Skip to main content

Advertisement

Log in

Effective connectivity at synaptic level in humans: a review and future prospects

  • Review
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Correct knowledge of the effective connectivity at the synaptic level in humans is a key prerequisite for increasing our understanding of the operation of the human central nervous system. Unfortunately, none of the current ambitious collaborative neuroscience projects pay enough attention to this topic and are thus unable to completely relate the microlevel properties of the system to its emergent macrolevel behaviors. In this review article, the problem of effective connectivity at the synaptic level in humans is explained, existing and possible computational approaches to fill explanatory gaps are reviewed, and the requisite characteristics of these approaches are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. The actual coupling that we are trying to model is referred to as effective connectivity. In some studies the term functional connectivity is also used, but this term refers more to the statistical correlations between nodes [for a review see Friston (2011)]. In this sense, the term effective connectivity is used throughout this article.

  2. On higher resolution levels (neuronal ensembles or brain regions) it is better known as synaptic efficacy.

  3. However, in such a stimulation, not only the sensory system under study but also other sensory axons and motor axons located in the same nerve trunk are activated.

  4. In mathematics, a bin of a histogram represents a discrete interval in that histogram. When a histogram acquires \(m\) different values, it is called an m-bin histogram.

  5. It is assumed that the data mean has been subtracted from the time series.

  6. The paradox was articulated by Hans Moravec (and is thus known as Moravec’s Paradox) in the 1980s (Moravec 1988).

  7. Three forms of local plasticity are: spike-timing-dependent plasticity (STDP) (Song et al. 2000), synaptic scaling of the excitatory–excitatory connections (Turrigiano et al. 1998), and intrinsic plasticity regulating the thresholds of excitatory units.

References

  • Aertsen A, Preissl H (1991) Dynamics of activity and connectivity in physiological neuronal networks. In: Schuster HG (ed) Non linear dynamics and neuronal networks, pp 281–302

  • Alivisatos AP, Chun M, Church GM, Greenspan RJ, Roukes ML, Yuste R (2012) The brain activity map project and the challenge of functional connectomics. Neuron 74:970–974

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ananthanarayanan R, Modha DS (2007) Anatomy of a cortical simulator. In: Proceedings of the 2007 ACM/IEEE conference on supercomputing, SC ’07, ACM, New York, NY, USA, pp 3:1–3:12

  • Anderson JR, Lebiere C, Agassi J, Altmann EM, Garzon FC, Clancey WJ, Commons ML, White MS, Gelepithis P, Gray WD (2003) The newell test for a theory of cognition. commentaries. authors’ reply. Behav Brain Sci 26(5):587–640

    PubMed  Google Scholar 

  • Arel I, Rose D, Karnowski T (2009a) A deep learning architecture comprising homogeneous cortical circuits for scalable spatiotemporal pattern inference. In: NIPS 2009 workshop on deep learning for speech recognition and related applications

  • Arel I, Rose D, Coop R (2009b) Destin: a scalable deep learning architecture with application to high-dimensional robust pattern recognition. In: Proceedings of AAAI workshop on biologically inspired cognitive architectures, pp 1150–1157

  • Ashby P, Labelle K (1977) Effects of extensor and flexor group i afferent volleys on the excitability of individual soleus motoneurones in man. J Neurol Neurosurg Psychiatry 40(9):910–919

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ashby P, Zilm D (1978) Synaptic connections to individual tibialis anterior motoneurones in man. J Neurol Neurosurg Psychiatry 41(8):684–689

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ashby P, Zilm D (1982) Characteristics of postsynaptic potentials produced in single human motoneurons by homonymous group 1 volleys. Exp Brain Res 47:41–48

    CAS  PubMed  Google Scholar 

  • Babinec S, Pospichal J (2005) Two approaches to optimize echo state neural networks. In: Proceedings of the 11th international conference on soft computing, pp 39–44

  • Bach J (2009) Principles of synthetic intelligence PSI: an architecture of motivated cognition. Oxford Series on Cognitive Models and Architectures. Oxford University Press, USA

  • Baranes A, Oudeyer PY (2009) R-iac: Robust intrinsically motivated exploration and active learning. IEEE Trans Auton Ment Dev 1(3):155–169

    Article  Google Scholar 

  • Bardin J (2012) Making connections: is a project to map the brains full communications network worth the money? Nature 483:394–396

    Article  CAS  PubMed  Google Scholar 

  • Barton RA, Harvey PH (2000) Mosaic evolution of brain structure in mammals. Nature 405:1055–1058

    Article  CAS  PubMed  Google Scholar 

  • Bentler P (1985) Theory and implementation of EQS: a structural equations program. BMDP Statistical Software

  • Bessou P, Laporte Y, Pages B (1968) A method of analysing the responses of spindle primary endings to fusimotor stimulation. J Physiol 196(1):37–45

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bower J, Beeman D, Hucka M (2003) The GENESIS simulation system. MIT Press, Cambridge

    Google Scholar 

  • Braitenberg V, Schüz A, (1991) Anatomy of the cortex: statistics and geometry. Springer, Berlin

  • Brette R, Rudolph M, Carnevale T, Hines M, Beeman D, Bower JM, Diesmann M, Morrison A, Goodman PH, Davison AP, Boustani SE, Destexhe A (2007) Simulation of networks of spiking neurons: a review of tools and strategies. J Comput Neurosci 2007:349–398

  • Brinkworth RSA, Türker KS (2003) A method for quantifying reflex responses from intra-muscular and surface electromyogram. J Neurosci Meth 122(2):179–193

    Article  Google Scholar 

  • Buchthal F, Schmalbruch H (1980) Motor unit of mammalian muscle. Physiol Rev 60(1):90–142

    CAS  PubMed  Google Scholar 

  • Buibas M, Silva GA (2011) A framework for simulating and estimating the state and functional topology of complex dynamic geometric networks. Neural Comput 23(1):183–214

    Article  PubMed  Google Scholar 

  • Bush K, Tsendjav B (2005) Improving the richness of echo state features using next ascent local search. In: Proceedings of the artificial neural networks in engineering conference, pp 227–232

  • Capaday C (2002) The special nature of human walking and its neural control. Trends Neurosci 25(7):370–376

    Article  CAS  PubMed  Google Scholar 

  • Carpenter G, Grossberg S, Reynolds J (1991) Artmap: a self-organizing neural network architecture for fast supervised. In: Neural networks, 1991, IJCNN-91-seattle international joint conference on, vol. 1, pp 863–868

  • Carpenter G, Grossberg S, Markuzon N, Reynolds J, Rosen D (1992) Fuzzy artmap: a neural network architecture for incremental supervised learning of analog multidimensional maps. IEEE Trans Neural Netw 3(5):698–713

    Article  CAS  PubMed  Google Scholar 

  • Cassimatis NL (2007) Adaptive algorithmic hybrids for human-level artificial intelligence. In: Proceedings of the 2007 conference on advances in artificial general intelligence: concepts, architectures and algorithms: proceedings of the AGI workshop 2006, pp 94–110. IOS Press, Amsterdam

  • Chatzidimitriou KC, Mitkas PA (2013) Adaptive reservoir computing through evolution and learning. Neurocomputing 103:198–209

    Article  Google Scholar 

  • Colquhoun D, Hawkes AG (1990) Stochastic properties of ion channel openings and bursts in a membrane patch that contains two channels: evidence concerning the number of channels present when a record containing only single openings is observed. Proc R Soc Lond Ser B Biol Sci 240(1299):453–477

    Article  CAS  Google Scholar 

  • David O, Kiebel SJ, Harrison LM, Mattout J, Kilner JM, Friston KJ (2006) Dynamic causal modeling of evoked responses in eeg and meg. NeuroImage 30(4):1255–1272

    Article  PubMed  Google Scholar 

  • Dayan P, Abbott L (2005) Theoretical neuroscience: computational and mathematical modeling of neural systems. Computational Neuroscience. MIT Press

  • de Garis H, Shuo C, Goertzel B, Ruiting L (2010) A world survey of artificial brain projects, part i: large-scale brain simulations. Neurocomputing 74(1–3):3–29

    Article  Google Scholar 

  • Deco G, Jirsa VK, Robinson PA, Breakspear M, Friston K (2008) The dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS Comput Biol 4(8):e1000092

    Article  PubMed Central  PubMed  Google Scholar 

  • Diesmann M, Gewaltig M-O (2002) Nest: an environment for neural systems simulations. In: Plesser T, Macho V (eds) Forschung und wisschenschaftliches Rechnen, Beitrage zum Heinz-Billing-Preis 2001, Volume 58 of GWDG-Bericht, pp 43–70

  • Eliasmith C, Stewart TC, Choo X, Bekolay T, DeWolf T, Tang Y, Rasmussen D (2012) A large-scale model of the functioning brain. Science 338(6111):1202–1205

    Article  CAS  PubMed  Google Scholar 

  • Ellaway P (1978) Cumulative sum technique and its application to the analysis of peristimulus time histograms. Electroencephalogr Clin Neurophysiol 45(2):302–304

    Article  CAS  PubMed  Google Scholar 

  • Fetz EE, Gustafsson B (1983) Relation between shapes of post-synaptic potentials and changes in firing probability of cat motoneurones. J Physiol 341:387–410

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fleischer JG, Gally JA, Edelman GM, Krichmar JL (2007) Retrospective and prospective responses arising in a modeled hippocampus during maze navigation by a brain-based device. Proc Natl Acad Sci 104(9):3556–3561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Floreano D, Dürr P, Mattiussi C (2008) Neuroevolution: from architectures to learning. Evolut Intell 1(1):47–62

    Article  Google Scholar 

  • Friedlander D, Franklin S (2008) Lida and a theory of mind. In: Proceedings of the 2008 conference on artificial general intelligence 2008: proceedings of the first AGI conference, IOS Press, Amsterdam, The Netherlands, pp 137–148

  • Friston K, Harrison L, Penny W (2003) Dynamic causal modelling. NeuroImage 19(4):1273–1302

    Article  CAS  PubMed  Google Scholar 

  • Friston KJ (2011) Functional and effective connectivity: a review. Brain Connect 1(1):13–36

    Article  PubMed  Google Scholar 

  • Fritzke B (1994) A growing neural gas network learns topologies. In: NIPS, pp 625–632

  • Garnett R, Stephens JA (1980) The reflex responses of single motor units in human first dorsal interosseous muscle following cutaneous afferent stimulation. J Physiol 303(1):351–364

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garrido MI, Kilner JM, Kiebel SJ, Stephan KE, Friston KJ (2007) Dynamic causal modelling of evoked potentials: a reproducibility study. NeuroImage 36(3):571–580

    Article  PubMed Central  PubMed  Google Scholar 

  • Gerstein G, Perkel D (1969) Simultaneously recorded trains of action potentials: analysis and functional interpretation. Science 164:828–830

    Article  CAS  PubMed  Google Scholar 

  • Gerstein GL, Kiang NY-S (1960) An approach to the quantitative analysis of electrophysiological data from single neurons. Biophys J 1(1):15–28

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gerstner W, Sprekeler H, Deco G (2012) Theory and simulation in neuroscience. Science 338(6103):60–65

    Article  CAS  PubMed  Google Scholar 

  • Goertzel B (2009) Opencog prime: a cognitive synergy based architecture for embodied artificial general intelligence. In: ICCI 2009, Hong Kong

  • Goertzel B, Lian R, Arel I, de Garis H, Chen S (2010) A world survey of artificial brain projects, part ii: biologically inspired cognitive architectures. Neurocomputing 74(1–3):30–49

    Article  Google Scholar 

  • Goodman DFM, Brette R (2008) Brian: a simulator for spiking neural networks in python. Front Neuroinform 2:5

  • Grande G, Cafarelli E (2003) Ia afferent input alters the recruitment thresholds and firing rates of single human motor units. Exp Brain Res 150:449–457

    CAS  PubMed  Google Scholar 

  • Granger CWJ (2001) Investigating causal relations by econometric models and cross-spectral methods. In: Ghysels E, Swanson NR, Watson MW (eds) Essays Econom. Harvard University Press, Cambridge, pp 31–47

    Chapter  Google Scholar 

  • Gürcan Ö (2013) An emergent model for mimicking human neuronal pathways in silico. In: The 12th European conference on artificial life (ECAL’2013), page accepted. MIT Press

  • Gürcan O, Bernon C, Türker KS, Mano J-P, Glize P, Dikenelli O (2012) Simulating human single motor units using self-organizing agents. In: Self-adaptive and self-organizing systems (SASO), 2012 IEEE sixth international conference on, pp 11–20

  • Gürcan Ö, Türker KS, Mano J-P, Bernon C, Dikenelli O, Glize P (2013) Mimicking human neuronal pathways in silico: an emergent model on the effective connectivity. J Comput Neurosci, pp 1–23. 2013/07/04/online

  • Gürel T, Rotter S, Egert U (2010) Functional identification of biological neural networks using reservoir adaptation for point processes. J Comput Neurosci 29(1–2):279–299

    Article  PubMed Central  PubMed  Google Scholar 

  • Gydikov A, Tankov N, Gerilovsky L, Radicheva N (1977) Motor unit activity upon polysynaptic reflex in man. Agressologie 18(2):103–8

    CAS  PubMed  Google Scholar 

  • Han JD, Zeng S, Tham KY, Badgero M, Weng J (2002) Dav: a humanoid robot platform for autonomous mental development. In: Development and learning, 2002. Proceedings. The 2nd international conference on, pp 73–81

  • Harrison L, Penny W, Friston K (2003) Multivariate autoregressive modeling of fmri time series. NeuroImage 19(4):1477–1491

    Article  CAS  PubMed  Google Scholar 

  • Hawkins J, Blakeslee S (2007) On intelligence. Henry Holt and Company

  • Hay E, Hill S, Schürmann F, Markram H, Segev I (2011) Models of neocortical layer 5b pyramidal cells capturing a wide range of dendritic and perisomatic active properties. PLoS Comput Biol 7(7):e1002107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haykin S (1999) Neural networks: a comprehensive foundation. Prentice Hall International Editions Series. Prentice Hall International

  • Herzog A, Handrich S, Herrmann C (2009) Multi-objective parameter estimation of biologically plausible neural networks in different behavior stages. In: Proceedings of the eleventh conference on congress on evolutionary computation, CEC’09, pp 793–799, IEEE Press, Piscataway

  • Hines ML, Carnevale NT (1997) The neuron simulation environment. Neural Comput 9(6):1179–1209

    Article  CAS  PubMed  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ishu K, van Der Zant T, Becanovic V, Ploger P (2004) Identification of motion with echo state network. In: OCEANS ’04. MTTS/IEEE TECHNO-OCEAN ’04, vol. 3, pp 1205–1210

  • Izhikevich E (2006) Polychronization: computation with spikes. Neural Comput 18(2):245–282

    Article  PubMed  Google Scholar 

  • Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14(6):1569–1572

  • Izhikevich EM, Edelman GM (2008) Large-scale model of mammalian thalamocortical systems. Proc Natl Acad Sci 105(9):3593–3598

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jaeger H (2001) The “echo state” approach to analysing and training recurrent neural networks. GMD Report 148, GMD—German National Research Institute for Computer Science

  • Jiang F, Berry H, Schoenauer M (2008) Supervised and evolutionary learning of echo state networks. In: Proceedings of the 10th international conference on parallel problem solving from nature: PPSN X. Springer Berlin, pp 215–224

  • Kandel ER, Schwartz J, Jessell TM (2000) Principles of neural science, 4th edn. Mc Graw Hill

  • Kavanagh J, Hall W (eds) (2008) Grand challenges in computing research conference 2008. UKCRC

  • Kaylani A, Georgiopoulos M, Mollaghasemi M, Anagnostopoulos GC, Sentelle C, Zhong M (2010) An adaptive multiobjective approach to evolving art architectures. Trans Neural Netw 21(4):529–550

    Article  CAS  Google Scholar 

  • Kiebel SJ, David O, Friston KJ (2006) Dynamic causal modelling of evoked responses in eeg/meg with lead field parameterization. NeuroImage 30(4):1273–1284

    Article  PubMed  Google Scholar 

  • Koch C, Segev I (1989) Methods in neuronal modeling: from synapses to networks. Computational neuroscience series. MIT Press, Cambridge

  • Kohonen T (1988) Neurocomputing: foundations of research. chapter self-organized formation of topologically correct feature maps. MIT Press, Cambridge, pp 509–521

  • Kohonen T, Honkela T (2007) Kohonen network. Scholarpedia 2(1):1568

  • Kudina LP (1980) Reflex effects of muscle afferents on antagonist studied on single firing motor units in man. Electroencephalogr Clin Neurophysiol 50(3–4):214–221

    Article  CAS  PubMed  Google Scholar 

  • Laird JE, Newell A, Rosenbloom PS (1987) Soar: an architecture for general intelligence. Artif Intell 33(1):1–64

    Article  Google Scholar 

  • Lam T, Pearson K (2002) The role of proprioceptive feedback in the regulation and adaptation of locomotor activity. Adv Exp Med Biol 508:343–355

    Article  PubMed  Google Scholar 

  • Langley P (2005) An adaptive architecture for physical agents. In: Proceedings of the IEEE/WIC/ACM international conference on intelligent agent technology, IAT ’05, IEEE Computer Society, Washington, pp 18–25

  • Lazar A, Pipa G, Triesch J (2009) SORN: a self-organizing recurrent neural network. Front Comput Neurosci 3(October), 23

  • Liu Y, Sun D (2012) Biologically inspired robotics. Taylor & Francis Group, London

    Google Scholar 

  • Lukosevicius M, Jaeger H (2009) Reservoir computing approaches to recurrent neural network training. Comput Sci Rev 3(3):127–149

    Article  Google Scholar 

  • Maass W, Natschläger T, Markram H (2002) Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput 14(11):2531–2560

    Article  PubMed  Google Scholar 

  • Maass W, Natschlager T, Markram H (2003a) Computational models for generic cortical microcircuits. Comput Neurosci: Compr Approach

  • Maass W, Natschlaeger T, Markram H (2003b) A model for real-time computation in generic neural microcircuits. In: Becker S, Thrun S, Obermayer K (eds), NIPS 2002, advances in neural information processing systems, vol. 15, pp 229–236. MIT Press, Cambridge

  • Machens CK (2012) Building the human brain. Science 338(6111):1156–1157

    Article  PubMed  Google Scholar 

  • Mainen ZF, Joerges J, Huguenard JR, Sejnowski TJ (1995) A model of spike initiation in neocortical pyramidal neurons. Neuron 15(6):1427–39

    Article  CAS  PubMed  Google Scholar 

  • Mano J, Glize P (2005) Organization properties of open networks of cooperative neuro-agents. In: ESANN, pp 73–78

  • Markram H (2006) The blue brain project. Nat Rev Neurosci 7:153–160

    Article  CAS  PubMed  Google Scholar 

  • Marsland S, Shapiro J, Nehmzow U (2002) A self-organising network that grows when required. Neural Netw 15(8–9):1041–1058

    Article  PubMed  Google Scholar 

  • Martin C, Reggia J (2010) Self-assembly of neural networks viewed as swarm intelligence. Swarm Intell 4:1–36

    Article  Google Scholar 

  • McIntosh AR, Gonzalez-Lima F (1994) Structural equation modeling and its application to network analysis in functional brain imaging. Hum Brain Mapp 2:23–44

    Article  Google Scholar 

  • Meyer D, Kieras D (1997) A computational theory of executive cognitive processes and multiple-task performance: part 1. basic mechanisms. Psychol Rev 104(1):3–65

    Article  CAS  PubMed  Google Scholar 

  • Misiaszek J (2006) Neural control of walking balance: if falling then react else continue. Exerc Sport Sci Rev 34(3):128–134

    Article  PubMed  Google Scholar 

  • Misiaszek JE (2003) The h-reflex as a tool in neurophysiology: its limitations and uses in understanding nervous system function. Muscle Nerve 28(2):144–160

    Article  PubMed  Google Scholar 

  • Moravec H (1988) Mind children: the future of robot and human intelligence. Harvard University Press, Cambridge

    Google Scholar 

  • Natschläger T, Markram H, Maass W (2002) Computer models and analysis tools for neural microcircuits, chapter 9. Kluver, Boston

  • Nestor A, Kokinov B (2004) Towards active vision in the dual cognitive architecture. Int J Inf Theor Appl 11(1):9–15

  • Nilsson NJ (2007) 50 years of artificial intelligence. chapter the physical symbol system hypothesis: status and prospects, pp 9–17. Springer, Berlin

  • O’Reilly RC, Braver TS, Cohen JD (1998) A biologically based computational model of working memory. In: Miyake A, Shah P (eds) Models of working memory: mechanisms of active maintenance and executive control. Cambridge University Press, New York

    Google Scholar 

  • Pearl J (2000) Causality: models, reasoning and inference. University Press

  • Pelikan M (2005) Hierarchical Bayesian optimization algorithm: toward a new generation of evolutionary algorithms. Studies in fuzziness and soft computing. Springer, Berlin

  • Piotrkiewicz M, Kudina L, Jakubiec M (2009) Computer simulation study of the relationship between the profile of excitatory postsynaptic potential and stimulus-correlated motoneuron firing. Biol Cybern 100:215–230

    Article  PubMed  Google Scholar 

  • Powers R, Binder M (2001) Input-output functions of mammalian motoneurons. In: Reviews of physiology, biochemistry and pharmacology, vol. 143 of reviews of physiology, biochemistry and pharmacology. Springer, Berlin, pp 137–263

  • Powers RK, Türker KS (2010) Deciphering the contribution of intrinsic and synaptic currents to the effects of transient synaptic inputs on human motor unit discharge. Clin Neurophysiol 121(10):1643–1654

    Article  PubMed Central  PubMed  Google Scholar 

  • Roeschies B, Igel C (2010) Structure optimization of reservoir networks. Log J IGPL 18(5):635–669

    Article  Google Scholar 

  • Rosen B, Wedeen VJ, Horn JDV, Fischl B, Buckner RL, Wald L, Hamalainen M, Stufflebeam S, Roffman J, Shattuck DW, PM T, Woods RP, Freimer N, Bilder R, Toga AW (2010) The human connectome project. In: 16th annual meeting of the organization for human brain mapping, Barcelona, Spain

  • Rossi P, Pierelli F, Parisi L, Perrotta A, Bartolo M, Amabile G, Serrao M (2003) Effect of painful heterotopic stimulation on the cutaneous silent period in the upper limbs. Clin Neurophysiol 114(1):1–6

    Article  PubMed  Google Scholar 

  • Russell SJ, Norvig P (2010) Artificial intelligence—a modern approach (3. internat. ed.) Pearson Education

  • Schmidhuber J (1990) A possibility for implementing curiosity and boredom in model-building neural controllers. In: Proceedings of the first international conference on simulation of adaptive behavior on from animals to animats, pp 222–227, MIT Press, Cambridge

  • Schmidhuber J (1991) Curious model-building control systems. In: Neural networks, 1991. 1991 IEEE international joint conference on, vol. 2, pp 1458–1463

  • Schmidhuber J (2003) Advances in evolutionary computing. chapter exploring the predictable. Springer, New York, pp 579–612

  • Schmidhuber J (2007) New millennium ai and the convergence of history. In: Duch W, Mandziuk J (eds) Challenges for computational intelligence, vol. 63 of studies in computational intelligence. Springer, Berlin, pp 15–35

  • Shapiro SC, Rapaport WJ, Kandefer M, Johnson FL, Goldfain A (2007) Metacognition in sneps. AI Mag 28(1):17–31

    Google Scholar 

  • Shastri L (1999) Advances in shruti—a neurally motivated model of relationalknowledge representation and rapid inference using temporal synchrony. Appl Intell 11(1):79–108

    Article  Google Scholar 

  • Simon HA (1953) Causal ordering and identifiability. In: Studies in econometric method, pp 49–74

  • Song S, Miller KD, Abbott LF (2000) Competitive hebbian learning through spike-timing-dependent synaptic plasticity. Nat Neurosci 3(9):919–926

    Article  CAS  PubMed  Google Scholar 

  • Stanley KO (2004) Efficient evolution of neural networks through complexification. Ph.D. thesis, Department of Computer Sciences, The University of Texas at Austin

  • Stanley KO, Miikkulainen R (2002) Evolving neural networks through augmenting topologies. Evol Comput 10(2):99–127

    Article  PubMed  Google Scholar 

  • Storck J, Hochreiter S, Schmidhuber J (1995) Reinforcement driven information acquisition in non-deterministic environments. In: Proceedings of the international conference on artificial neural networks, Paris 2, pp 159–164

  • Sun R, Zhang X (2004) Top-down versus bottom-up learning in cognitive skill acquisition. Cogn Syst Res 5(1):63–89

    Article  Google Scholar 

  • Türker K, Powers R (1999) Effects of large excitatory and inhibitory inputs on motoneuron discharge rate and probability. J Neurophysiol 82(2):829–840

    PubMed  Google Scholar 

  • Türker K, Powers R (2003) Estimation of postsynaptic potentials in rat hypoglossal motoneurones: insights for human work. J Physiol 551:419–431

    Article  PubMed Central  PubMed  Google Scholar 

  • Türker KS, Cheng HB (1994) Motor-unit firing frequency can be used for the estimation of synaptic potentials in human motoneurones. J Neurosci Meth 53(2):225–234

    Article  Google Scholar 

  • Türker KS, Miles TS (1991) Threshold depolarization measurements in resting human motoneurones. J Neurosci Meth 39(1):103–107

  • Türker KS, Powers RK (2005) Black box revisited: a technique for estimating postsynaptic potentials in neurons. Trends Neurosci 28(7):379–386

    Article  PubMed  Google Scholar 

  • Türker KS, Yang J, Brodin P (1997) Conditions for excitatory or inhibitory masseteric reflexes elicited by tooth pressure in man. Arch Oral Biol 42(2):121–128

    Article  PubMed  Google Scholar 

  • Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB (1998) Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391(6670):892–896

    Article  CAS  PubMed  Google Scholar 

  • Vigdor B, Lerner B (2007) The bayesian artmap. Trans Neural Netw 18(6):1628–1644

    Article  Google Scholar 

  • Villmann T, Der R, Herrmann M, Martinetz T (1997) Topology preservation in self-organizing feature maps: exact definition and measurement. IEEE Trans Neural Netw 8(2):256–266

    Article  CAS  PubMed  Google Scholar 

  • Weisberg S (2005) Applied linear regression. Wiley Series in Probability and Statistics. Wiley, London

  • Weng J, Hwang WS, Zhang Y, Yang C, Smith RJ (2000) Developmental humanoids: humanoids that develop skills automatically. In: Proceedings of the first IEEE-RAS international conference on humanoid robots, pp 7–8. IEEE Press

  • Whiteson S, Stone P (2006) Evolutionary function approximation for reinforcement learning. J Mach Learn Res 7:877–917

    Google Scholar 

  • Wright SS (1921) Correlation and causation. J Agric Res 20:557–585

    Google Scholar 

  • Xu D, Lan J, Principe J (2005) Direct adaptive control: an echo state network and genetic algorithm approach. In: Neural networks, 2005. IJCNN ’05. Proceedings. 2005 IEEE international joint conference on, vol. 3, pp 1483–1486

  • Yamashita Y, Tani J (2008) Emergence of functional hierarchy in a multiple timescale neural network model: a humanoid robot experiment. PLoS Comput Biol 4(11):e1000220

    Article  PubMed Central  PubMed  Google Scholar 

  • Yao X (1999) Evolving artificial neural networks. Proc IEEE 87(9):1423–1447

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Önder Gürcan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gürcan, Ö. Effective connectivity at synaptic level in humans: a review and future prospects. Biol Cybern 108, 713–733 (2014). https://doi.org/10.1007/s00422-014-0619-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-014-0619-1

Keywords

Navigation