Skip to main content
Log in

Equation-free analysis of spike-timing-dependent plasticity

  • Original Article
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Spike-timing-dependent plasticity is the process by which the strengths of connections between neurons are modified as a result of the precise timing of the action potentials fired by the neurons. We consider a model consisting of one integrate-and-fire neuron receiving excitatory inputs from a large number—here, 1000—of Poisson neurons whose synapses are plastic. When correlations are introduced between the firing times of these input neurons, the distribution of synaptic strengths shows interesting, and apparently low-dimensional, dynamical behaviour. This behaviour is analysed in two different parameter regimes using equation-free techniques, which bypass the explicit derivation of the relevant low-dimensional dynamical system. We demonstrate both coarse projective integration (which speeds up the time integration of a dynamical system) and the use of recently developed data mining techniques to identify the appropriate low-dimensional description of the complex dynamical systems in our model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Appleby PA, Elliott T (2006) Stable competitive dynamics emerge from multispike interactions in a stochastic model of spike-timing-dependent plasticity. Neural Comput 18(10):2414–2464

    Article  PubMed  Google Scholar 

  2. Appleby PA, Elliott T (2007) Multispike interactions in a stochastic model of spike-timing-dependent plasticity. Neural Comput 19(5):1362–1399

    Article  PubMed  Google Scholar 

  3. Avitabile D, Hoyle R, Samaey G (2014) Noise reduction in coarse bifurcation analysis of stochastic agent-based models: an example of consumer lock-in. SIAM J Appl Dyn Syst 13(4):1583–1619

    Article  Google Scholar 

  4. Bell CC, Han VZ, Sugawara Y, Grant K (1997) Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature 387(6630):278–281

    Article  CAS  PubMed  Google Scholar 

  5. Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18(24):10,464–10,472

    CAS  Google Scholar 

  6. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407):31–39

    Article  CAS  PubMed  Google Scholar 

  7. Brette R (2006) Exact simulation of integrate-and-fire models with synaptic conductances. Neural Comput 18(8):2004–2027

    Article  PubMed  Google Scholar 

  8. Brette R, Rudolph M, Carnevale T, Hines M, Beeman D, Bower JM, Diesmann M, Morrison A, Goodman PH, Harris FC Jr et al (2007) Simulation of networks of spiking neurons: a review of tools and strategies. J Comput Neurosci 23(3):349–398

    Article  PubMed Central  PubMed  Google Scholar 

  9. Burkitt AN, Gilson M, van Hemmen JL (2007) Spike-timing-dependent plasticity for neurons with recurrent connections. Biol Cybern 96(5):533–546

    Article  CAS  PubMed  Google Scholar 

  10. Burkitt AN, Meffin H, Grayden DB (2004) Spike-timing-dependent plasticity: the relationship to rate-based learning for models with weight dynamics determined by a stable fixed point. Neural Comput 16(5):885–940

    Article  PubMed  Google Scholar 

  11. Caporale N, Dan Y (2008) Spike timing-dependent plasticity: a hebbian learning rule. Annu Rev Neurosci 31(1):25–46

    Article  CAS  PubMed  Google Scholar 

  12. Chen CC, Jasnow D (2011) Event-driven simulations of a plastic, spiking neural network. Phys Rev E 84(3):031,908

    Article  Google Scholar 

  13. Coifman RR, Lafon S, Lee AB, Maggioni M, Nadler B, Warner F, Zucker SW (2005) Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. Proc Natl Acad Sci USA 102(21):7426–7431

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. DeVille RL, Peskin CS (2008) Synchrony and asynchrony in a fully stochastic neural network. Bull Math Biol 70(6):1608–1633

    Article  PubMed  Google Scholar 

  15. Erban R, Frewen TA, Wang X, Elston TC, Coifman R, Nadler B, Kevrekidis IG (2007) Variable-free exploration of stochastic models: A gene regulatory network example. J Chem Phys 126(15):155103

    Article  PubMed  Google Scholar 

  16. Erban R, Kevrekidis I, Adalsteinsson D, Elston T (2006) Gene regulatory networks: a coarse-grained, equation-free approach to multiscale computation. J Chem Phys 124(084):106

    Google Scholar 

  17. Ermentrout GB, Terman DH (2010) Math Found Neurosci, vol 64. Springer, Berlin

    Book  Google Scholar 

  18. Ferguson AL, Panagiotopoulos AZ, Debenedetti PG, Kevrekidis IG (2010) Systematic determination of order parameters for chain dynamics using diffusion maps. Proc Natl Acad Sci 107(31):13597–13602

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Gear C (2001) Projective integration methods for distributions. NEC Technical Report TR 2001-130

  20. Gear CW, Kevrekidis IG, Theodoropoulos C (2002) ‘Coarse’ integration/bifurcation analysis via microscopic simulators: micro-galerkin methods. Comput Chem Eng 26(7):941–963

    Article  CAS  Google Scholar 

  21. Gerstner W, Kempter R, van Hemmen JL, Wagner H et al (1996) A neuronal learning rule for sub-millisecond temporal coding. Nature 383(6595):76–78

    Article  CAS  PubMed  Google Scholar 

  22. Gilson M, Burkitt AN, Grayden DB, Thomas DA, van Hemmen JL (2009) Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. I. input selectivity-strengthening correlated input pathways. Biol Cybern 101(2):81–102

    Article  PubMed  Google Scholar 

  23. Golowasch J, Casey M, Abbott L, Marder E (1999) Network stability from activity-dependent regulation of neuronal conductances. Neural Comput 11(5):1079–1096

    Article  CAS  PubMed  Google Scholar 

  24. Gradišek J, Siegert S, Friedrich R, Grabec I (2000) Analysis of time series from stochastic processes. Phys Rev E 62(3):3146–3155

    Article  Google Scholar 

  25. Gütig R, Aharonov R, Rotter S, Sompolinsky H (2003) Learning input correlations through nonlinear temporally asymmetric hebbian plasticity. J Neurosci 23(9):3697–3714

    PubMed  Google Scholar 

  26. Izhikevich EM, Desai NS (2003) Relating STDP to BCM. Neural Comput 15(7):1511–1523

  27. Keener J, Sneyd J (1998) Math Phys, vol 8. Springer, Berlin

    Google Scholar 

  28. Kempter R, Gerstner W, van Hemmen JL (1999) Hebbian learning and spiking neurons. Phys Rev E 59:4498–4514. doi:10.1103/PhysRevE.59.4498

    Article  CAS  Google Scholar 

  29. Kevrekidis IG, Gear CW, Hyman JM, Kevrekidid PG, Runborg O, Theodoropoulos C et al (2003) Equation-free, coarse-grained multiscale computation: enabling mocroscopic simulators to perform system-level analysis. Commun Math Sci 1(4):715–762

    Article  Google Scholar 

  30. Laing C, Frewen T, Kevrekidis I (2007) Coarse-grained dynamics of an activity bump in a neural field model. Nonlinearity 20:2127

    Article  Google Scholar 

  31. Laing C, Frewen T, Kevrekidis I (2010) Reduced models for binocular rivalry. J Comput Neurosci 28(3):459–476

    Article  PubMed  Google Scholar 

  32. Laing CR, Kevrekidis IG (2008) Periodically-forced finite networks of heterogeneous globally-coupled oscillators: a low-dimensional approach. Phys D 237(2):207–215

    Article  Google Scholar 

  33. Lee SL, Gear CW (2007) Second-order accurate projective integrators for multiscale problems. J Comput Appl Math 201(1):258–274. doi:10.1016/j.cam.2006.02.018

    Article  Google Scholar 

  34. Lim S, Rinzel J (2010) Noise-induced transitions in slow wave neuronal dynamics. J Comput Neurosci 28(1):1–17. doi:10.1007/s10827-009-0178-y

    Article  PubMed  Google Scholar 

  35. Lubenov EV, Siapas AG (2008) Decoupling through synchrony in neuronal circuits with propagation delays. Neuron 58(1):118–131

    Article  CAS  PubMed  Google Scholar 

  36. Markram H, Lübke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275(5297):213–215

    Article  CAS  PubMed  Google Scholar 

  37. Marschler C, Faust-Ellsässer C, Starke J, van Hemmen JL (2014) Bifurcation of learning and structure formation in neuronal maps. EPL (Europhysics Letters) 108(4):48,005

    Article  Google Scholar 

  38. Marschler C, Sieber J, Berkemer R, Kawamoto A, Starke J (2014) Implicit methods for equation-free analysis: convergence results and analysis of emergent waves in microscopic traffic models. SIAM J Appl Dyn Syst 13(3):1202–1238

    Article  Google Scholar 

  39. Meffin H, Besson J, Burkitt A, Grayden D (2006) Learning the structure of correlated synaptic subgroups using stable and competitive spike-timing-dependent plasticity. Phys Rev E 73(4):041,911

    Article  CAS  Google Scholar 

  40. Mikkelsen K, Imparato A, Torcini A (2013) Emergence of slow collective oscillations in neural networks with spike-timing dependent plasticity. Phys Rev Lett 110(20):208,101

    Article  Google Scholar 

  41. Morrison A, Aertsen A, Diesmann M (2007) Spike-timing-dependent plasticity in balanced random networks. Neural Comput 19(6):1437–1467

    Article  PubMed  Google Scholar 

  42. Ragwitz M, Kantz H (2001) Indispensable finite time corrections for Fokker-Planck equations from time series data. Phys Rev Lett 87(254):501

    Google Scholar 

  43. Roberts PD, Bell CC (2002) Spike timing dependent synaptic plasticity in biological systems. Biol Cybern 87(5–6):392–403

    Article  PubMed  Google Scholar 

  44. Rubin J, Lee D, Sompolinsky H (2001) Equilibrium properties of temporally asymmetric hebbian plasticity. Phys Rev Lett 86(2):364–367

    Article  CAS  PubMed  Google Scholar 

  45. Setayeshgar S, Gear C, Othmer H, Kevrekidis I (2005) Application of coarse integration to bacterial chemotaxis. Multiscale Model Simul 4(1):307–327

    Article  Google Scholar 

  46. Smith JC, Abdala A, Koizumi H, Rybak IA, Paton JF (2007) Spatial and functional architecture of the mammalian brain stem respiratory network: a hierarchy of three oscillatory mechanisms. J Neurophysiol 98(6):3370–3387

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Sonday BE, Haataja M, Kevrekidis IG (2009) Coarse-graining the dynamics of a driven interface in the presence of mobile impurities: effective description via diffusion maps. Phys Rev E 80(031):102

    Google Scholar 

  48. Song S, Abbott L (2001) Cortical development and remapping through spike timing-dependent plasticity. Neuron 32(2):339–350

    Article  CAS  PubMed  Google Scholar 

  49. Song S, Miller K, Abbott L (2000) Competitive hebbian learning through spike-timing-dependent synaptic plasticity. Nat Neurosci 3:919–926

    Article  CAS  PubMed  Google Scholar 

  50. Sriraman S, Kevrekidis I, Hummer G (2005) Coarse nonlinear dynamics and metastability of filling-emptying transitions: water in carbon nanotubes. Physical review letters 95(13):130,603

    Article  Google Scholar 

  51. Turrigiano GG, Nelson SB (2004) Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci 5(2):97–107

    Article  CAS  PubMed  Google Scholar 

  52. Van Rossum M, Bi G, Turrigiano G (2000) Stable hebbian learning from spike timing-dependent plasticity. J Neurosci 20(23):8812–8821

  53. Zou Y, Fonoberov V, Fonoberova M, Mezic I, Kevrekidis I (2012) Model reduction for agent-based social simulation: coarse-graining a civil violence model. Phys Rev E 85(6):066,106

    Article  Google Scholar 

Download references

Acknowledgments

The work of CRL was supported by the Marsden Fund Council from Government funding, administered by the Royal Society of New Zealand. The work of IGK was supported by the US National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo R. Laing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laing, C.R., Kevrekidis, I.G. Equation-free analysis of spike-timing-dependent plasticity. Biol Cybern 109, 701–714 (2015). https://doi.org/10.1007/s00422-015-0668-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-015-0668-0

Keywords

Navigation