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Abstract Statistical properties of spike trains as well

as other neurophysiological data suggest a number of

mathematical models of neurons. These models range

from entirely descriptive ones to those deduced from the

properties of the real neurons. One of them, the dif-

fusion leaky integrate-and-fire neuronal model, which

is based on the Ornstein-Uhlenbeck stochastic process

that is restricted by an absorbing barrier, can describe

a wide range of neuronal activity in terms of its pa-

rameters. These parameters are readily associated with

known physiological mechanisms. The other model is

descriptive, Gamma renewal process, and its parame-

ters only reflect the observed experimental data or as-

sumed theoretical properties. Both of these commonly

used models are related here. We show under which

conditions the Gamma model is an output from the
diffusion Ornstein-Uhlenbeck model. In some cases we

can see that the Gamma distribution is unrealistic to be

achieved for the employed parameters of the Ornstein-

Uhlenbeck process.
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1 Introduction

Numerous models of neuronal spiking activity based on

very different assumptions with different resemblance

to reality exist (Segev, 1992). This is a natural situa-

tion and no one is surprised as the suitability of a model

depends on a purpose for which it has been developed.

On the other hand, it has been always important to

point out the bridges, to find connections among dif-

ferent models, as finally, all of them should stem out of

the same principles. One example of such an effort are

the studies on reduction of the Hodgkin-Huxley model

(Kepler et al., 1992; Kistler et al., 1997; Jolivet et al.,

2004). For a similar purpose, we recently investigated

(Rajdl and Lansky, 2015) the behavior of Stein’s neu-

ronal model (Stein, 1965), which is based on the leaky

integrate-and-fire principle, under the condition that its

input is the output of the model itself. Our aim here is

similar asking what is the connection between the com-

monly used Ornstein-Uhlenbeck (OU) neuronal model

and the model of interspike intervals (ISIs) based on

the Gamma renewal process. The choice is not coinci-

dental as both of these simple models are quite often

applied for description of experimental data as well as

for theoretical studies on neuronal coding.

Many references for the OU neuronal model can be

given, here are only a few examples (Ricciardi and Sac-

erdote (1979); Inoue et al. (1995); Shinomoto et al.

(1997); Lansky and Sato (1999); Vilela and Lindner

(2009); Smith (2010); and a recent review Sacerdote

and Giraudo (2013), where many other references can

be found). The model stems out from the OU stochas-

tic process (Uhlenbeck and Ornstein, 1930) which is re-

stricted by an upper boundary, representing the firing

threshold, crossings of which are identified with genera-

tion of spikes. After a spike is initiated, the memory, in-
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cluding the input, is cleared and the system starts anew.

Therefore, the sequence of ISIs creates a renewal pro-

cess. Despite the fact that the OU model coincides with

the Langevin equation, it was originally derived directly

from the Stein’s neuronal model and thus its param-

eters have a clear physiological interpretation (Tuck-

well and Richter, 1978; Lansky and Ditlevsen, 2008).

The OU model has been generalized in many direc-

tions to take into account very different features of neu-

rons which are not depicted in its basic form. Among

these many variants, important for our purpose, are the

models with time-varying input and time-varying firing

threshold. The history of time-dependent thresholds in

neural models is very long (for recent reviews see Jones

et al. (2015); Benda et al. (2010)). However, except the

attempts to describe the effect of refractoriness, the dy-

namical thresholds are aimed at mimicking adaptation

in neuronal activity, i.e., a gradual change in the fir-

ing rate. Typically, it has been modeled as a decay-

ing single (Chacron et al., 2003) or double-exponential

(Kobayashi et al., 2009) function. This is usually ac-

companied by introducing a correlation structure in a

sequence of ISIs (for a review see Avila-Akeberg and

Chacron (2011)). It should be stressed that the time-

dependent threshold appearing here is of entirely dif-

ferent nature. Whatever the stimulus is applied at the

input, the constant firing rate appears at the output.

Simultaneously, the investigated model generates in-

dependent and identically distributed ISIs. While the

time-dependent threshold is used to reflect the existence

of refractoriness in the behavior of real neurons, the

time variable input naturally describes time-varying in-

tensities of the impinging postsynaptic potentials arriv-

ing from other neurons in the system (Tuckwell, 1988;

Shimokawa at al., 2000; Plesser and Geisel, 2001; Lind-

ner, 2004; Burkitt, 2006; Buonocore et al., 2015; Iolov

et al., 2014; Thomas, 2011). Dealing with these models

we have to return to the theoretical results on the so

called Inverse first-passage-time problem. These results

permit us to deduce the shapes of these functions un-

der the condition that the output of the model is the

Gamma renewal process.

The renewal stochastic process with Gamma dis-

tributed intervals between events is usually called the

Gamma (renewal) process (Yannaros, 1988; Gourevitch

and Eggermont, 2007; Farkhooi et al., 2009, Koyama

and Kostal, 2014). This model, which we aim to re-

late to the OU neuronal model, is of a different nature.

It has never been constructed from biological princi-

ples, but has been widely accepted in neuronal con-

text as a good descriptor of the experimental data and

also as a suitable descriptor of data used in theoreti-

cal studies. It appeared immediately when the Poisson

process of ISIs was disregarded as a too simplified de-

scription of reality. The selected references are, similarly

to the OU model, only a sample from a much longer

list (Levine, 1991; Baker and Lemon, 2000; Kang and

Amari, 2008; Maimon and Assad, 2009; Soteropoulos

and Baker, 2009; Berger and Levy, 2010; Shimokawa at

al., 2010; Omi and Shinomoto, 2011).

As mentioned, our aim is to relate the OU and the

Gamma models. More specifically, we ask under which

conditions the OU model generates the Gamma renewal

process as an output. The problem was already men-

tioned in (Sacerdote and Zucca, 2003) but only to il-

lustrate the proposed method. Here the aim is to un-

derstand the role of the parameters of the process and

of the Gamma distribution. The relevant properties of

both models are summarized in the first part of the

paper. Then, the method to solve the problem is pre-

sented. Finally, the results are illustrated on two exam-

ples and their consequences are shortly discussed.

2 Ornstein-Uhlenbeck model and Gamma

model

2.1 The Ornstein-Uhlenbeck model

The OU stochastic process is a classical model of the

membrane potential evolution. It describes the mem-

brane potential X(t) through the one-dimensional pro-

cess solving the stochastic differential equation

dX(t) =

(
−X(t)

τ
+ µ

)
dt+ σdW (t) (1)

with initial condition X(0) = x0. Here τ > 0 is the

membrane time constant, µ and σ > 0 are two con-

stants that account for the mean and the variability of

the input to the neuron and W (t) denotes a standard

Wiener process. Further, the model assumes that after

each spike the membrane potential is reset to the re-

setting value x0. In absence of the external input, the

membrane potential decays exponentially to the resting

potential, which in equation (1) is set to zero. The OU

process is a continuous Markov process characterized

by its transition probability density function (pdf)

f(x, t|x0) =
dP (X(t) < x|X(0) = x0)

dx
(2)

=
1√

πσ2τ(1− e−2t/τ )
·

· exp

[
(x− x0e−t/τ − µτ(1− e−t/τ ))2

σ2τ(1− e−2t/τ )

]
.
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Hence it is Gaussian and the mean membrane potential

is

E (X(t)|X(0) = x0) = x0e
−t/τ + µτ(1− e−t/τ ), (3)

and its variance is

V (X(t)|X(0) = x0) =
σ2τ

2
(1− e−2t/τ ). (4)

The ISIs generated by the model are identified with

the first-passage times (FPTs) T of the process X(t)

through a boundary S, often taken to be constant

T = inf{t > 0 : X(t) > S;x0 < S}. (5)

Unfortunately the distribution of T is not known in a

closed form but its Laplace transform is available, as

well as the expressions for the mean E(T ) and the vari-

ance V ar(T ). In the presence of the boundary S differ-

ent dynamics of X(t) arise according to the values of S

and µτ , the asymptotic value of E (X(t)|X(0)). When

µτ < S, i.e. in the subthreshold regime, the boundary

crossings are determined by the noise and the num-

ber of spikes in a fixed interval exhibits a Poisson-like

distribution. On the contrary, when µτ > S the ISIs

are strongly influenced by the input µ and we speak

of suprathreshold regime. This division on supra- and

sub-threshold regimens is based on the mean behavior

of the membrane potential and it evokes the question

how it influences the distribution of the FPT.

In some generalizations the model assumes the pres-

ence of a time-dependent threshold S(t) or of a time-

depending mean input µ(t). In the latter cases, the

process is solution of an equation analogous to (1) but

with µ(t) in substitution of µ. In both these cases, the

closed forms for the mean and the variance of ISIs anal-

ogous to those for (1) and (5) are no more available.

However, suitable numerical methods for determining

the FPTs distribution exist as well as reliable simula-

tion techniques. From a mathematical point of view,

the case of time-dependent input and that of time-

varying threshold are related. In fact, the OU model

with time dependent-boundary S(t) and in absence of

input, µ = 0, (we refer to the case µ = 0 because the

case µ 6= 0 can be obtained from it through a simple

transformation),
dX(t) =

(
−X(t)

τ

)
dt+ σdW (t)

X(0) = x0
S(t)

(6)

can be transformed into the OU model characterized by

time-dependent input µ(t) and constant threshold Σ
dY (t) =

(
−Y (t)

τ + µ(t)
)
dt+ σdW (t)

Y (0) = x0 − S(0) +Σ

Σ

. (7)

through the space transformation

y = x− S(t) +Σ. (8)

The relationship between the input µ(t) in (7) and the

threshold S(t) in (6) becomes

µ(t) =
Σ − S(t)

τ
− dS(t)

dt
(9)

which can be integrated to give S(t) explicitly in terms

of {µ(u)}0≤u≤t and S(0).

Note that since (8) is a space transformation, it does

not change the FPT distribution of the random variable

T .

2.2 Gamma model of interspike intervals

A random variable T is Gamma distributed if its pdf is

fT (t) =
αm

Γ (m)
tm−1e−αt, t ≥ 0. (10)

Here α > 0 is the rate parameter andm > 0 is the shape

parameter. Such a random variable is characterized by

the following mean, variance and coefficient of variation

E(T ) = m
α (11)

V ar(T ) = m
α2 (12)

CV = 1√
m
. (13)

The shapes of Gamma pdf for different values of

the parameters α and m can be seen in Figure 1(a).

These shapes strongly change with the value of CV. We

recall that CV = 1 corresponds to ISIs exponentially

distributed while when CV > 1 bursting activity can

be modeled and for decreasing CV the activity tends to

regularity.

3 Results

3.1 Theoretical considerations

We study here, under which conditions the Gamma

model of ISIs could be generated by the OU model.

More specifically we investigate two closely related pos-

sibilities:

1. the membrane potential evolves according to an OU

process with µ = 0 and we ask if there is a time-

dependent threshold S(t) such that the ISIs are Gamma

distributed with prescribed parameters;

2. the membrane potential evolves according to an OU

process with time-dependent input µ(t) and spikes

are determined by the crossing of a constant thresh-

old S, the question remains the same.
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Fig. 1 Probability densities (a) and evaluated boundaries
(b) or mean inputs (c) in the case of Gamma distributed
ISIs with mean ISI equal to 4. Different lines correspond to
different shapes of the Gamma densities, CV = 0.5 (black),
CV = 0.75 (blue), CV = 1, (cyan), CV = 1.5 (magenta),
CV = 2 (red). The parameters of the OU model are τ = 10,
σ2 = 2.5 and Σ = 10 if the time-variable input is searched
for and µ = 0 if the time-variable threshold is deduced.

The absence of µ in the first case is only formal due

to the transformation of the resting level to zero. Ac-

tually, solving one of the problems gives a solution to

the other as mentioned, see equation (8). The case of

time-varying input is related to the input restart with

a spike. It could arise in a biologically plausible way if

the neuron’s spike provided input to a second neuron,

for instance an inhibitory interneuron, in such a way as

to immediately suppress the next spike (for CV < 1)

or a reciprocally connected excitatory neuron, to accel-

erate the next spike (for CV > 1). Alternatively adap-

tation currents can produce the effects embodied in the

time-varying input. However, the time-varying thresh-

old does not require any interpretation being a phe-

nomenological quantity and thus we sketch the theoret-

ical method for determining the boundary shape only.

The existence and uniqueness of the solution of the In-

verse first-passage-time problem is shown for any regu-

lar diffusion process in (Chen et al., 2011). Two compu-

tational methods to determine the boundary shape of a

Wiener process characterized by an assigned FPT dis-

tribution are presented in (Zucca and Sacerdote, 2009)

while the extension of these methods to the case of

an OU process is considered in (Sacerdote and Zucca,

2003). In that paper the use of the proposed algorithm

is illustrated through two examples: the inverse Gaus-

sian distribution and the Gamma distribution. Further

related results are in (Sacerdote et al., 2006; Abundo,

2012).

Our task is to determine the time-dependent bound-

ary S(t). To deal with this problem we consider the

Fortet integral equation (Sacerdote and Giraudo, 2013)

f(x, t|x0) =

∫ t

0

g(S(u), u|x0)f(x, t|S(u), u)du, (14)

that relates the transition pdf f(x, t|x0) of an OU pro-

cess originated in x0 at time 0, as given by equation (2)

with the FPT pdf g(S(u), u|x0) of the process through

S(u). This equation holds for any x ≥ S(t) and t > 0.

After integrating the Fortet equation with respect to x

in (S(t),∞), we get

1− F (S(t), t|x0) (15)

=

∫ t

0

g(S(u), u|x0)[1− F (S(t), t|S(u), u)]du

where F (S(t), t|S(u), u) is the transition probability dis-

tribution function. This last equation is a linear Volterra

integral equation of the first type where the unknown

is the pdf g(S(t), t|x0), while it is a non-linear Volterra

integral equation of the second kind in the unknown

S(t). In the following examples we use the algorithm

proposed in (Sacerdote et al., 2006; Zucca and Sacer-

dote, 2009) to solve the inverse FPT problem and to

determine S(t). We underline that we fix the Gamma

density as a FPT density and we solve the equation

(15) where the unknown function is the boundary S(t)

and g(S(u), u|x0) is the Gamma density. We introduce a

time discretization ti = ih for i = 1, 2, . . ., of step h > 0

and we discretize the integral equation. Then, the error

of the method concerns the boundary. The study of the

order of the error on the boundary has been done for

a Wiener process in the paper (Zucca and Sacerdote,

2009). It is proved that the error at each time step tn
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is |S(tn)− Ŝ(tn)| ∼ O(h2) where Ŝ is the approximated

boundary obtained by the algorithm. Reproducing the

same proof for the OU process, it is possible to prove

the same error order also for our process. Note that the

error does not depend on the parameters, it is due to

the right-hand rectangular rule for the discrtization of

the integral in (15) (cf. Atkinson (1989)). The algorithm

can be applied to every kind of densities, even narrow

densities are not a problem. It is sufficient to take a

smaller discretization step in order to take into account

all the shape of the density. The correct discretization

step could be chosen looking at the shape of the FPT

density.

We explicitly underline that the algorithm does not

require the knowledge of S(0) since it is built with the

right-hand rectangular rule (Atkinson, 1989), i.e. the

formula does not use the value of the boundary on the

l.h.s. of the interval. No condition on S(0) is a numer-

ical advantage because this value is often not known a

priori.

The Gamma density can either start from zero, from

a constant or from infinity. These different shapes of the

Gamma arise in correspondence to different behaviors

of the boundary in the origin. If the density is null in

zero, the corresponding boundary is strictly positive:

the density null in zero implies the absence of a prob-

ability mass in zero, i.e. no crossing happens for such

times. On the contrary, a positive mass in the origin

requires a boundary starting from zero typically with

infinite derivative. In Peskir (2002) is shown that the

only option to get a positive mass for arbitrary small

times is to allow the boundary to start together with

the process. In order not to have an immediate crossing

of all possible trajectories, the boundary should have

infinite derivative in zero. Exponential distribution is

often suggested to model ISIs without considering the

implication of the choice of a density positive at time

zero. The behavior of the threshold is interesting from

a theoretical point of view, but biologically it carries a

limited information as the model is hardly suitable in

a close proximity of a previous spike.

The algorithm at time t1 always gives a positive

and finite boundary S(t1). The values of g(S(t), t|0)

as t goes to zero may exhibit three different behav-

iors: in most instances g(S(0), 0|0) = 0, in other cases

g(S(0), 0|0) = c > 0 and in the last one

lim
t→0+

g(S(t), t|0) =∞.

The algorithm is valid if g(S(0+), 0 + |0) = 0 although

the more g(S(0+), 0 + |0) is away from zero, the less

accurate the estimation of the boundary through the

algorithm becomes in a neighborhood of the origin. Nu-

merically we identify 0+ with t1. Since the algorithm

is adaptive, if the discretization step is small enough

the error done in a neighborhood of the origin is neg-

ligible. In Figure 1(b) the boundaries corresponding to

different Gamma pdf are shown. Since the first steps of

the algorithm are not reliable due to the imprecise ap-

proximation of the integral in (15) in the algorithm, we

skip the first interval [0, 0.1]. To improve the boundary

estimation for small times, we refer to Remark 5.4 in

Zucca and Sacerdote (2009). In Figure 1(c) the input

functions µ(t) are plotted. They have been just derived

from the boundaries in Figure 1(b) by applying (9) and

they strongly depend on dS(t)/dt.

Since the boundary close to zero cannot be deduced

reliably, its derivative may have a substantial bias here.

The algorithm is self-adaptive, therefore the results be-

come more precise with increasing time.

In Figure 1(b) we also note that the thresholds in

general decrease as t increases. It may correspond to

a weak facilitation of the spiking activity, avoiding the

presence of very long ISIs. However, in extreme cases

the threshold reaches negative values, which means go-

ing below the resting level, and it looks quite unrealistic.

The explanation of this feature is straightforward if we

take into account Figure 1(a) and simultaneously real-

ize what is the input (µ = 0) and the parameter of the

underlying OU model (τ = 10, σ2 = 2.5). These values

would correspond to a strongly subthreshold regimen

if a constant threshold (Σ = 10, like for variable µ) is

considered and thus the spiking activity would be Pois-

sonian. Under such a scenario the threshold must go in

the direction of the mean depolarization (µ · τ = 0) to

get Gamma distribution which looks almost Gaussian

(CV = 0.5 and CV = 0.75). In conclusion, the obtained

result of a very negative threshold is an indicator of the

unrealism of the hypothesized distribution in the case

of employed OU parameters. One cannot obtain in OU

model almost regular firing for low signal unless the

threshold is substantially modified.

There is a common substantial increase of the thresh-

old after spike generation in Figure 1(b) observed mainly

for those thresholds which ultimately go to the nega-

tive values. Here the same arguments can be presented:

while mathematically the model can be forced to pro-

duce any shape of Gamma output, biologically it would

require a speculative interpretation.

Note that a boundary becoming negative, despite it

can be seen as biologically difficult to interpret, repre-

sents no formal problem. The reason is that there are

still numerous trajectories of the OU process below zero

and thus below the threshold. Therefore the negative

threshold gradually absorbs these trajectories (hyper-

polarized below zero) and it creates the tail of the FPT

density corresponding to the Gamma distribution.
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3.2 Examples

We apply the method proposed in the previous sec-

tion to the Gamma pdfs of different shapes and show

their effect on the shapes of the variable-input and the

variable-threshold. The shape of the Gamma distribu-

tions was varied by changing its CV while its mean was

kept constant. The corresponding parameters can be

deduced from equations (11) and (13). The pdfs of T

are plotted for different values of CV in Figure 1(a)

and the related boundaries S(t) and the input func-

tions µ(t), making use of (3), respectively, are plotted

in Figure 1(b) and 1(c). The shape of the boundary

corresponding to lower values of CV presents a max-

imum that tends to disappear as CV grows to higher

values. Hence, for small values of CV the growth of the

boundary eliminates short ISIs. After a certain period

of time the thresholds decrease facilitating the attain-

ment of the maxima of the pdf. The Gamma density has

no maxima for CV > 1 and the time-variable thresh-

old tends to become flat. In all cases a complementary

behavior is exhibited by the input µ(t).

In the second example we investigate not only the

behavior of the time-variable firing threshold but also

the dynamics of the underlying OU neuronal model.

The mean membrane potentials (3) and the bound-

aries corresponding to the Gamma distributed ISIs with

mean ISI equal to 10 but different values of the mean in-

put µ and for three different values of CV are shown in

Figure 2. The shapes of the thresholds in Figure 2 are

concave and initially increasing. For low input (when

µ is small enough) the curves exhibit a maximum af-

ter which the firing threshold starts to decrease. From

a biological view point such a decrease may be inter-

preted as reflecting an adaptation phenomenon. This

adaptation is meant in a sense that if there is no spike

for a period, then the system becomes more sensitive

by decreasing the firing threshold. Initially, the distance

between the mean of the membrane potential and the

threshold increases, however, after a certain period, in

all the cases the mean membrane potential crosses the

threshold. For fixed CV this always happens at the

same time. This fact can be easily understood by not-

ing that a change of µ determines the same shift both

on the mean potential and on the boundary shape, see

(8). This moment of crossing between the mean poten-

tial and the threshold increases with increasing CV . So,

practically, for large CV the regimen is again subthresh-

old (see Figure 2(c)) for all generated ISIs, whereas for

low CV there is a change of the regimen shortly after

the mean ISI (see Figure 2(a) and 2b). This is entirely

a new phenomenon if compared with the classical OU

model. Further, we can see that for low CV very short

ISIs are rather improbable due to the presence of an

higher threshold for a short time. In general, all the

thresholds are initially increasing and that is in contrast

with the previously employed time-varying thresholds

in the OU neuronal model.

Fig. 2 The mean membrane potential (3) and the time-
variable boundaries corresponding to the Gamma distributed
ISIs of three different shapes, CV = 0.5 (a), CV = 1 (b) and
CV = 1.5 (c), the probability densities are on the subplots.
The parameters of the OU model are τ = 25, σ2 = 0.16,
x0 = 0, the mean ISI is equal to 10 in all cases represented
by a cross on the horizontal axes. Different lines correspond
to different values of the mean input: µ = 0 (black), µ = 0.3
(blue), µ = 0.6 (cyan), µ = 0.9 (magenta). Thicker lines cor-
respond to the time-variable boundaries. The vertical dotted
lines give the ISI distribution quantiles.
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4 Conclusions

We presented a method how to modify the OU neu-

ronal model, which is one of the most common mod-

els for description of spike generation, to achieve at

its output the Gamma renewal process of ISIs. The

method is based on the Inverse FPT problem and uses

the time-variable firing threshold or time-variable in-

put. While the time-variable input rather lacks a clear

biological interpretation, the time-varying firing thresh-

old has been commonly accepted. However, the previ-

ous generalizations of the OU model based on intro-

duction of the time-variable threshold always aimed to

make the model more realistic a priori, whereas here

it comes out as a result of a requirement to identify

the output of the model with the observed or expected

data.

In some parameter cases, the OU process is inca-

pable of generating gamma-distributed ISIs, unless un-

realistic features of the model are employed. For exam-

ple, the threshold getting below the resting level is an

indicator of this situation. Interestingly, in other cases,

the threshold corresponding to Gamma distributed ISIs

may have a biologically interpretable shape. It decreases

with time and this could be related with neuronal adapt-

ability. However, this effect does not last over a single

ISI and thus cannot be interpreted as decreasing the

firing rate over a spike train. Any further interpreta-

tion of the threshold behavior would be difficult and

surely beyond the scope of this article. On the other

hand, it is obvious that it at least partly changes so of-

ten applied concept of sub- and supra-threshold firing

regimen. Nevertheless, the results of this paper implies

that Gamma distributed ISI generated by OU neuronal

model with CV > 1 are noise driven in contrast to those

with CV ≤ 1 which are driven by both, the signal and

the noise.
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