Skip to main content
Log in

GABA diffusion across neuronal columns for efficient sensory tuning

  • Original Article
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Synaptic (phasic) lateral inhibition between neuronal columns mediated by GABAergic interneurons is, in general, essential for primary sensory cortices to respond selectively to elemental features. We propose here a neural network model with a nonsynaptic (tonic) lateral inhibitory mechanism. While firing, intrasynaptic GABA molecules spill over into extracellular space and accumulate in neuronal columns. Through accumulation in and diffusion across these columns, a level of ambient (extracellular) GABA changes in a neuronal activity-dependent manner. Ambient GABA molecules act on extrasynaptic receptors and provide neurons with tonic inhibitory currents. We examined whether and how the diffusion of GABA molecules across neuronal columns affects tuning performance of the network to a feature stimulus: selective responsiveness. The GABA diffusion led to reducing ambient GABA in the stimulus-relevant column while augmenting ambient GABA in stimulus-irrelevant columns, thereby improving the tuning performance. The GABA diffusion was effective especially when provided with a broader sensory input. Interestingly, this diffusion-based, nonsynaptic (tonic) lateral inhibitory scheme worked well together with the conventional, synaptic (phasic) lateral inhibitory scheme, enhancing the sensory tuning. We suggest that the nonsynaptic lateral inhibition, mediated through GABA diffusion across neuronal columns, may be beneficial for the cortex to tune to sensory features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bianchi L, Ballini C, Colivicchi MA, Della Corte L, Giovannini MG, Pepeu G (2003) Investigation on acetylcholine, aspartate, glutamate and GABA extracellular levels from ventral hippocampus during repeated exploratory activity in the rat. Neurochem Res 28:565–573

    Article  CAS  PubMed  Google Scholar 

  • Brickley SG, Cull-Candy SG, Farrant M (1996) Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. J Physiol 497(3):753–759

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Destexhe A, Mainen ZF, Sejnowski TJ (1998) Kinetic models of synaptic transmission. In: Koch C, Segev I (eds) Methods in neuronal modeling. MIT Press, Cambridge, pp 1–25

    Google Scholar 

  • Drasbek KR, Jensen K (2006) THIP, a hypnotic and antinociceptive drug, enhances an extrasynaptic GABAA receptor-mediated conductance in mouse neocortex. Cereb Cortex 16:1134–1141

    Article  PubMed  Google Scholar 

  • Eysel UT (1992) Lateral inhibitory interactions in areas 17 and 18 of the cat visual cortex. Prog Brain Res 90:407–422

    Article  CAS  PubMed  Google Scholar 

  • Eysel UT, Shevelev IA, Lazareva NA, Sharaev GA (1998) Orientation tuning and receptive field structure in cat striate neurons during local blockade of intracortical inhibition. Neuroscience 84:25–36

    Article  CAS  PubMed  Google Scholar 

  • Fairen A, DeFelipe J, Redidor J (1984) Nonpyramidal neurons: general account. In: Peter A, Jones ED (eds) Cerebral cortex: cellular components of the cerebral cortex. Plenum Press, New York, pp 201–245

    Google Scholar 

  • Gupta A, Wang Y, Markram H (2000) Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287:273–278

    Article  CAS  PubMed  Google Scholar 

  • Hoshino O (2007a) Spatiotemporal conversion of auditory information for cochleotopic mapping. Neural Comput 19:351–370

    Article  PubMed  Google Scholar 

  • Hoshino O (2007b) Enhanced sound-perception by widespread onset neuronal responses in auditory cortex. Neural Comput 19:3310–3334

    Article  PubMed  Google Scholar 

  • Hoshino O (2008a) Extrasynaptic-GABA-mediated neuromodulation in a sensory cortical neural network. Netw Comput Neural Syst 19:95–117

    Article  Google Scholar 

  • Hoshino O (2008b) An ongoing subthreshold neuronal state established through dynamic coassembling of cortical cells. Neural Comput 20:3055–3086

    Article  PubMed  Google Scholar 

  • Hoshino O (2009) GABA Transporter preserving ongoing spontaneous neuronal activity at firing subthreshold. Neural Comput 21:1683–1713

    Article  PubMed  Google Scholar 

  • Hoshino O (2010) Alteration of ambient GABA by phasic and tonic neuronal activation. Neural Comput 22:1358–1382

    Article  PubMed  Google Scholar 

  • Hoshino O (2011a) Neuronal responses below firing threshold for subthreshold cross-modal enhancement. Neural Comput 23:958–983

    Article  PubMed  Google Scholar 

  • Hoshino O (2011b) Subthreshold membrane depolarization as memory trace for perceptual learning. Neural Comput 23:3205–3231

    Article  PubMed  Google Scholar 

  • Hoshino O (2012) Regulation of ambient GABA levels by neuron-glia signaling for reliable perception of multisensory events. Neural Comput 24:2964–2993

    Article  PubMed  Google Scholar 

  • Hoshino O (2013) Ambient GABA responsible for age-related changes in multistable perception. Neural Comput 25:1164–1190

    Article  PubMed  Google Scholar 

  • Hoshino O (2015) Regulation of local ambient GABA levels via transporter-mediated GABA import and export for subliminal learning. Neural Comput 27:1223–1251

    Article  PubMed  Google Scholar 

  • Krimer LS, Goldman-Rakic PS (2001) Prefrontal microcircuits: membrane properties and excitatory input of local, medium, and wide arbor interneurons. J Neurosci 21:3788–3796

    CAS  PubMed  Google Scholar 

  • Leventhal AG, Thompson KG, Liu D, Zhou Y, Ault SJ (1995) Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex. J Neurosci 15:1808–1818

    CAS  PubMed  Google Scholar 

  • Lund JS, Yoshioka T, Levitt JB (1993) Comparison of intrinsic connectivity in different areas of macaque monkey cerebral cortex. Cereb Cortex 3:148–162

    Article  CAS  PubMed  Google Scholar 

  • Malach R, Amir Y, Harel M, Grinvald A (1993) Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex. Proc Natl Acad Sci USA 90:10469–10473

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5:793–807

    Article  CAS  PubMed  Google Scholar 

  • Miles R (2000) Diversity in inhibition. Science 287:244–246

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto A, Hasegawa J, Zheng M, Hoshino O (2012) Diffusive feedback influences on hierarchical information processing. Neural Comput 24:744–770

    Article  PubMed  Google Scholar 

  • Mody I, Pearce RA (2004) Diversity of inhibitory neurotransmission through GABA(A) receptors. Trends Neurosci 27:569–575

    Article  CAS  PubMed  Google Scholar 

  • Mora F, Segovia G, del Arco A (2007) Aging, plasticity and environmental enrichment: structural changes and neurotransmitter dynamics in several areas of the brain. Brain Res Rev 55:78–88

    Article  CAS  PubMed  Google Scholar 

  • Nusser Z, Roberts JD, Baude A, Richards JG, Somogyi P (1995) Relative densities of synaptic and extrasynaptic GABAA receptors on cerebellar granule cells as determined by a quantitative immunogold method. J Neurosci 5:2948–2960

    Google Scholar 

  • Nusser Z, Sieghart W, Somogyi P (1998) Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J Neurosci 8:1693–1703

    Google Scholar 

  • Prieto JJ, Peterson BA, Winer JA (1994) Morphology and spatial distribution of GABAergic neurons in cat primary auditory cortex (AI). J Comp Neurol 344:349–382

    Article  CAS  PubMed  Google Scholar 

  • Salin PA, Prince DA (1996) Electrophysiological mapping of GABAA receptor-mediated inhibition in adult rat somatosensory cortex. J Neurophysiol 75:1589–1600

    CAS  PubMed  Google Scholar 

  • Scimemi A, Andersson A, Heeroma JH, Strandberg J, Rydenhag B, McEvoy AW, Thom M, Asztely F, Walker MC (2006) Tonic GABA(A) receptor-mediated currents in human brain. Eur J Neurosci 24:1157–1160

    Article  PubMed  Google Scholar 

  • Segovia G, Yague AG, Garcia-Verdugo JM, Mora F (2006) Environmental enrichment promotes neurogenesis and changes the extracellular concentrations of glutamate and GABA in the hippocampus of aged rats. Brain Res Bull 70:8–14

    Article  CAS  PubMed  Google Scholar 

  • Sillito AM (1984) Cerebral cortex: cellular components of the cerebral cortex. In: Peter A, Jones ED (eds) Functional considerations of the operation of GABAergic inhibitory processes in the visual cortex. Plenum Press, New York, pp 91–117

    Google Scholar 

  • Soltesz I, Nusser Z (2001) Neurobiology. Background inhibition to the fore. Nature 409:24–25

    Article  CAS  PubMed  Google Scholar 

  • Somogyi P, Kisvarday ZF, Martin KAC, Whitteridge D (1983) Synaptic connections of morphologically identified and physiologically characterized large basket cells in the striate cortex of cat. Neuroscience 10:261–294

    Article  CAS  PubMed  Google Scholar 

  • Somogyi P, Takagi H, Richards JG, Mohler H (1989) Subcellular localization of benzodiazepine/GABAA receptors in the cerebellum of rat, cat, and monkey using monoclonal antibodies. J Neurosci 9:2197–2209

    CAS  PubMed  Google Scholar 

  • Tang ZQ, Dinh EH, Shi W, Lu Y (2011) Ambient GABA-activated tonic inhibition sharpens auditory coincidence detection via a depolarizing shunting mechanism. J Neurosci 31:6121–6131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Totoki Y, Matsuo T, Zheng M, Hoshino O (2010) Local intracortical circuitry not only for feature binding but also for rapid neuronal responses. Cogn Process 11:347–357

    Article  PubMed  Google Scholar 

  • Wang Y, Gupta A, Toledo-Rodoriguez M, Wu CZ, Markram H (2002) Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. Cereb Cortex 12:395–410

    Article  PubMed  Google Scholar 

  • Wei W, Zhang N, Peng Z, Houser CR, Mody I (2003) Perisynaptic localization of delta subunit-containing GABA(A) receptors and their activation by GABA spillover in the mouse dentate gyrus. J Neurosci 23:10650–10661

    CAS  PubMed  Google Scholar 

  • Xu X, Ichida J, Shostak Y, Bonds AB, Casagrande VA (2002) Are primate lateral geniculate nucleus (LGN) cells really sensitive to orientation or direction? Vis Neurosci 19:97–108

    PubMed  Google Scholar 

  • Yost WA (1994) The neural response and the auditory code. In: Yost WA (ed) Fundamentals of hearing. Academic Press, San Diego, pp 228–248

    Google Scholar 

Download references

Acknowledgments

We express our gratitude to Kazuhiro Tsuboi for his helpful discussions and to reviewers for giving us valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Hoshino.

Appendices

Appendix 1: Description of network model

Dynamic evolution of membrane potential of the ith P cell belonging to column n is defined by

$$\begin{aligned} c_m^{P} \frac{\hbox {d}u_{i}^{P}(n;t)}{dt}= & {} -g_m^{P}(u_{i}^{P}(n;t)-u_\mathrm{rest}^{P}) + I_{i,\mathrm{rec}}^{P}(n;t) \nonumber \\&+\, I_{i,\mathrm{fed}}^{P}(n;t) + I_{i,\mathrm{lat}}^{P}(n;t) + I_{i,\mathrm{ext}}^{P}(n;t) \nonumber \\&+\, I_\mathrm{inp}^P(n), \end{aligned}$$
(6)

where \(I_{i,\mathrm{rec}}^{P}(n;t)\) is a recurrent excitatory synaptic current from other P cells within the same column. \(I_{i,\mathrm{fed}}^{P}(n;t)\) is a feedback inhibitory synaptic current from an F cell, \(I_{i,\mathrm{lat}}^{P}(n;t)\) a lateral inhibitory synaptic current from L cells, \(I_{i,\mathrm{ext}}^{P}(n;t)\) an inhibitory nonsynaptic current mediated by ambient GABA via extrasynaptic receptors and \(I_\mathrm{inp}^P(n)\) an excitatory current triggered by an input stimulus: \(f_\mathrm{inp}\) where \(inp \in \{0, 1, 2,\ldots , n,\ldots ,M\}\). These currents are defined by

$$\begin{aligned}&I_{i,\mathrm{rec}}^{P}(n;t) = -\hat{g}_\mathrm{AMPA}\left( u_i^{P}(n;t) - u_\mathrm{rev}^\mathrm{AMPA}\right) \nonumber \\&\qquad \times \sum _{j=1}^Nw_{ij,\mathrm{rec}}^{P}(n)r_{j}^{P}(n;t),\end{aligned}$$
(7)
$$\begin{aligned}&I_{i,\mathrm{fed}}^{P}(n;t)= -\hat{g}_\mathrm{GABA}\left( u_i^{P}(n;t) - u_\mathrm{rev}^{GABA}\right) w_{i,\mathrm{fed}}^{P}(n)r_{i}^F(n{;}t),\end{aligned}$$
(8)
$$\begin{aligned}&I_{i,\mathrm{lat}}^{P}(n;t) = -\hat{g}_\mathrm{GABA}\left( u_i^{P}(n;t) - u_\mathrm{rev}^{GABA}\right) \nonumber \\&\qquad \times \sum _{j=1}^Nw_{ij,\mathrm{lat}}^{P}(n)r_{j}^{L}(n;t),\end{aligned}$$
(9)
$$\begin{aligned}&I_{i,\mathrm{ext}}^P(n;t) = -\hat{g}_\mathrm{GABA}\left( u_i^{P}(n;t) - u_\mathrm{rev}^{GABA}\right) \delta _P r_\mathrm{ext}^{GABA}(n;t),\end{aligned}$$
(10)
$$\begin{aligned}&I_\mathrm{inp}^P(n) = \alpha _P \hbox {e}^{-\left( \frac{n-inp}{\tau _\mathrm{inp}}\right) ^2}. \end{aligned}$$
(11)

Dynamic evolution of membrane potentials of the ith F and L cells is defined by

$$\begin{aligned} c_m^{F} \frac{\hbox {d}u_{i}^F(n;t)}{dt}= & {} -g_m^F(u_{i}^F(n;t)-u_\mathrm{rest}^F) \nonumber \\&+\, I_i^F(n;t) + I_{i,\mathrm{ext}}^F(n;t),\end{aligned}$$
(12)
$$\begin{aligned} c_m^{L} \frac{\hbox {d}u_{i}^{L}(n;t)}{dt}= & {} -g_m^{L}(u_{i}^{L}(n;t)-u_\mathrm{rest}^{L}) \nonumber \\&+\, I_i^{L}(n;t) + I_{i,\mathrm{ext}}^L(n;t), \end{aligned}$$
(13)

where \(I_i^F(n;t)\) and \(I_i^{L}(n;t)\) are excitatory synaptic currents from P cells. \(I_{i,\mathrm{ext}}^F(n;t)\) and \(I_{i,\mathrm{ext}}^L(n;t)\) are inhibitory nonsynaptic currents. These currents are defined by

$$\begin{aligned}&I_i^F(n;t) = -\hat{g}_\mathrm{AMPA}(u_i^F(n;t) - u_\mathrm{rev}^\mathrm{AMPA})w_i^F(n)r_{i}^P(n;t),\end{aligned}$$
(14)
$$\begin{aligned}&I_{i,\mathrm{ext}}^F(n;t) = -\hat{g}_\mathrm{GABA}(u_i^F(n;t) - u_\mathrm{rev}^{GABA}) \delta _F r_\mathrm{ext}^{GABA}(n;t),\end{aligned}$$
(15)
$$\begin{aligned}&I_i^{L}(n;t)= -\hat{g}_\mathrm{AMPA}(u_i^{L}(n;t) - u_\mathrm{rev}^\mathrm{AMPA}) \nonumber \\&\quad \quad \times \sum _{n'=0(n'\ne n)}^M w_{i}^L(n,n')r_{i}^{P}(n';t),\end{aligned}$$
(16)
$$\begin{aligned}&w_i^L(n,n') = W_L \hbox {e}^{-\left( \frac{n-n'}{\tau _\mathrm{lat}}\right) ^2},\end{aligned}$$
(17)
$$\begin{aligned}&I_{i,\mathrm{ext}}^L(n;t)= -\hat{g}_\mathrm{GABA}(u_i^L(n;t) - u_\mathrm{rev}^{GABA}) \delta _L r_\mathrm{ext}^{GABA}(n;t).\nonumber \\ \end{aligned}$$
(18)

In these equations, \(r_j^P(n;t)\) is the fraction of AMPA receptors in the open state triggered by presynaptic action potentials of the jth P cell. \(r_j^F(n;t)\) and \(r_j^L(n;t)\) are the fractions of intrasynaptic GABAa receptors in the open state triggered, respectively, by presynaptic action potentials of the jth F and L cells. \(r_\mathrm{ext}^{GABA}(n;t)\) is the fraction of extrasynaptic GABAa receptors in the open state provoked by ambient GABA in column n. \(\delta _P\), \(\delta _F\) and \(\delta _L\) denote the amounts of extrasynaptic GABAa receptors on PF and L cells, respectively. For model parameters and their values, see Table 1 and our previous studies (Hoshino 2007a, b, 2008b, 2011a; Totoki et al. 2010; Miyamoto et al. 2012). The receptor dynamics is defined in Appendix 2.

Appendix 2: Receptor dynamics

Receptor dynamics is based on a study (Destexhe et al. 1998) and described as

$$\begin{aligned}&\frac{\hbox {d}r_j^P(n;t)}{dt}= \alpha _\mathrm{AMPA}[\hbox {Glut}]_j(n;t)(1-r_j^P(n;t)) \nonumber \\&\qquad -\, \beta _\mathrm{AMPA} r_j^P(n;t),\end{aligned}$$
(19)
$$\begin{aligned}&\frac{\hbox {d}r_j^Y(n;t)}{dt}= \alpha _\mathrm{GABA}[\hbox {GABA}]_j^Y(n;t)(1-r_j^Y(n;t)) \nonumber \\&\qquad -\, \beta _\mathrm{GABA} r_j^Y(n;t), \quad (Y = F, L)\end{aligned}$$
(20)
$$\begin{aligned}&\frac{\hbox {d}r_\mathrm{ext}^{GABA}(n;t)}{dt}= \alpha _\mathrm{GABA}[\hbox {GABA}]_\mathrm{ext}(n;t)(1-r_\mathrm{ext}^{GABA}(n;t)) \nonumber \\&\qquad \qquad -\, \beta _\mathrm{GABA} r_\mathrm{ext}^{GABA}(n;t), \end{aligned}$$
(21)

where \([\hbox {Glut}]_j(n;t)\) and \([\hbox {GABA}]_j^Y(n;t)\) are concentrations of glutamate and GABA in the synaptic cleft, respectively. \([\hbox {Glut}]_j(n;t) = \hbox {Glut}_\mathrm{syn}\) and \([\hbox {GABA}]_j^Y(n;t) = \hbox {GABA}_\mathrm{syn}^Y\) for 1 ms when the presynaptic jth P cell and type Y cell fire, respectively. Otherwise, \([\hbox {Glut}]_j(n;t) = 0\) and \([\hbox {GABA}]_j^Y(n;t) = 0\). \([\hbox {GABA}]_\mathrm{ext}(n;t)\) is ambient (extracellular) GABA concentration in column n at \(\hbox {time} = \hbox {t}\) [see Eq. (1)]. For model parameters and their values, see Table 1 and our previous studies (Hoshino 2008a, 2009, 2010, 2011b, 2012, 2013, 2015).

Appendix 3: Action potential generation and simulation method

Probability of firing of the jth Y cell belonging to column n is defined by

$$\begin{aligned} \hbox {Prob}[Y_j(n;t); firing]= & {} \frac{1}{1+\hbox {e}^{-\eta _Y(u_j^Y(n;t)-\zeta _Y)}},\nonumber \\&(Y = P, F, L) \end{aligned}$$
(22)

where \(\eta _Y\) and \(\zeta _Y\) are, respectively, the steepness and the threshold of the sigmoid function. When a cell fires, its membrane potential is depolarized to \(-10\,\hbox {mV}\), which is kept for 1 ms and then reset to the resting potential. For model parameters and their values, see Table 1.

Time step for the calculation is 1 ms. C language is used for the numerical calculation and data analysis. It runs in a Windows PC with 10,000 iterations per 10 s simulation. We have confirmed that physiologically reliable membrane potentials, action potentials and ambient GABA concentrations can be obtained for time step less than 2 ms.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, M., Watanabe, K. & Hoshino, O. GABA diffusion across neuronal columns for efficient sensory tuning. Biol Cybern 109, 493–503 (2015). https://doi.org/10.1007/s00422-015-0657-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-015-0657-3

Keywords

Navigation