086
MVC2 32 0 315 0.3763 0.2983 388 0.3674

graph containing only the 52 cortical areas (CC2). Structural
connection data for both CC1 and CC2 were first reported in
Scannell et al. (1999), and obtained by analyzing a large col-
lection of individual connection tracing studies done in the
cortical and thalamic nuclei of the cat cerebral hemisphere.
Available connection matrices2 describe graphs containing
95 nodes and 2126 directed edges (CC1), and 52 nodes and
818 directed edges (CC2). Both graphs were studied in de-
tail in Sporns and Zwi (2004) and Sporns and Kötter (2004).

C. elegans neural graphs

Three variations of the neuronal connectivity graph of the
nematode worm C. elegans most often used throughout the
literature were studied. Data for the first two (CE1 and CE2)
are based on experimental data from White et al. (1986),
and were modified and made public in Watts and Strogatz
(1998). Available connection matrices3 describe graphs con-
taining 306 nodes and 2345 directed edges (CE1), and 297
nodes with 2345 directed edges (CE2).

The third dataset (CE3) constitutes the most recent and
complete connectivity graph of C. elegans and was first dis-
cussed in Chen et al. (2006) (for a comprehensive review,
see Varshney et al., 2011). The available connection matrix4

describes a graph containing 279 nodes and 2996 directed
edges.

All graph data describe the synaptic connections between
neurons of the C. elegans brain, with distinction of directed
chemical synapses and undirected electrical junctions. In this
paper, we will not consider this distinction, but view both
chemical synapses and electrical junctions as part of the
same connectivity structure (see Varshney et al., 2011; Rudolph-
Lilith et al., 2012 for an analysis of both subgraphs).

Macaque monkey neural graphs

Various graphs of the macaque brain were considered. The
most complete dataset (MB1) describes the macaque brain’s
long-distance areal connections, and was first described in
Modhaa and Singh (2010). The obtained connectivity data2

were assembled from the Collation of Connectivity data on
the Macaque brain (CoCoMac) database. The latter is a grow-
ing collection of annotated information about a large num-
ber of published tracing studies performed in the macaque
brain (Stephan et al., 2001; Kötter et al., 2004). The investi-
gated graph contains 383 nodes describing the various brain
regions of the macaque monkey, and 6602 directed edges.

2 https://sites.google.com/site/bctnet/datasets
3 CE1: http://wiki.gephi.org/index.php/Datasets; CE2: http://www-

personal.umich.edu/∼mejn/netdata/ with modifications by M. New-
man

4 http://wormatlas.org/neuronalwiring.html

http://www.newscienceportal.com/MLR
http://wiki.gephi.org/index.php/Datasets
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A second graph (MC1) describes the areal connectivity
pattern of the macaque cortex, based on original data pub-
lished in Young et al. (1993), and investigated in detail in
Sporns and Tononi (2002) and Sporns (2002). The available
connection matrix2 describes a graph containing 71 nodes
and 746 directed edges.

A third graph (MC2) contains the the macaque corti-
cal connectivity within one hemisphere, based on data from
Choe et al. (2004), Kötter et al. (2004) and Kaiser and Hilge-
tag (2006). The available dataset5 describes a graph contain-
ing 94 nodes and 2390 directed edges.

Finally, we analyzed the visual and sensorimotor area
corticocortical connectivity graph of the macaque neocortex
(MNC1) and two areal connectivity graphs of the macaque
visual cortex (MVC1, MVC2). The MNC1 graph was first
studied and made public in Honey et al. (2007). The avail-
able dataset2 describes a graph containing 47 nodes and 505
directed edges. MVC1 and MVC2 are two variants of the
visual cortical connectivity originally published in Felleman
and Van Essen (1991), and investigated in detail in Sporns
et al. (2000) and Sporns and Kötter (2004). The available
datasets2 describe graphs containing 30 nodes and 311 di-
rected edges (MVC1), and 32 nodes with 315 directed edges
(MVC2).

The basic graph-theoretic properties of these graphs are
listed in Tables 1 and 2, and further discussed below.

2.4 Connected components

A (strongly) connected component is defined as a subgraph
consisting of a set of nodes from which all other nodes in the
subgraph can be reached, and which can be reached from all
other nodes, by following existing edges. Typically, the set

5 http://www.biological-networks.org/?page id=25

Table 2 Basic node degree analysis of original directed and sym-
metrized (undirected) versions of the considered neural graphs. Listed
are the minimum and maximum node degree δ and ∆ , respectively (δ α

and ∆ α for digraphs; α ∈ {in,out}), and the average node degree 〈ai〉
(Eq. 14).

directed undirected
δ in ∆ in δ out ∆ out 〈ai〉 δ ∆ 〈ai〉

CC1 2 55 2 52 22.38 2 61 24.63
CC2 7 32 3 34 15.73 7 37 19.81
CE1 0 134 0 39 7.66 0 134 14.04
CE2 0 134 0 39 7.90 1 134 14.46
CE3 0 83 0 57 10.73 2 93 16.41
MB1 0 105 0 109 17.24 0 149 27.20
MC1 0 26 1 28 10.51 1 28 12.34
MC2 0 73 1 54 25.43 1 74 32.23
MNC1 1 23 2 23 10.74 3 27 13.32
MVC1 2 19 4 20 10.37 5 22 12.67
MVC2 0 19 2 20 9.84 2 22 12.13

of (strongly) connected components of a graph will be dom-
inated by a giant (strongly) connected component of size
Sgcc, defined as the number of nodes in this component (Boc-
caletti et al., 2006). We calculated the number of connected
components (strongly connected components, in the case of
digraphs) Ncc and the size of the giant connected component
(giant strongly connected component for digraphs) Sgcc.

Table 3 summarizes the numerical results for the con-
sidered biological neural graphs and their symmetrizations,
along with the asymmetry index, minimal, maximal and av-
erage node degrees, δ , ∆ and 〈ai〉, respectively. Naturally,
the connectedness of the giant connected component is slightly
larger than that of the original graphs, whereas the asymme-
try index A is slightly smaller for graphs whose size of the
giant connected component is smaller than the NN of the
original graph.

Throughout this work, we restrict our analysis to the
giant connected (for undirected versions of the considered
graphs) and giant strongly connected (for the original di-
graphs) components. Furthermore, as indicated in Table 3,
the giant (strongly) connected components of CE1 and CE2
are identical, and in the following only CE1 will be consid-
ered.

3 Adjacency, connectance, asymmetry

In a first step, we analyzed all considered graphs with re-
spect to basic graph-statistical measures. These include the
number of self-loops NL, defined as the number of non-zero
diagonal elements aii in the adjacency matrix, and the total
adjacency A, defined as the sum over all entries in the adja-
cency matrix, with diagonal elements (self-loops) counting
two:

A =
NN

∑
i, j=1

ai j +NL . (1)

Using the total adjacency, the number of edges NE is defined
as

NE =

{
A directed
A/2 undirected .

(2)

The asymmetry index A quantifies the ratio between
the number of non-symmetrical edges NA and symmetri-
cal edges NS, and is given by (Wasserman and Faust, 1994;
Newman et al., 2002; Serrano and Boguñá, 2003, but see
Garlaschelli and Loffredo, 2004)

A =
NA

A−NS
, (3)

where NA is the number of node pairs (i, j| j ≥ i) for which
ai j 6= a ji, and NS is the number of node pairs (i, j| j ≥ i) for
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which ai j = a ji = 1. It can be shown that 0 ≤ A ≤ 1, and
that Eq. 3 holds for self-looped and non self-looped graphs.

Finally, the graph connectedness (or connectance) Co, a
measure of relative graph connectivity, is defined as (Boc-
caletti et al., 2006; Newman, 2010)

Co =
NE

Nmax
E

=

{
A

NN(NN+1) self-looped
A

NN(NN−1) not self-looped,
(4)

where Nmax
E denotes the number of possible edges in a com-

plete, i.e. maximally connected, graph:

Nmax
E =


NN(NN +1) directed, self-looped
NN(NN−1) directed, not self-looped
1
2 NN(NN +1) undirected, self-looped
1
2 NN(NN−1) undirected, not self-looped.

It can be shown that 0 ≤ Co ≤ 1. We note that Eq. 4 gen-
eralizes the commonly used definition of the connectedness
to graphs containing self-loops (e.g., see Boccaletti et al.,
2006; Newman, 2010).

The basic graph-statistical properties of both the directed
and symmetrized (undirected) versions of the investigated
neural graphs are listed in Table 1. Of these graphs, only
CE3 has self-loops, accounting for about 0.1% of the graph’s
edges, which stem from electrical junctions connecting a
node with itself. If not specified otherwise, these self-loops
were included in the analysis.

Naturally, the total adjacency A is larger for the undi-
rected version of the corresponding graphs, as symmetriza-
tion of the adjacency matrix only adds edges to a given di-
graph. By symmetrizing a graph, the total adjacency and,
thus, the connectedness can increase by more than 50%, as
in the case of the C. elegans or macaque brain neural graphs
(CE1, CE2: Coud ∼ 1.828 Cod , CE3: Coud ∼ 1.526 Cod ,
MB1: Coud ∼ 1.577 Cod ; Cod and Coud denote the connect-
edness of the directed and undirected versions of a graph,
respectively). Thus, the consideration of undirected versions
of digraphs in the literature might already at this level intro-
duce a significant mischaracterization of investigated graphs.

Due to the symmetrization procedure, the connectedness
is intrinsically dependent on the asymmetry of the consid-
ered graph. The higher the asymmetry A , the more edges
will be added, yielding a higher connectedness in the undi-
rected version of a given digraph (Fig. 1A). A theoretical
relation between the ratio of the connectedness for digraphs
and their undirected equivalents, and the asymmetry index
can be obtained by observing that the total adjacency Ad =

NA + 2NS for digraphs takes after symmetrization the form
Aud = 2(NA +NS). This yields

Ad = Aud
(

1− 1
2
A
)
.
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Fig. 1 Relation of connectedness and asymmetry index in various bi-
ological neural graphs and their giant connected components. (a): The
ratio between connectedness of the symmetrized (undirected) version
of a graph (Coud) and its directed original (Cod) increases with the
asymmetry index of the digraph. The solid line shows the theoretical
relation, Eq. 5. (b): In biological neural digraphs, high connectedness
appears to be linked with a lower asymmetry index. The dashed line
shows the analytical result for a Erdős-Rényi graph model, Eq. 9. In
both panels, results are shown for the original digraphs (black dots),
their giant connected components (grey dots), and corresponding exact
degree-matched Erdős-Rényi graph models (open dots).

If we assume that the number of nodes in both the directed
and its symmetrized version are the same, this gives, to-
gether with Eq. 4, the desired relation

Coud

Cod =
2

2−A
, (5)

shown in Fig. 1A (solid). However, the numerical results for
the giant component, as well as the corresponding EDM
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Table 3 Connected component analysis of original directed and symmetrized (undirected) versions of various neural graphs. Shown are values for
the number of connected components Ncc, the size of the giant connected component Sgcc, total adjacency A (NE given in Eq. 2), asymmetry index
A (A = 0 for undirected graphs), connectedness Co, the minimum and maximum node degree δ and ∆ , respectively (δ {in,out} and ∆ {in,out} for
directed graphs), and the average node degree 〈ai〉 for the giant connected components.

directed undirected
Ncc Sgcc A A Co δ/∆ in δ/∆ out 〈ai〉 Ncc Sgcc A Co δ/∆ 〈ai〉

CC1 1 95 2126 0.1829 0.2331 2/55 2/52 22.38 1 95 2340 0.2566 2/61 24.63
CC2 1 52 818 0.4117 0.2968 7/32 3/34 15.73 1 52 1030 0.3737 7/37 19.81
CE1 66 239 1912 0.8864 0.0333 1/42 1/38 8.00 10 297 4296 0.0485 1/134 14.46
CE2 57 239 1912 0.8864 0.0333 1/42 1/38 8.00 1 297 4296 0.0485 1/134 14.46
CE3 6 274 2962 0.6871 0.0393 1/82 1/57 10.80 1 279 4580 0.0586 2/93 16.41
MB1 33 351 6491 0.7265 0.0525 1/103 1/108 18.49 24 360 10416 0.0801 1/149 28.93
MC1 2 70 745 0.2952 0.1499 2/26 2/28 10.64 1 71 876 0.1714 1/28 12.34
MC2 10 85 2356 0.4092 0.3223 1/65 1/54 27.72 1 94 3030 0.3393 1/74 32.23
MNC1 1 47 505 0.3866 0.2238 1/23 2/23 10.74 1 47 626 0.2775 3/27 13.32
MVC1 1 30 311 0.3632 0.3344 2/19 4/20 10.37 1 30 380 0.4086 5/22 12.67
MVC2 3 30 311 0.3632 0.3344 2/19 4/20 10.37 1 32 388 0.3674 2/22 12.13

graphs, deviates from Eq. 5 (Fig. 1A, compare grey and
open dots with black solid line). The reason for this devi-
ation is simply that, in the case of undirected graphs, the
giant connected components were obtained from their origi-
nal digraphs after symmetrization (see Methods). This leads
to a change in the number of nodes in the constructed giant
components of corresponding digraph and undirected graph,
therefore Eq. 5 does no longer apply.

Interestingly, a weak relation between connectedness and
asymmetry index can also be found when considering di-
graphs only (Fig. 1B), with graphs of higher connectedness
being associated with a weaker asymmetry. Such a link is
expected, however, and can be calculated analytically in the
case of directed Erdős-Rényi (ER) graphs. Excluding (for
simplicity) self-loops, the total adjacency is pNN(NN − 1),
where p denotes the connection probability of a classical ER
graph. With the total number of possible edges in a directed,
not self-looped ER graph being Nmax

E = NN(NN − 1), the
connectedness Co = p. Node pairs (i, j) with ai j = 1∧a ji =

1 occur here with a probability of p2, and are the only contri-
bution to the number of symmetric edges NS, thus yielding

NS = p2 Nmax
E
2

. (6)

In a similar fashion, node pairs (i, j) with ai j = 1∧ a ji = 0
or ai j = 0∧ a ji = 1 occur with a probability p(1− p) each
and contribute to the number of non-symmetrical edges NA,
yielding

NA = 2p(1− p)
Nmax

E
2

. (7)

With this, the asymmetry index (Eq. 3) of a ER graph is
given by

A = 2
1−Co
2−Co

, (8)

which yields the desired relation between connectedness and
asymmetry

Co = 2
A −1
A −2

. (9)

The theoretical result for classical ER graph models (Eq. 9)
is independent of the number of nodes, and is shown in
Fig. 1A (dashed line). Although displaying the same qual-
itative behavior, namely a decrease in the connectedness for
increasing asymmetry index, the quantitative results for the
investigated neural graphs deviates significantly from the
theoretical expectation for ER graph models. Even after the
incorporation of the exact node degree distribution using
the EDM graph models (Fig. 1A, grey circles), the results
still deviate markedly from that observed in their biologi-
cal counterparts. This suggests that a random distribution of
edges with a given degree distribution cannot account for the
relation between connectedness and asymmetry observed in
biological neural digraphs. However, adding a correlation
between node in- and out-degree will increase the probabil-
ity of occurrence of node pairs (i, j) with ai j = a ji = 1, thus
increase the number of symmetric edges NS and proportion-
ally lower the number of non-symmetric edges NA. Accord-
ing to Eq. 3, this will effectively lead to a a decrease in A
for a given connectedness. As we will show below, such a
correlation between a node’s in- and out-degree is indeed
what we observe in the investigated biological graphs.

4 Node degrees

To further characterize structural aspects of biological neu-
ral digraphs, we calculated the node in- and out-degrees

ain
i =

NN

∑
j=1

a ji (10)

aout
i =

NN

∑
j=1

ai j (11)
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as well as the node degree

ai =
NN

∑
j=1

ai j +aii (12)

for the corresponding symmetrized graphs. Note that the
definition of the node degree in Eq. 12 deviates from that
commonly employed through the inclusion of self-loops, which
are considered as contributing two edges to adjacency rela-
tions (one in-edge and one out-edge pointing to the same
node, see above). This definition is more natural, as it is a
direct result of the definition of ai for digraphs in Eqs. 10
and 11, and by defining terms in this way, undirected graphs
become a special case of digraphs, which then assume the
more fundamental role. With this, the handshaking lemma,
which provides a consistency relation linking the sum over
all node degrees with the total adjacency of a graph, takes
a more general form valid for both directed and undirected
self-looped graphs:

NN

∑
i=1

ai = 2(A−NL) , (13)

where ai = ain
i +aout

i for digraphs.
Given the node (in/out-) degrees of a graph, we define

the minimum and maximum node (in/out-) degree, respec-
tively, as δ (δ α ) and ∆ (∆ α ), α ∈ {in,out}. Furthermore,
the average node in/out-degree 〈aα

i 〉 for directed and aver-
age node degree 〈ai〉 for undirected graphs is given by

〈ai〉=


1

NN

NN
∑

i=1
ain

i = 〈ain
i 〉= 〈aout

i 〉= 1
NN

NN
∑

i=1
aout

i

directed
1

NN

NN
∑

i=1
ai undirected.

(14)

Note that due to the handshaking lemma, Eq. 13, we have
〈ain

i 〉= 〈aout
i 〉.

Table 4 Power law fits of the tail degree distributions for various
biological neural graphs. The values give the best fitting parameters
α{in,out} and α according to Eq. 15 for the node in/out-degree and node
degree PDFs of the directed and undirected versions of the graphs, re-
spectively. Values in parentheses are excluded from Fig. 3.

power-law model
α in αout α

CC1 3.4448 2.9610 3.8817
CC2 3.4922 3.7824 2.3411
CE1 2.8122 2.8068 3.1565
CE3 2.7072 3.4023 2.7054
MB1 2.1281 2.2697 2.3336
MC1 3.0592 2.7606 2.6497
MC2 4.0459 (6.6290) 3.6015
MNC1 1.7702 1.7275 2.0251
MVC1 1.9798 2.7790 2.7924
MVC2 1.7711 2.7790 2.7573

Results for the investigated biological graphs are sum-
marized in Table 2. In two of the investigated graphs (CE1
and MB1) the minimal node degrees δ α and δ in both the
directed and undirected version, respectively, are zero. Fur-
thermore, the minimal total node degree in these graphs is
also zero, indicating the existence of nodes without edges.
Further analysis revealed that in the directed version of CE1,
the number of weakly connected components, i.e. subgraphs
whose nodes are connected by at least one directed edge to
other nodes in the same subgraph, is 10, with the size of
the largest weakly connected component being 297 nodes.
Thus, with a total of 306 in this graph, the remaining 9 com-
ponents share 9 nodes, i.e. each of the remaining weakly
connected components contains only one isolated node. The
same argumentation applies to the undirected version of CE1.
The MB1 graph has one giant weakly connected component
with 351 nodes, and the remaining 32 connected compo-
nents share 32 isolated nodes. The existence of these iso-
lated nodes in the neural graphs suggests that the mapping of
these graphs is incomplete, as such nodes are very unlikely
to have a functional or structural meaning. Therefore, in the
remainder of this study, we will focus our analysis on the
giant (strongly) connected component of each investigated
graph (see Methods – Connected components).

5 Node degree distributions

A prevalent theme in the literature of the past two decades
is scale-free properties of various real-world systems, typi-
cally investigated by fitting corresponding physical quanti-
ties with power-law distributions. However, recently it was
pointed out that in many cases such a fit provides only a
poor description of the true behavior, or at best a faithful
representation in only a narrow region of the investigated
quantities’ value range (Clauset et al., 2009; Lima-Mendez
and van Helden, 2009). This is especially crucial when con-
sidering small systems, for which boundary effects cannot
feasibly be neglected. Moreover, claims of scale-free prop-
erties, with little or no support from experimental data, may
distract further search for mechanisms by which such net-
works form and develop.

In order to assess the extent to which the power-law pro-
vides a valid description of structural characteristics of bio-
logical neural graphs, we studied the node degree probabil-
ity density functions (PDFs; node in-degree and out-degree
PDFs for digraphs) of these graphs. The power law model is
defined by

ρ
pl(a;α) = aα−1

min (α−1)a−α , (15)

where a denotes the node degree and amin the lower bound of
the fitting interval. In addition, we applied other fitting mod-
els proposed in the literature (see Clauset et al., 2009). The
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Table 5 Power law with cutoff and gamma fits of the node degree distributions for various biological neural graphs. The values give the best fitting
parameters α{in,out}, λ {in,out} and α , λ according to Eq. 16 as well as θ {in,out}, k{in,out} and θ , k according to Eq. 18 for the node in/out-degree
and node degree PDFs of the directed and undirected versions of the graphs, respectively. Both fitting models are qualitatively equivalent. Values
in parentheses are excluded from Fig. 3.

power-law with cutoff model gamma model
α in λ in αout λ out α λ θ in kin θ out kout θ k

CC1 -1.9885 0.1212 -1.4334 0.0995 -1.4159 0.0885 8.2456 2.9891 10.0439 2.4338 11.3001 2.4163
CC2 -5.4192 0.4135 -1.8189 0.1680 -3.6622 0.2293 2.4169 6.4233 5.9539 2.8193 4.3598 4.6636
CE1 -0.7030 0.2277 -0.1054 0.1333 -2.1114 0.2281 4.1422 1.7442 6.3163 1.1787 4.3814 3.1114
CE3 -1.6139 0.2769 -1.1791 0.2084 -2.7632 0.2612 3.5851 2.6229 4.7285 2.1953 3.8276 3.7635
MB1 0.3211 0.0351 0.3322 0.0281 -0.1318 0.0361 21.8775 0.7280 28.9742 0.7063 26.8478 1.1439
MC1 -1.6364 0.2462 -1.2988 0.2077 -1.3638 0.1684 4.0623 2.6365 4.8144 2.2989 5.8766 2.3823
MC2 -5.4764 0.1988 (-20.7122) 0.6916 (-15.7716) 0.4560 5.0266 6.4798 1.4455 (21.7190) 2.1922 (16.7780)
MNC1 -0.6411 0.1180 -1.7654 0.2445 -1.7342 0.1913 -6.4050 1.6074 4.0904 2.7656 5.2265 2.7344
MVC1 -4.4855 0.5045 -3.4864 0.4100 -7.7057 0.6615 1.9820 5.4858 2.4385 4.4869 1.5100 8.7159
MVC2 -4.4855 0.5045 -3.4864 0.4100 -6.1531 0.5291 1.9820 5.4858 2.4385 4.4869 1.8898 7.1533

Table 6 Stretched exponential and log-normal fits of the node degree distributions for various biological neural graphs. The values give the
best fitting parameters β {in,out}, λ {in,out} and β , λ according to Eq. 17 as well as µ{in,out}, σ{in,out} and µ , σ according to Eq. 19 for the node
in/out-degree and node degree PDFs of the directed and undirected versions of the graphs, respectively. Values in parentheses are excluded from
Fig. 3.

stretched exponential model log-normal model
β in λ in β out λ out β λ µ in σ in µout σout µ σ

CC1 2.0180 1.4140·10−3 1.7297 3.5818·10−3 1.7717 2.6172·10−3 3.1299 0.6495 3.0851 0.7146 3.2057 0.7395
CC2 2.8725 3.3298·10−4 1.8293 4.9790·10−3 2.3767 6.7242·10−4 2.7072 0.4171 2.7145 0.6526 2.9535 0.4941
CE1 1.3953 5.6656·10−2 1.0540 1.0567·10−1 1.9149 6.1237·10−3 1.8429 0.9189 1.8158 1.1163 2.5433 0.5951
CE3 1.8187 1.5470·10−2 1.6044 2.0917·10−2 2.1206 3.0620·10−3 2.1561 0.7096 2.2170 0.7773 2.6015 0.5483
MB1 0.7751 1.0642·10−1 0.7816 8.9299·10−2 1.1078 2.1859·10−2 2.5100 1.5886 2.7913 1.8178 3.2205 1.3011
MC1 1.7632 1.3072·10−2 1.6654 1.6043·10−2 1.7744 8.4554·10−3 2.2461 0.6905 2.2642 0.7655 2.5209 0.7640
MC2 3.1522 (1.6068·10−5) (5.0710) (2.2765·10−8) (4.6665) (4.3361·10−8) 3.4657 0.4108 3.4417 0.2109 3.5959 0.2497
MNC1 1.4838 1.9558·10−2 1.8212 1.0289·10−2 1.8120 7.0028·10−3 2.5110 0.8737 2.3030 0.6657 2.5353 0.6771
MVC1 2.5811 1.8229·10−3 2.3898 2.8284·10−3 3.4395 1.1885·10−4 2.3429 0.4509 2.3330 0.5116 2.5502 0.3503
MVC2 2.5811 1.8229·10−3 2.3898 2.8284·10−3 3.0058 3.4508·10−4 2.3429 0.4509 2.3330 0.5116 2.5726 0.3887

second model considered was the “power-law with cutoff”,
defined by

ρ
plwc(a;α,λ ) =

1
Γ [1−α,λamin]

λ
1−α a−α e−λa , (16)

where Γ [s,x] is the incomplete Gamma function. We note
that due to the exponential term, this model carries none
of the implications commonly associated with the power-
law model (i.e. scale-free characteristics), as this term re-
places the power-law properties at both tails of the distribu-
tion, leaving only the dominance of the power-law behavior
within a certain charactistic scale. However, to avoid confu-
sion and to remain in accordance with the literature (Clauset
et al., 2009), we retain this terminology through the remain-
der of the paper.

Further models utilized were the stretched exponential
model

ρ
se(a;β ,λ ) = βλeλaβ

min aβ−1e−λaβ

(17)

and gamma model

ρ
g(a;θ ,k) =

1
Γ [k]

ak−1e−a/θ
θ
−k . (18)

The latter is equivalent to the power-law with cutoff model
when considering k↔ (1−α) and θ ↔ 1/λ . Finally, the
log-normal model

ρ
ln(a; µ,σ) = N

1
a

exp
[
− (lna−µ)2

2σ2

]
(19)

with

N =

√
2

πσ2

(
erfc

[
lnamin−µ√

2σ2

])−1

and the Poisson model

ρ
p(a; µ) = Ñ

1
Γ [a+1]

µ
a (20)

with

Ñ =

(
eµ −

amin−1

∑
k=0

µk

Γ [k+1]

)−1

were considered. In all cases, amin = 1 was used, except for
the power-law model, which only allowed fitting the tail of
the degree distributions. Moreover, all fitted models were
constrained by the normalization condition

∞∫
amin

ρ
α(a;•)da = 1 , (21)
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Fig. 2 Representative examples of node degree probability density functions and their fits. (a): CC1, (b): CE3, (c): MC2. For digraphs, the
PDFs (grey bar plots) of node in-degree (left) and node out-degree (middle) are shown, for undirected graphs PDFs of the node degree (right).
Best fits of the node degree distributions are provided by the power-law with cutoff / gamma model (Eq. 16; orange solid), followed by the
stretched exponential model (Eq. 17; green solid) and log-normal model (Eq. 19; blue solid). The power law model (Eq. 15; red solid) provides an
approximate fit of the tail of a given node degree PDF only. In all considered graphs, the Poisson model (Eq. 20; black dashed) did not deliver an
acceptable fit of the data. Insets show the corresponding data in log-log representation.

where α ∈ {plwc,se,g, ln, p} and • stands for the set of pa-
rameters of the corresponding model, with the exception of
the power-law model. As the latter fits only the tail of a given
PDF, the normalization constant was adjusted to the fraction
of the node degree PDF ρ(ai) above the lower bound, i.e.

∞∫
amin

ρ
pl(ai;α) =

∞∫
amin

ρ(ai) . (22)

Representative examples of the node degree PDFs for
the cat cortex graph (CC1) and the neural connectivity graph
of C. elegans (CE3) are shown in Fig. 2A and Fig. 2B, re-
spectively. Among the graphs considered, only the node de-
gree distributions of MC2 did not allow for a reasonable fit
with any of the above models, both in the directed and undi-
rected version (Fig. 2C). This hints either at a very peculiar
connectivity pattern in this graph, as it describes the corti-
cal connectivity pattern in only one hemisphere, or its in-
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complete representation due to missing experimental data.
Additionally, in no case the Poisson model (Eq. 20) deliv-
ered an acceptable fit of the node degree PDFs (Fig. 2, black
dashed), for which reason it was excluded from further con-
sideration.

The obtained best fitting parameters of the node degree
models, using the nonlinear least-squares method in Mathe-
matica, are summarized in Tables 4 to 6, and visualized in

Fig. 3A. A detailed presentation of the fitting results using
the various models, including the standard error, t-statistics
and P-value of the fitted parameters, as well an analysis of
the decomposition of the variation in the data attributable to
the fitted function and to the residual errors (ANOVA test)
along with the root-mean-square difference between actual
and predicted values can be found in the Supplemental Ma-
terial, Fitting of node-degree distributions.
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Interestingly, in all fitted models, except the power-law,
a weak correlation between fitted parameters and the graph
connectedness Co for both node in/out-degree (digraphs) and
node degree (undirected graphs) PDFs was found (Fig. 3B).
Specifically, the α parameter in the power-law with cutoff
model appears to decrease with increasing connectedness
(Fig. 3B, top left). This may reflect the fact that smaller
α values lead to broader distributions, which are expected
for more strongly connected graphs. Due to the relation k =
1−α between α of the power-law with cutoff model and
gamma model, a similar relation holds for gamma fits of the
PDFs, with k increasing for higher Co (Fig. 3B, top right).

Both parameters of the stretched exponential model, β

and λ show a weak dependency on the connectedness of
the graphs, with β increasing and λ decreasing for increas-
ing Co (Fig. 3B, bottom left and middle). For λ , this de-
pendency reflects again the expected broader distribution
of node degrees for stronger connected graphs, as smaller
λ yields a broader distribution in the stretched exponential
model. Interestingly, for the β parameter in this model this
relation appears to be inverted, with smaller β values leading
to broader distributions but being associated with smaller
connectedness. However, the stretched exponential model
displays a strong correlation between the fitted parameters
(Fig. 3B, bottom middle, inset), which is not the case in the
other 2-parameter models. Thus, the impact of both β and
λ on the shape of the distribution cannot be considered as
independent, and explains the peculiar behavior when both
parameters are considered to be independent. Finally, a weak
correlation between connectedness and σ of the log-normal
model was found, with broader distributions (smaller σ ) be-
ing associated with higher connectedness.

For assessing the quality of the different models, we com-
pared the root-mean-squares of the fit residuals, i.e. differ-
ences between the actual and predicted node degree values.
We found that the power-law with cutoff and gamma model
provided, on average, the best fits, closely followed by the
stretched exponential and log-normal model. This evalua-
tion is consistent with the conclusion reached in Clauset et
al. (2009). Most interestingly, the nature of these node de-
gree distributions (gamma or power law with cutoff) could
be consistent with a simple local mechanism responsible for
generating neural graphs. In this way, we may conceive of a
graph generation mechanism more parsimonious than those
currently in the literature, such as preferential attachment
(first discussed as the ”Matthew effect” in Merton, 1968; see
also Barabási and Albert, 1999), in which nonlocal knowl-
edge of the degree distribution is required on the level of
each individual node (see Discussion).

6 Structural equivalence

In order to assess the similarity of the connectivity pattern of
individual nodes, various measures of structural equivalence
were defined and used in the literature. Here, two nodes are
defined as structurally equivalent if they share the same pat-
tern of relationships with all other nodes in a given graph.
A first coarse measure quantifying a pattern of relationships
among nodes in digraphs is the Euclidean distance between
rows and columns of the adjacency matrix (Boccaletti et al.,
2006), defined as

Din−in
i j =

{
NN

∑
k=1

(aki−ak j)
2

}1/2

(23)

Din−out
i j =

{
NN

∑
k=1

(aki−a jk)
2

}1/2

(24)

Dout−out
i j =

{
NN

∑
k=1

(aik−a jk)
2

}1/2

. (25)

Note that here [Din−out
i j ]T = Din−out

ji = Dout−in
i j , leaving the

three independent measures of Euclidean distance in Eqs. 23-
25. The above definition holds for digraphs with self-loops.
If self-loops are excluded, the sum in Eqs. 23-25 runs over
k 6= {i, j}. The above definitions hold for undirected graphs
as well. However, due to the symmetry of the adjacency ma-
trix in this case, we have in addition the relation Din−in

i j =

Dout−out
i j = Din−out

i j , thus leaving only one independent Eu-
clidean distance measure. Moreover, in the case of undi-
rected graphs, Din−out

ii = 0, which reflects the fact that here,
for each given node, the columns and rows of the adjacency
matrix are identical.

According to the notion of structural equivalence, two
structurally perfectly equivalent nodes will have identical
entries in their corresponding rows and columns in the ad-
jacency matrix. With Eqs. 23 and 25, one thus expects an
Euclidean distance Din−in

i j = Dout−out
i j = 0. A similar conclu-

sion can, however, not be made for Din−out
i j , as the notion of

perfect structural equivalence between two nodes does not
require a matching pattern in the incoming connection of
one node and outgoing connection of another node.

We calculated the Euclidean distance of node adjacen-
cies, Eqs. 23-25, for the giant connected component of the
investigated biological neural graphs. To statistically eval-
uate the distance between two nodes, we considered vari-
ous subsets of the obtained NN×NN matrices Dα−β

i j , α,β ∈
{in,out}. First, Din−in

i j , i 6= j provides the Euclidean distances
between the incoming edges of two different nodes. Sec-
ondly, Din−out

i j =Dout−in
ji provides the Euclidean distance be-

tween incoming and outgoing edges of two nodes, including
the same node. Dout−out

i j , i 6= j yields the distances between
outgoing edges of two different nodes. Finally, Din−out

ii con-
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deviation
∣∣∣∣Rα−β

i j −RER α−β

i j

∣∣∣∣ from corresponding Erdős-Rényi graphs (RER α−β

i j = 0, α,β ∈ {in,out}).

tains the Euclidean distances between incoming and outgo-
ing edges of the same node. For each of these subsets of
Euclidean distances, we calculated the mean, standard devi-
ation, minimum and maximum value, first and third quartile
and median.

Representative examples of Euclidean distance PDFs and
their statistical analysis are shown in Fig. 4A (left; a com-
plete representation of Euclidean distances can be found in
the Supplemental Material, Data Tables). We found that in
digraphs the mean and median of Din−in

i j,i 6= j, Din−out
i j and Dout−out

i j,i6= j ,
and in undirected graphs the mean and median of Din−in

i j,i 6= j

and Din−out
i j are almost identical, a behavior expected from

a random, i.e. independent, distribution of edges in differ-
ent nodes. This behavior was shared among all investigated
graphs (Fig. 4A, middle and right).

In not self-looped random graphs with connectedness
Co, ai j = 1 with probability Co (see above). Thus, two adja-
cencies with ai j = 1 and amn = 0 will occur with probability
Co(1−Co). As the latter adjacency relations constitute the

only contributions to the Euclidean distance,

Dα−β

i j =
√

2NNCo(1−Co) , (26)

α,β ∈ {in,out}, for Erdős-Rényi graphs (Fig. 4A, left, red
dotted). The relative deviation

∆
ERDα−β =

∣∣∣∣Dα−β

i j −DER α−β

i j

∣∣∣∣
DER α−β

i j

, (27)

where Dα−β

i j and DER α−β

i j denote the mean of the Euclidean

distances Dα−β

i j for a given graph and its corresponding Erdős-
Rényi graph, was found to be almost zero (Fig. 4A, right,
blue end of color range). This observation provides further
evidence suggesting that the distribution of edges in differ-
ent nodes of biological neural graphs follows a simple ran-
dom pattern.

When considering in-edges and out-edges of the same
node, however, we find that this is not the case. Here, by defi-
nition, one expects Din−out

ii = 0 in undirected graphs, whereas
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Fig. 5 Average degree of nearest neighbors for biological neural
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in digraphs, if assuming a random distribution of edges, Din−out
ii

should take values in accordance with Eq. 26. Our analy-
sis revealed that the mean and median of Din−out

ii is signifi-
cantly lower than expected from a pure random assignment
of edges, leading to ∆ ERDα−β significantly larger than zero
(Fig. 4A, right). The latter suggests that the distribution of
edges in biological neural graphs, although being consistent
with a minimal random model, exhibits a significant corre-
lation between in and out-edges for individual nodes.

To further explore this point, we applied a second mea-
sure of structural equivalence, specifically the Pearson cor-
relation coefficient of the node end-degrees (Boccaletti et
al., 2006), which can be interpreted as local assortativity (see

below). For digraphs, one defines

Rin−in
i j = Nin−in

i j

NN

∑
k=1

(
aki−〈ain

i 〉
)(

ak j−〈ain
j 〉
)

(28)

Rin−out
i j = Nin−out

i j

NN

∑
k=1

(
aki−〈ain

i 〉
)(

a jk−〈aout
j 〉
)

(29)

Rout−out
i j = Nout−out

i j

NN

∑
k=1

(
aik−〈aout

i 〉
)(

a jk−〈aout
j 〉
)
,

(30)

where 〈a{in,out}
i 〉 denotes the mean of values in {row,column}

i of the adjacency matrix and

Nin−in
i j =

{
NN

∑
k=1

(
aki−〈ain

i 〉
)2 (

ak j−〈ain
j 〉
)2
}−1/2

Nin−out
i j =

{
NN

∑
k=1

(
aki−〈ain

i 〉
)2 (

a jk−〈aout
j 〉
)2

}−1/2

Nout−out
i j =

{
NN

∑
k=1

(
aik−〈aout

i 〉
)2 (a jk−〈aout

j 〉
)2

}−1/2

are normalization constants. If self-loops are excluded, then
the sum in the above equations runs over k 6= {i, j}. More-
over, as for the Euclidean distance, [Rin−out

i j ]T = Rin−out
ji =

Rout−in
i j , so that for a given node pair (i, j) only three corre-

lation measures are independent. It can be shown that −1≤
Rα−β

i j ≤ 1.
If two nodes i and j of a graph are structurally per-

fectly equivalent in their in-edge and out-edge distributions,
i.e. share the same connection pattern with the rest of the
graph, then the corresponding Rα−β

i j = 1. The definitions
above hold again for undirected graphs, in which case one
has in addition Rin−in

i j = Rout−out
i j = Rin−out

i j , leaving only one
independent correlation measure.

As for the Euclidean distance of node adjacencies, the
correlation coefficients yield NN×NN matrices, and we con-
sidered the same subsets and ensemble statistics as for Dα−β

i j .
A representative result of the performed analysis is shown in
Fig. 4B (left) for the CC1 graph. Our analysis shows that the
correlations between in-in edges Rin−in

i j,i6= j, in-out edges Rin−out
i j

and out-out edges Rout−out
i j,i6= j (directed graphs) as well as in-in

Rin−in
i j,i 6= j and in-out edges Rin−out

i j for undirected graphs are al-
most identical and close to zero, a finding which supports
again a mostly uncorrelated distribution of edges across dif-
ferent nodes expected for random graphs (Fig. 4B, left, red
dotted). This observation is shared among all investigated
biological neural graphs (Fig. 4B, middle). However, the in-
out edge distributions for the same nodes Rin−out

ii show a sig-
nificant positive correlation, reflecting the behavior found
for Euclidean distances. This suggests that the distribution
of in- and out-edges for a given node in biological digraphs
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Table 7 Node degree correlations r (Eq. 31), graph assortativity coefficient and measures r (Eqs. 38 and 39, respectively) for various biological
neural graphs. Positive values of r indicate assortative mixing, negative values disassortative mixing.

directed undirected
r rin−in rin−out rout−in rout−out r

CC1 0.9515 -7.2935·10−2 -6.2895·10−2 -5.2792·10−2 -3.2209·10−2 -9.1750·10−2

CC2 0.7516 -2.5389·10−2 1.5424·10−2 -2.7614·10−2 8.2941·10−2 -4.4217·10−2

CE1 0.4964 -4.9522·10−2 -1.1982·10−1 -4.8745·10−2 1.0551·10−2 -1.6320·10−1

CE3 0.7138 -7.2604·10−2 -9.4878·10−2 -9.3457·10−2 -7.8380·10−2 -9.2295·10−2

MB1 0.6828 -1.0062·10−1 -8.2594·10−2 -1.1031·10−1 -6.4468·10−2 -1.3813·10−1

MC1 0.8539 5.5006·10−2 4.5165·10−2 -7.6005·10−3 -1.1037·10−2 8.9371·10−2

MC2 0.5287 -3.8981·10−3 1.5331·10−2 -7.0477·10−2 -1.4625·10−2 -1.5057·10−1

MNC1 0.8336 3.1641·10−2 4.3503·10−2 -2.2502·10−2 -2.0529·10−2 5.6297·10−3

MVC1 0.6894 -9.4035·10−2 -1.4435·10−2 -8.3551·10−2 3.2236·10−2 -2.9813·10−2

MVC2 0.6894 -9.4035·10−2 -1.4435·10−2 -8.3551·10−2 3.2236·10−2 -7.5663·10−2

is not independent (Fig. 4C, right; for undirected graphs,
Rin−out

ii = 0 trivially).
Finally, the correlation between the distribution of node

in- and out-edges in directed graphs was directly assessed
by considering the node degree correlations. To that end,
we defined the correlation coefficient of node end-degrees
(Newman et al., 2002)

r =
1

σ in
a σout

a

max(∆ in,∆ out )

∑
n,k=1

(nkpnk)−〈ain
i 〉〈aout

i 〉

 , (31)

where pnk denotes the node degree correlations, i.e. the prob-
ability that a node with in-degree n has out degree k, ∆ {in,out}

the maximal node in/out-degree, σ
{in,out}
a the standard devi-

ation of node in/out-degrees

σ
{in,out}
a =

{
1

NN

NN

∑
i=1

(
a{in,out}

i −〈a{in,out}
i 〉

)2
}1/2

and 〈a{in,out}
i 〉 the average node in/out-degree. Note that 〈ain

i 〉=
〈aout

i 〉. It can be shown that −1≤ r ≤ 1.
For undirected graphs, r = 1 due to the symmetry of the

adjacency matrix. For the directed versions of the considered
biological neural graphs, the node degree correlations are
listed in Table 7. As shown, r� 0 for all considered graphs,
suggesting a strong correlation between the in-degree and
out-degree, with nodes of in-degree n tending to have out-
degree n.

7 Nearest neighbor degrees

To further explore structural characteristics of biological neu-
ral graphs, we finally investigated the correlation between
nearest neighbor degrees. For that, various measures were
proposed in the literature (e.g. see Boccaletti et al., 2006;
Newman, 2010). First, we calculated the average degrees of

nearest neighbors, defined for digraphs as

〈ann in←α
k 〉 =

∆ in

∑
nin=1

nin pin←α

nin|kα (32)

〈ann out←α
k 〉 =

∆ out

∑
nout=1

nout pout←α

nout |kα , (33)

where α ∈ {in,out}, pin←α

nin|kα denotes the conditional proba-
bility that an edge from a node with α-degree kα points to a
node with in-degree nin, and pout←α

nout |kα the conditional proba-
bility that an edge from a node with α-degree kα points to a
node with out-degree nout . Similarly, for undirected graphs,
one has (Boccaletti et al., 2006)

〈ann
k 〉=

∆

∑
n=1

npn|k , (34)

where pn|k is the conditional probability that an edge from a
node of degree k points to a node of degree n.

Eqs. 32-34 yield the average degrees of nearest neigh-
bors as function of the degree k of the source node, and are
visualized in Fig. 5 for the investigated neural graphs. Due to
the small graph size, only graphs with the largest NN show a
clear decrease of the average degree of nearest neighbors as
function of the degree of the source node (Fig. 5; CE1, CE3
and MB1). This suggests that at least these graphs display a
disassortative behavior, in accordance with the recent find-
ing that biological graphs tend to be disassortative (Johnson
et al., 2010).

In disassortative graphs, nodes with low degree tend to
be connected with nodes of high degree (and vice versa).
To quantify the assortativity, we considered two additional
measures. The average nearest neighbor degrees, defined for
digraphs as

〈ann in−α

i 〉 = 1
ain

i

NN

∑
j=1

a jiaα
j (35)

〈ann out−α

i 〉 = 1
aout

i

NN

∑
j=1

ai jaα
j (36)
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Fig. 6 Average nearest neighbor degree for biological neural graphs.
The average nearest neighbor degree is presented as function of av-
erage node degree (directed: in-α: Eq. 35, out-α: Eq. 36; undirected
graphs: Eq. 37.

(α ∈ {in,out}) and for undirected graphs as

〈ann
i 〉=

1
ai

NN

∑
j=1

ai ja j , (37)

allow for a quantification of the relation between the average
degree of source and target nodes. Eqs. 35-37 yield vectors
of length NN , and we estimated their mean value, standard
deviation along with their minimum, maximum, first and
third quartile as well as median. When comparing the av-
erage node in/out-degree (digraphs) and node degree (undi-
rected graphs), one observes that in all considered graphs
the average nearest neighbor degree is larger than the aver-
age node degree (Fig. 6). This suggests, in accordance with
the finding above, that in biological neural graphs nodes tend
to be connected with nodes of slightly higher average node
degree.

Finally, a direct quantification of assortative mixing is
provided by the graph assortativity coefficient (Newman,
2002, 2003), which is equivalent to the Pearson correlation
coefficient of the degree between pairs of linked nodes, and
is defined by

r= N

{
NE

∑
i=1

jiki−
1

NE

NE

∑
i=1

ji
NE

∑
i′=1

ki′

}
(38)

with

N =

NE

∑
i=1

j2
i −

1
NE

(
NE

∑
i=1

ji

)2

−1/2

×

NE

∑
i=1

k2
i −

1
NE

(
NE

∑
i=1

ki

)2

−1/2

,

where ji and ki denote the excess degree (one less than the
node degree) of the nodes that edge i leads into and out
of, respectively, and NE the number of graph edges. Eq. 38
holds for directed and undirected graphs. In the latter case,
each edge is replaced by two directed edges leading in op-
posite directions. Recently, another set of graph assortativity
measures for digraphs was proposed, which can be viewed
as a generalization of the above assortativity coefficient. It
is given by Foster et al. (2010)

rα−β =
1

NEσα σβ

NE

∑
i=1

[(
jα
i − jα

)(
kβ

i − kβ

)]
, (39)

where

jα =
1

NE

NE

∑
i=1

jα
i

kβ =
1

NE

NE

∑
i=1

kβ

i

σ
α =

{
1

NE

NE

∑
i=1

(
jα
i − jα

)2

}1/2

σ
β =

{
1

NE

NE

∑
i=1

(
kβ

i − kβ

)2
}1/2

.

Here, α,β ∈ {in,out}, and jα
i , kβ

i denote the α- and β -
degree of source and target node of a given edge i. One can
show that r in Eq. 38 is equivalent to rout−in in Eq. 39.

It can be shown that the assortativity coefficient and mea-
sures take values between -1 and 1, i.e. −1 ≤ r,rα−β ≤
1. Graphs without assortative mixing have r,rα−β = 0. If
r,rα−β > 0, the graph is said to mix assortatively, i.e. will
show a bias in favor of edges between nodes with similar de-
gree, r,rα−β < 0 quantifies a bias in favor of connection with
dissimilar nodes (disassortative mixing). Results for the in-
vestigated biological neural graphs are displayed in Table 7
and visualized in Fig. 7A.
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Fig. 7 Graph assortativity coefficients and measures for various bi-
ological neural graphs. (a): Distribution of graph assortativity values
(in-in(d), in-out(d), out-in(d), out-out(d): assortativity measures for di-
graphs Eq. 39; (ud): assortativity coefficient Eq. 38 for undirected
graphs). The grey area indicates assortative mixing. (b): Graph assor-
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(α,β ∈ {in,out}) for digraphs, and 〈ann
i 〉/〈ai〉 for undirected graphs.

The grey area indicates that negative assortativity is associated with
nodes being connected to nodes with larger average node degree.

For the majority of the investigated neural graphs, the
assortativity was found to be close to but smaller than zero
(−0.1 . r,rα−β . 0), suggesting a slight tendency for dis-
assortative mixing, thus further confirming the findings out-
lined above. However, the level of disassortativity is gener-

ally weaker than reported in the literature. Finally, the rela-
tion between assortativity and node degrees was assessed by
comparing the assortativity measures for each given graph
with the ratio between average nearest neighbor degrees and
node degree (Fig. 7B). As expected, the smaller the assor-
tativity, the larger is the average nearest neighbor degree in
relation to the average node degree of a given graph. In other
words, an increase in disassortativity is associated with an
increase in the dissimilarity between nodes and their nearest
neighbors, a trend shared by all biological graphs considered
in this study.

8 Discussion

In this work, we have completed a detailed comparative anal-
ysis of several networks fundamental to the application of
graph theory in neuroscience, while challenging the perti-
nence of several established graph-theoretic concepts in the
context of neural connectivity patterns. Contrary to many re-
sults reported in the neuroscientific literature, the biological
graphs studied here show in many measures a consistency
with randomness, as opposed to a consistency with simple
models of graph construction, such the scale-free (Barabási
and Albert, 1999) graph.

Specifically, we found that fits of the node degree dis-
tributions are in accordance with a gamma model, support-
ing the idea of a simple local mechanism responsible for
generating neural graphs. Secondly, the Euclidean distance
of node adjacencies and node degree correlations were ob-
served to be consistent with an independent random dis-
tribution of node connections for different nodes, but with
strong correlations between in-coming and out-going con-
nections for the same node. Finally, we found a weak dis-
assortative tendency in the considered graphs. Although the
observed magnitudes are smaller than previously reported
(Newman, 2002), this disassortative mixing suggests that in
neural graphs nodes tend to connect with nodes of slightly
higher degree.

This consistency with randomness is in some respects
not fully surprising, as any conceivable mechanism which
could give rise to such a structural make-up will be subject
to fewer constraints compared to graph models conceived
to fulfill a specific set of structural requirements. In par-
ticular, for scale-free graphs, various generating algorithms
have been proposed, ranging from static models to evolv-
ing models more closely reflecting processes found in na-
ture. Typically, static models construct scale-free graphs by
imposing global constraints, such as the scale-free node-
degree distribution itself (Aiello et al., 2000; Chung and Lu,
2002) or fitness (Goh et al., 2001; Caldarelli et al., 2002).
The most prominent model of evolving scale-free graphs
is the classical growth and preferential attachment model
(Barabási-Albert model, see Albert et al., 1999), originally



Randomness in neural graphs 17

studied as “Matthew effect” (Merton, 1968) or “cumulative
advantage” (de Solla Price, 1965)), and its generalizations
(such as the Dorogovtsev-Mendes-Samukhin, Dorogovtsev
et al., 2000 or Ravasz-Barabási model Ravasz and Barabási,
2003). Here, the probability of linking two nodes is (lin-
early) proportional to the actual node degree, requiring the
generating algorithm to keep track of all node degrees and,
thus, non-local information about the graph at any stage of
its construction. Finally, scale-free graph generation mod-
els utilizing accelerated growth (Dorogovtsev and Mendes,
2001), requiring the knowledge of the network size at any
stage of construction, finite node memory (Klemm and Eguı́luz,
2002), requiring the knowledge of the activity state of each
node in the graph, or duplication and divergence (Goh et al.,
2002; Vázquez et al., 2003), requiring copies of arbitrarily
selected graph nodes, were considered in the literature. All
these models are crucially dependent on graph-wide proper-
ties in their generation algorithms, a requirement not neces-
sary for generating graphs consistent with the observations
presented in this study.

While the measures of structural similarily in this work
are related to the bidirectional connectivity motif studied
previously (Song et al., 2005), our analysis uses a differ-
ent technique for studying connectivity patterns in the net-
work, assessing the nearest neighbor connectivity in terms
of binary vectors in the adjacency matrix. Specifically, the
Euclidean distance assesses the absence of the reciprocal
pattern, whereas the structural correlation assesses its pres-
ence. Reciprocal connectivity patterns have been discussed
previously in studies ranging from local cortical microcir-
cuits (Song et al., 2005) to areal connectivity (Felleman and
Van Essen, 1991; Van Essen, 2005); in this work, we present
the first systematic analysis to confirm the prevalence of this
reciprocal connectivity in neural graphs spanning multiple
spatial scales, and to exclude the generality of the other two-
edge connectivity patterns in a thorough fashion.

In recent years, some studies have critiqued the validity
of the random graph null hypothesis (Artzy-Randrup et al.,
2004), noting specifically that the spatial nature of certain
networks could confound the statistical comparison to a ran-
dom graph for measures taken from real-world graphs (as in
Milo et al., 2002). In this work, we compare the measures for
structural similarity to those of an equivalent random graph;
however, we note that it is additionally possible with such
an analysis to detect statistical differences between subsets
of the Euclidean distance and stuctural correlation matrices
(see Fig. 4, left panel). Such a comparison, free from a ran-
dom graph null hypothesis, can be explored in future work.

In conclusion, we hope that, while there has been a great
interest in recent years in the possibility that structural graphs
share important features in common with abstract models of
graph generation, in future work not only will greater care be
taken in the support of such claims, but also more measure-

ment and theory will be developed toward the discovery of
new, specific graph theoretic models with explanatory power
able to meet the challenges of the next-generation of large-
scale experimental network reconstructions.
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