Skip to main content
Log in

Equivalent linear damping characterization in linear and nonlinear force–stiffness muscle models

  • Original Article
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

In the current research, the muscle equivalent linear damping coefficient which is introduced as the force–velocity relation in a muscle model and the corresponding time constant are investigated. In order to reach this goal, a 1D skeletal muscle model was used. Two characterizations of this model using a linear force–stiffness relationship (Hill-type model) and a nonlinear one have been implemented. The OpenSim platform was used for verification of the model. The isometric activation has been used for the simulation. The equivalent linear damping and the time constant of each model were extracted by using the results obtained from the simulation. The results provide a better insight into the characteristics of each model. It is found that the nonlinear models had a response rate closer to the reality compared to the Hill-type models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Asatryan DG, Feldman AG (1965a) Functional tuning of the nervous system with control of movement or maintenance of a steady posture: I. Mechanographic analysis of the work of the joint or execution of a postural task. Biophysics 10(5):925–934

    Google Scholar 

  • Asatryan DG, Feldman AG (1965b) Functional tuning of the nervous system with control of movement or maintenance of a steady posture: I. Mechanographic analysis of the work of the joint or execution of a postural task. Biophysics 10(5):925–934

    Google Scholar 

  • Brown IE, Scott SH, Loeb GE (1996) Mechanics of feline soleus: Ii design and validation of a mathematical model. J Muscle Res Cell Motil 17(2):221–233

    Article  CAS  PubMed  Google Scholar 

  • Buchaillard S, Perrier P, Payan Y (2006) The study of motor control seeks to determine how the central nervous system effects functional, goal-directed movement. In: Proceedings of the 7th international seminar on speech production, vol 17, pp 403–410

  • Buchaillard S, Perrier P, Payan Y (2009) A biomechanical model of cardinal vowel production: muscle activations and the impact of gravity on tongue positioning. J Acoust Soc Am 126(4):2033–2051

    Article  PubMed  Google Scholar 

  • Cheng EJ, Brown IE, Loeb GE (2000) Virtual muscle: a computational approach to understanding the effects of muscle properties on motor control. J Neurosci Methods 101(2):117–130

    Article  CAS  PubMed  Google Scholar 

  • Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, Guendelman E, Thelen DG (2007) OpenSim: open-source software to create and analyze dynamic simulations of movement. Biomed Eng IEEE Trans 54(11):1940–1950

    Article  Google Scholar 

  • Ettema GJ, Meijer K (2000) Muscle contraction history: modified hill versus an exponential decay model. Biol Cybern 83(6):491–500

    Article  CAS  PubMed  Google Scholar 

  • Feldman A (1974a) Change in the length of the muscle as a consequence of a shift in equilibrium in the muscle-load system. Biophysics 19:544–548

    Google Scholar 

  • Feldman A (1974b) Control of the length of the muscle. Biophysics 19(2):766–771

    Google Scholar 

  • Feldman AG (1966) Functional tuning of nervous system with control of movement or maintenance of a steady posture. 2. Controllable parameters of muscles. Biophys USSR 11(3):565

    Google Scholar 

  • Feldman AG (1976) Control of postural length and force of a muscle: advantages of the central co-activation of alpha and gamma static motoneurons. J Biophys 19:771–776

    Google Scholar 

  • Feldman AG (1986) Once more on the equilibrium-point hypothesis (\(\lambda \) model) for motor control. J Mot Behav 18(1):17–54

    Article  CAS  PubMed  Google Scholar 

  • Feldman AG (1996) Functional tuning of the nervous system with control of movement or maintenance of a steady posture. iii. controllable parameters of the muscle. J Biophys 11:766–775

    Google Scholar 

  • Feldman AG (2011) Space and time in the context of equilibrium-point theory. Wiley Interdiscip Rev Cognit Sci 2(3):287–304

    Article  Google Scholar 

  • Foisy M, Feldman AG (2006) Threshold control of arm posture and movement adaptation to load. Exp Brain Res 175(4):726–744

    Article  PubMed  Google Scholar 

  • Günther M, Ruder H (2003) Synthesis of two-dimensional human walking: a test of the \(\lambda \)-model. Biol Cybern 89(2):89–106

  • Haenen WP, Rozendaal LA et al (2003) Stability of bipedal stance: the contribution of cocontraction and spindle feedback. Biol Cybern 88(4):293–301

    Article  PubMed  Google Scholar 

  • Haeufle D, Günther M, Bayer A, Schmitt S (2014) Hill-type muscle model with serial damping and eccentric force-velocity relation. J Biomech 47(6):1531–1536

    Article  CAS  PubMed  Google Scholar 

  • Haeufle D, Günther M, Blickhan R, Schmitt S (2012) Proof of concept: model based bionic muscle with hyperbolic force-velocity relation. Appl Bionics Biomech 9(3):267–274

    Article  Google Scholar 

  • Hamlet C, Fauci LJ, Tytell ED (2015) The effect of intrinsic muscular nonlinearities on the energetics of locomotion in a computational model of an anguilliform swimmer. J Theor Biol 385:119–129

    Article  PubMed  Google Scholar 

  • Hill A (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc Lond B Biol Sci 126(843):136–195

    Article  Google Scholar 

  • Katz B (1939) The relation between force and speed in muscular contraction. J Physiol 96(1):45–64

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Laboissiere R, Ostry DJ, Feldman AG (1996) The control of multi-muscle systems: human jaw and hyoid movements. Biol Cybern 74(4):373–384

    Article  CAS  PubMed  Google Scholar 

  • Luschei ES, Goldberg LJ (2011) Neural mechanisms of mandibular control: mastication and voluntary biting. In: Comprehensive Physiology. Wiley, pp 1237–1274

  • Millard M, Uchida T, Seth A, Delp SL (2013) Flexing computational muscle: modeling and simulation of musculotendon dynamics. J Biomech Eng 135(2):021005

    Article  PubMed  Google Scholar 

  • Mörl F, Siebert T, Schmitt S, Blickhan R, Guenther M (2012) Electro-mechanical delay in hill-type muscle models. J Mech Med Biol 12(05):1250085

    Article  Google Scholar 

  • Nazari MA (2011) Biomechanical face modeling: control of orofacial gestures for speech production. PhD thesis, Université de Grenoble

  • Nazari MA, Perrier P, Payan Y (2013) A muscle model based on feldman’s lambda model: 3d finite element implementation. arXiv preprint arXiv:1307.2809

  • Pilon J-F, Feldman AG (2006) Threshold control of motor actions prevents destabilizing effects of proprioceptive delays. Exp Brain Res 174(2):229–239

    Article  PubMed  Google Scholar 

  • Scott SH, Brown IE, Loeb GE (1996) Mechanics of feline soleus: I. Effect of fascicle length and velocity on force output. J Muscle Res Cell Motil 17(2):207–219

    Article  CAS  PubMed  Google Scholar 

  • Shadmehr R, Arbib MA (1992) A mathematical analysis of the force-stiffness characteristics of muscles in control of a single joint system. Biol Cybern 66(6):463–477

    Article  CAS  PubMed  Google Scholar 

  • Siebert T, Rode C, Herzog W, Till O, Blickhan R (2008) Nonlinearities make a difference: comparison of two common hill-type models with real muscle. Biol Cybern 98(2):133–143

    Article  PubMed  Google Scholar 

  • St-Onge N, Qi H, Feldman AG (1993) The patterns of control signals underlying elbow joint movements in humans. Neurosci Lett 164(1):171–174

    Article  CAS  PubMed  Google Scholar 

  • Stearne SM, Rubenson J, Alderson J (2012) Investigation of running foot strike technique on achilles tendon force using ultrasound techniques and a hill-type model. J Foot Ankle Res 5(1):1–2

    Article  Google Scholar 

  • Van Leeuwen J, Kier WM (1997) Functional design of tentacles in squid: linking sarcomere ultrastructure to gross morphological dynamics. Philos Trans R Soc Lond B Biol Sci 352(1353):551–571

    Article  PubMed Central  Google Scholar 

  • van Soest AJ, Bobbert MF (1993) The contribution of muscle properties in the control of explosive movements. Biol Cybern 69(3):195–204

    Article  PubMed  Google Scholar 

  • Winters JM, Woo SL, Delp I (2012) Multiple muscle systems: biomechanics and movement organization. Springer, Berlin

    Google Scholar 

  • Zajac FE (1988) Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng 17(4):359–411

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marzieh Ovesy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovesy, M., Nazari, M.A. & Mahdavian, M. Equivalent linear damping characterization in linear and nonlinear force–stiffness muscle models. Biol Cybern 110, 73–80 (2016). https://doi.org/10.1007/s00422-016-0680-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-016-0680-z

Keywords

Navigation