Skip to main content
Log in

A simple model of cortical culture growth: burst property dependence on network composition and activity

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

This paper describes large-scale simulations of growth, network formation, and behavior in cultures of dissociated cortical cells. A neuron model that incorporates synaptic facilitation/depression and neurite outgrowth/retraction was used to construct virtual cultures of 10,000 cells whose spiking behavior and evolution were investigated in closed-loop simulations. This approach allows us to perform detailed analysis of the effects of model parameters on burst shape and timing, their changes, and the interrelationship among these behaviors, gross network structure, and model parameters. We examined the effects of two parameters—network composition (fraction of excitatory cells) and neuron excitability (activity level corresponding to neurite outgrowth equilibrium)—on network structure and behavior. Our results suggest that much of the burst shape and timing observed in vitro can be explained by a model that includes only closed-loop neurite outgrowth and dynamic synapses; features such as LTP/LTD, random connectivity, long-distance connections, and detailed neurite topology are not necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abbott L (1999) Lapicque’s introduction of the integrate-and-fire model neuron (1907). Brain Res Bull 50(5/6):303–304

    Article  CAS  PubMed  Google Scholar 

  • Babloyantz A, Destexhe A (1991) Mapping of spatiotemporal activity of networks into chaotic dynamics: thalamocortical networks. In: Kohonen T, M akisara K, Simula O, Kangas J (eds) International conference on artificial neural networks, Elsevier, Espoo, Finland, pp 139–144

  • Bergé P, Pomeau Y, Vidal C (1986) Order within chaos: a deterministic approach to turbulence. Wiley, New York

    Google Scholar 

  • Brillinger DR (1975) The identification of point process systems. Ann Probab 3(6):909–929

    Article  Google Scholar 

  • Brillinger DR, Hugh L, Bryant J, Segundo JP (1976) Identification of synaptic interactions. Biol Cybern 22:213–228

  • Chen X, Dzakpasu R (2010) Observed network dynamics from altering the balance between excitatory and inhibitory neurons in cultured networks. Physical Review E 82:031,907-1-031,907–8. doi:10.1103/PhysRevE.82.031907

  • Cohan CS, Kater SB (1986) Suppression of neurite elongation and growth cone motility by electrical activity. Science 232(4758):1638–1640

    Article  CAS  PubMed  Google Scholar 

  • Destexhe A, Gaspard P (1993) Bursting oscillations from a homoclinic tangency in a time delay system. Phys Lett A 173:386–391

    Article  Google Scholar 

  • Echevarría D, Albus K (2000) Activity-dependent development of spontaneous bioelectric activity in organotypic cultures of rat occipital cortex. Dev Brain Res 123:151–164

    Article  Google Scholar 

  • Fields RD, Neale EA, Nelson PG (1990) Effects of patterned electrical activity on neurite outgrowth from mouse sensory neurons. J Neurosci 10(9):2950–2964

    CAS  PubMed  Google Scholar 

  • Gómez L, Budelli R, Saa R, Stiber M, Segundo JP (2005) Pooled spike trains of correlated presynaptic inputs as realizations of cluster point processes. Biol Cybern 92(2):110–127

    Article  PubMed  Google Scholar 

  • Gritsun T, le Feber J, Stegenga J (2010) Network bursts in cortical cultures are best simulated using pacemaker neurons and adaptive synapses. Biol Cybern 102:293–310

    Article  CAS  PubMed  Google Scholar 

  • Gritsun T, le Feber J, Stegenga J, Rutten W (2011) Experimental analysis and computational modeling of interburst intervals in spontaneous activity of cortical neuronal culture. Biol Cybern 105:197–210. doi:10.1007/s00422-011-0457-3

    Article  CAS  PubMed  Google Scholar 

  • Gritsun TA, le Feber J, Rutten WLC (2012) Growth dynamics explain the development of spatiotemporal burst activity of young cultured neuronal networks in detail. PLoS ONE 7(9):e43–352. doi:10.1371/journal.pone.0043352

    Article  Google Scholar 

  • Gross G (1979) Simultaneous single unit recording in vitro with a photoetched laser deinsulated gold multielectrode surface. IEEE Trans Biomed Eng 26:273–279

    Article  CAS  PubMed  Google Scholar 

  • Grumbacher-Reinert S, Nicholls J (1992) Influence of substrate on retraction of neurites following electrical activity of leech Retzius cells in culture. J Exp Biol 167:1–14

    CAS  PubMed  Google Scholar 

  • Ito D, Tamate H, Nagayama M, Uchida T, Kudoh S, Gohara K (2010) Minimum neuron density for synchronized bursts in a rat cortical culture on multi-electrode arrays. Neuroscience 171:50–61. doi:10.1016/j.neuroscience.2010.08.038

    Article  CAS  PubMed  Google Scholar 

  • Jimbo Y, Robinson HPC, Kawana A (1998) Strengthening of synchronized activity by tetanic stimulation in cortical cultures: application of planar electrode arrays. IEEE Trans Biomed Eng 45(11):1297–1304

    Article  CAS  PubMed  Google Scholar 

  • Jimbo Y, Kawana A, Parodi P, Torre V (2000) The dynamics of a neuronal culture of dissociated cortical neurons of neonatal rats. Biol Cybern 83:1–20

    Article  CAS  PubMed  Google Scholar 

  • Kater SB, Mattson MP, Cohan C, Connor J (1988) Calcium regulation of the neuronal growth cone. Trends Neurosci 11(7):315–321

    Article  CAS  PubMed  Google Scholar 

  • Kater S, Guthrie P, Mills L (1990) Integration by the neuronal growth cone: a continuum from neuroplasticity to neuropathology. In: Coleman P, Higgins G, Phelps C (eds) Molecular and cellular mechanisms of neuronal plasticity in normal aging and Alzheimer’s disease, progress in brain research, vol 86, pp 117–28

  • Kawasaki F (2012) Accelerating large-scale simulations of cortical neuronal network development. Master’s thesis, University of Washington, Bothell, WA

  • Kawasaki F, Stiber M (2012) Accelerating large-scale simulations of cortical neuronal network development. Tech Rep UWB-CSS-12-01, University of Washington Bothel Computing and Software Systems Program, Bothell, WA 98011, http://www.uwb.edu/css/about/faculty/tech-reports

  • Latham P, Richmond B, Nelson P, Nirenberg S (2000a) Intrinsic dynamics in neuronal networks I theory. J Neurophysiol 83:27–808

    Google Scholar 

  • Latham PE, Richmond BJ, Nirenberg S, Nelson PG (2000b) Intrinsic dynamics in neuronal networks. II. experiment. J Neurophysiol 83:35–828

    Google Scholar 

  • Maass W, Natschläger T, Markram H (2002) Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput 14(11):2531–2560

    Article  PubMed  Google Scholar 

  • Markram H, Wang Y, Tsodyks M (1998) Differential signaling via the same axon of neocortical pyramidal neurons. Proc Natl Acad Sci USA 95:5323–5328

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mok S, Nadasdy Z, Lim Y, Goh S (2012) Ultra-slow oscillations in cortical networks in vitro. Neuroscience 206:17–24. doi:10.1016/j.neuroscience.2012.01.009

    Article  CAS  PubMed  Google Scholar 

  • Pine J (1980) Recording action potentials from cultured neurons with extracellular microcircuit electrodes. J Neurosci Methods 2:19–31

    Article  CAS  PubMed  Google Scholar 

  • Ramakers G, van Galen H, Feenstra M, Corner M, Boer G (1994) Activity-dependent plasticity of inhibitory and excitatory amino acid transmitter systems in cultured rat cerebral cortex. Int J Dev Neurosci 12(7):611–621

    Article  CAS  PubMed  Google Scholar 

  • Rapp P, Zimmerman I, Albano A, deGuzman G, Greenbaun N (1985) Dynamics of spontaneous neural activity in the simian motor cortex: the dimension of chaotic neurons. Phys Lett A 110:335–338

    Article  Google Scholar 

  • Rigas A (1992) Spectral analysis of stationary point processes using the fast Fourier transform algorithm. J Time Ser Anal 13(5):441–450 . doi:10.1111/j.1467-9892.1992.tb00119.x

    Article  Google Scholar 

  • Schilling K, Dickinson MH, Connor JA, Morgan JI (1991) Electrical activity in cerebellar cultures determines Purkinje cell dendritic growth patterns. Neuron 7:891–902

    Article  CAS  PubMed  Google Scholar 

  • Segev R, Baruchi I, Hulata E, Ben-Jacob E (2004) Hidden neuronal correlations in cultured networks. Phys Rev Lett 92(11):118,102-1-118,102–4. doi:10.1103/PhysRevLett.92.118102

  • Stegenga J, Le Feber J, Marani E, Rutten WLR (2008) Analysis of cultured neuronal networks using intraburst firing characteristics. IEEE Trans Biomed Eng 55(4):1382–1390. doi:10.1109/TBME.2007.913987

    Article  PubMed  Google Scholar 

  • Stiber M, Kawasaki F, Xu D (2007) A model of dissociated cortical tissue. In: Neural Coding 2007. Montevideo, Uruguay, pp 24–27

  • The MathWorks, Inc. http://www.mathworks.com/

  • Tsodyks M, Pawelzik K, Markram H (1998) Neural networks with dynamic synapses. Neural Comput 10:821–835

    Article  CAS  PubMed  Google Scholar 

  • Tsodyks M, Uziel A, Markram H (2000) Synchrony generation in recurrent networks with frequency-dependent synapses. J Neurosci 20(RC50):1–5

    Google Scholar 

  • Turrigiano GG (2008) The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135:422–435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van Huizen F, Romijn H, Habets A (1985) Synaptogenesis in rat cerebral cortex cultures is affected during chronic blockade of spontaneous bioelectric activity by tetrodotoxin. Dev Brain Res 19:67–80

    Article  Google Scholar 

  • van Ooyen A, van Pelt J, Corner M (1995) Implications of activity dependent neurite outgrowth for neuronal morphology and network development. J Theor Biol 172:63–82

    Article  PubMed  Google Scholar 

  • van Ooyen A, van Pelt J (1996) Complex periodic behaviour in a neural network model with activity-dependent neurite outgrowth. J Theor Biol 179:229–242

    Article  PubMed  Google Scholar 

  • van Pelt J, Wolters PS, Corner MA, Rutten WL (2004) Long-term characterization of firing dynamics of spontaneous bursts in cultured neural networks. IEEE Trans Biomed Eng 51(11):2051–2062. doi:10.1109/TBME.2004.827936

    Article  PubMed  Google Scholar 

  • van Pelt J, Corner M, Wolters P, Rutten W, Ramakers G (2004a) Longterm stability and developmental changes in spontaneous network burst firing patterns in dissociated rat cerebral cortex cell cultures on multielectrode arrays. Neurosci Lett 361:86–89

    Article  PubMed  Google Scholar 

  • Wagenaar DA, Pine J, Potter SM (2006) An extremely rich repertoire of bursting patterns during the development of cortical cultures. BMC Neurosci 7(11). doi:10.1186/1471-2202-7-11

  • Wagenaar DA, Madhavan R, Pine J, Potter SM (2005) Controlling bursting in cortical cultures with closed-loop multi-electrode stimulation. J Neurosci 25(3):680–688

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Stiber.

Additional information

This work was partially supported by an equipment grant from the NVIDIA Corporation. The authors would also like to acknowledge Prof. Shinichi Yamagiwa for his generous offer of time on a GPU cluster at the University of Tsukuba.

Appendix: Neuron and synapse parameters

Appendix: Neuron and synapse parameters

See Tables 8 and 9.

Table 8 Neuron parameters
Table 9 Synapse parameters

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawasaki, F., Stiber, M. A simple model of cortical culture growth: burst property dependence on network composition and activity. Biol Cybern 108, 423–443 (2014). https://doi.org/10.1007/s00422-014-0611-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-014-0611-9

Keywords

Navigation