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Abstract

Neuroscientific studies of drawing-like movements usually analyze neu-
ral representation of either geometric (eg. direction, shape) or temporal
(eg. speed) features of trajectories rather than trajectory’s representa-
tion as a whole. This work is about empirically supported mathematical
ideas behind splitting and merging geometric and temporal features which
characterize biological movements. Movement primitives supposedly facil-
itate the efficiency of movements’ representation in the brain and comply
with different criteria for biological movements, among them kinematic
smoothness and geometric constraint. Criterion for trajectories’ maximal
smoothness of arbitrary order n is employed, n = 3 is the case of the
minimum-jerk model. I derive a class of differential equations obeyed by
movement paths for which n-th order maximally smooth trajectories have
constant rate of accumulating geometric measurement along the drawn
path. Constant rate of accumulating equi-affine arc corresponds to com-
pliance with the two-thirds power-law model. Geometric measurement is
invariant under a class of geometric transformations and may be chosen to
be an arc in certain geometry. Equations’ solutions presumably serve as
candidates for geometric movement primitives. The derived class of dif-
ferential equations consists of two parts. The first part is identical for all
geometric parameterizations of the path. The second part enforces con-
sistency with desired (geometric) parametrization of curves on solutions
of the first part. Equations in different geometries in plane and in space
and their known solutions are presented. Connection between geometric
invariance, motion smoothness, compositionality and performance of the
compromised motor control system is discussed. The derived class of dif-
ferential equations is a novel tool for discovering candidates for geometric
movement primitives.
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Introduction

Various neuroscientific studies have analyzed geometric features of primates’
and humans’ drawing-like movements and their representation in the brain. In
particular, single neurons and neural populations in motor cortex were found
to be tuned to movement direction [29, 82, 81, 83, 59, 58]. Studies of different
types of goal-directed movements, eg. movements to targets, sequential hand
movements or movements following prescribed paths indicated that the serial
order of submovement1, “aspects of movement” (meaning aspects of movement
shape and target location) and movement fragments are represented in cortical
activity [42, 2, 3, 41, 85, 40].

Pioneering works by Pollick and Shapiro [68] and Handzel and Flash [35]
reported equivalence of the 2/3 power-law model2 to moving with constant
equi-affine velocity and proposed relevance of non-Euclidian geometry, and in
particular equi-affine, to the mechanisms of biological movements. Later studies
revealed presence of features characterizing equi-affine invariants in empirical
data recorded during production and perception of biological motion [69, 73,
70, 51, 22, 15, 74, 72, 53, 67, 11, 54, 57]. Relevance of a larger, affine, invariance
was introduced to the field of motor control by Bennequin at at. [5, 27, 65].

In addition to the continuous representation of movements, the idea of move-
ment compositionality, i.e. representation of complex movements based on a
limited “alphabet” of primitive submovements, is analyzed in numerous motor
control studies. Studies of monkey and human trajectories suggested that move-
ment primitive can be defined on the operational level as a movement entity that
cannot be intentionally stopped before its completion once it has been initiated
[70, 91, 72, 88]. Existence of motor primitives was demonstrated at the level of
forces produced by muscles operating on the limbs [7, 32, 63, 47, 61, 62, 30, 31],
at the level of muscle synergies [100, 14, 39, 45, 13], at the level of motion kine-
matics [60, 23, 9, 49, 79, 77, 21, 25, 78], at the level of units of computation
in the sensorimotor system [102, 94], and as a vector cross product between
a limb-segment position and a velocity or acceleration [93]. It was proposed
that movement primitive is an action of a neuromuscular system controlling
automatic synergy whose elements produce stereotypical and repeatable results
[107, 108]. Decomposition of complex movements into primitives was also im-
plemented for octopus arm movements [110] and wrist movements in human
sign language [20]. Recent works analyzed neural representation of movements
involving corrective submovements in double-step paradigm [17, 19] and pro-
vided additional indications that seemingly continuous movements might be
represented in the brain at certain hierarchical level in discrete manner.

Parabolic shapes were suggested as geometric building blocks of complex
drawing-like movements based on mathematical modeling and analysis of kine-
matic and neurophysiological data of behaving monkeys [73, 70, 74, 72]. It was
shown that analyzed spontaneous movement paths can be represented in a com-

1Meaning serial order of implementing certain geometric entity.
2The model establishes relationship between movement’s speed and curvature. More details

are provided further in text.
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pact way by concatenating parabolic-like shapes. Affine transformations applied
to parabolic segments result in parabolic segments. Moreover, any parabolic seg-
ment can be mapped to another arbitrary parabolic segment by unique affine
transformation such that segments’ initial (and final) points are matched as de-
scribed further in text3. So, provided a direction of motion, a sequence of con-
catenated parabolic-like shapes can be obtained by applying a unique sequence
of affine transformations to a single parabolic template with prescribed start-
ing point and thus simplifying the representation of complex movements in the
brain. Such representation could mean that geometric movement primitive is a
set of transformations endowed with a primitive geometric shape upon which the
transformations are applied. Simulated pattern composed of parabolic segments
obtained by applying a sequence of affine transformations to a single parabolic
segment resembled actual movement path performed by monkey [70, 74].

It was observed by Flash and Hogan that planar hand trajectories are smooth
while non-smoothness was quantified by the cost functional called jerk leading
to the model named “minimum-jerk” [43, 26]. Viviani and Flash compared pre-
dictions of the minimum-jerk and the 2/3 power-law models for some geometric
shapes. Work by Richardson and Flash analyzed relationship between the 2/3
power-law model and smoothness of arbitrary degrees using approximation to
a number of shapes [76]. Later Polyakov et. al. derived differential equation
whose solutions based on parametrization with the equi-affine arc serve can-
didates for providing identical predictions to the minimum-jerk and the 2/3
power-law models [69, 73, 70, 74].

Earlier attempts to propose models for duration of a movement or of its
part were based on optimization principles, e.g. [26, 101, 38, 95, 92]. Bennequin
et. al. proposed that movement timing and invariance arise from mixture of
Euclidian, equi-affine and affine geometries [5, 27]; in other words movement
duration is proportional to mixture of arcs in different geometries. This theory
accounted well for the kinematic and temporal features of a number of repeatable
drawing and locomotion movements and suggested for the first time that single
movement trajectory can be simultaneously represented in different geometries.
It was proposed that the equi-affine geometry was the most dominant, affine
geometry second most important during drawing, and Euclidian second most
important during locomotion.

More recently scale invariance in the neural representation of handwriting
movements was observed [37] (superposition of equi-affine transformations and
uniform scaling4 constitutes the group of affine transformations). Level of acti-
vation in different motor areas (M1, PMd, pre SMA) was found to be related to
the level of motion smoothness acquired during learning to coarticulate point-
to-point segments into complex smooth trajectories [89].

Here I expand existing mathematical tools aimed at finding primitive geo-

3In the part related to affine parametrization of curves
4Uniform scaling needed to enrich planar equi-affine group of transformations to affine

is represented by either of the two matrices: 1) uniform scaling without reflection: const ·
(

1 0
0 1

)

; 2) uniform scaling with reflection over y axis: const ·
(

1 0
0 −1

)

, const 6= 0.

3



metric shapes which are related to invariance-smoothness criteria beyond ap-
proximation of shapes and beyond the minimum-jerk criterion simultaneously.
Candidates for primitive shapes have exact functional description for smooth-
ness of arbitrary degrees and can be identified with constant rate of accumulat-
ing a feasible geometric measurement (e.g. equi-affine arc) along movement’s
path and its invariance. So trajectories along those primitive shapes would
possess a smoothness feature that was observed in biological motion. Classes
of such primitive shapes presumably composing more complex trajectory paths
are invariant under classes of geometric transformations thus being able to pro-
vide compact representation of complex movement paths in the brain. Given
ideas of employing multiple geometric arcs for representing movements [5, 27],
the derived method of identifying geometric primitives is demonstrated here for
invariance in different geometries and the reader can further apply this ready
to use machinery on his own for geometric measurements not mentioned in this
work.

Prerequisites for the mathematical problem from the motor

control studies

Trajectory’s smoothness criterion was initially defined as minimization of the
integrated squared rate of change of acceleration called also movement jerk
[43, 26], namely:

T
∫

0

{

[

d3x

dt3

]2

+

[

d3y

dt3

]2
}

dt . (1)

The information about movement’s trajectory can be split into two parts: (1)
geometric specification called also movement path and (2) temporal specifica-
tion defined by a function relating each moment of time to the location on the
movement path. The temporal specification is fully determined by the speed
of motion along the path. In the original works on the minimum-jerk model
[43, 26] maximally smooth trajectory is constrained by a starting point, a via-
point through which the path has to pass and the end point. So the criterion
of minimizing the cost functional in (1) is endowed with point-wise kinematic
constraint on optimal trajectory that passes through one or more via-points.
Therefore in the original formulation of the model the entire continuous path
of the trajectory has to be revealed simultaneously with identifying movement
speed5. The minimum-jerk model is widely used and mentioned in different
motor control studies.

5The x(t) and y(t) components of the trajectories constrained by via-points and minimizing
the cost functional (1) are composed of pieces of 5th order polynomials with respect to time,
the 3rd order derivatives of x(t), y(t) are continuous [26]. Minimum-jerk trajectories with
a single via-point can be well approximated with parabolic segments [70, 74] and satisfy
isochrony principle stating that different movement portions have nearly the same duration
independently of their extent [106, 5]. Movement durations from the start to the via-point
and from the via-point to the end-point are very similar [70, 74].
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According to the constrained minimum-jerk model proposed by Todorov and
Jordan [95] hand movements tend to maximize the smoothness of drawing or,
in other words, minimize the jerk cost

T
∫

0

{

[

d3x(σeu(t))

dt3

]2

+

[

d3y(σeu(t))

dt3

]2

+

[

d3z(σeu(t))

dt3

]2
}

dt (2)

for the prescribed trajectory path {x(σeu), y(σeu), z(σeu)}. That is movement
path is already provided as an input to the optimization procedure and only
the speed profile has to be found to solve the optimization problem. Executed
3-dimensional curve in the cost functional (2) is parameterized with Euclidian
arc-length

σeu(t) =

∫ t

0

√

ẋ(τ)2 + ẏ(τ)2 + ż(τ)2dτ (3)

with dot denoting differentiation with respect to time t.

Example 1. Trajectory r(t) = r(σeu(t)) = [x(σeu(t)), y(σeu(t)), z(σeu(t))] is
fully determined by geometric (not involving time) parametrization6 r(σeu) and
temporal parametrization of the geometric parameter σeu(t) (or equivalently non-
negative speed σ̇eu). Here geometric parameter σeu is length which is continu-
ously mapped onto a curve described by 3-dimensional differentiable vector func-
tion. ✷

The 2/3 power-law proposed by Lacquaniti, Terzuolo and Viviani [50] es-
tablishes a local kinematic constraint on movements. It describes a relationship
between geometric properties of movement path and speed of motion along that
path, namely

K = Speed · Curvature1/3 = Angular speed · Curvature−2/3 ,

where K is piece-wise constant, speed and curvature are Euclidian. Empirical
observations of the 2/3 power-law model were interpreted as evidence for move-
ment segmentation [50]. The 2/3 power law was also demonstrated in visual
perception [104, 51, 15, 11, 57] and locomotion [103, 44] studies. Segmentation
of hand movements based on powers of trajectory curvature has recently been
analyzed in [20].

Euclidian speed σ̇eu minimizing the cost functional with an arbitrary order
of smoothness n

T
∫

0

{

[

dnx(t)

dtn

]2

+

[

dny(t)

dtn

]2
}

dt (4)

was compared to the experimental data for planar point-to-point movements7

[76]. Approximated predictions of movement speed which minimizes the cost

6Geometric parametrization with an arc invariant in certain geometry is called natural
parametrization; length σeu provides natural parametrization in Euclidian geometry.

7An assumption behind some kinematic models for point-to-point movements in plane is
that the movement path is a straight line, speed and acceleration of motion at the start and
end points of the trajectory are zero.
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functional with arbitrary order n (4) along a number of periodic paths were
derived and compared to the predictions of the 2/3 power-law and experimental
data [76].

From now on differentiation with respect to parameter σ 8 is denoted with
primes and numbers in brackets while differentiation with respect to t 9 up to
order 3 is denoted with dots:

f ′(σ) ≡ df

dσ
, f ′′(σ) ≡ d2f

dσ2
, f ′′′(σ) ≡ d3f

dσ3
, f (k)(σ) ≡ dkf

dσk

ḟ(σ(t)) ≡ df

dt
, f̈(σ(t)) ≡ d2f

dt2
,
...
f (σ(t)) ≡ d3f

dt3
.

The notation will be reminded further in text.

The 2/3 power-law model is equivalent to the statement that the equi-affine
velocity10 (30) of drawing movements is piece-wise constant [68, 35, 69, 73,
70, 22, 74]: σ̇ea = const. Based on the results of empirical studies related to
interpretation of the 2/3 power-law in terms of differential geometry and their
extension, equi-affine and affine arcs have become relevant parametrization in
analysis of biological movements and their neural representation [68, 35, 69, 73,
70, 15, 22, 74, 72, 5, 11, 27].

Equivalence of the 2/3 power-law to constancy of the planar equi-affine ve-
locity was extrapolated by Pollick et al. [67] to the 1/6 power-law equivalent
to the conservation of the spatial equi-affine velocity (70). Empirical validity of
the 1/6 power-law for both action and perception was verified in the works by
Maoz, Pollick and others [52, 67, 53, 54].

In case of the constrained minimum-jerk model (n = 3 in (4)), the problem
of finding the paths whose maximally smooth trajectories satisfy the 2/3 power-
law model was studied using parametrization of a path with equi-affine arc [69,
73, 70, 74]. Correspondingly the problem was formulated as finding paths whose
maximally smooth trajectories have constant equi-affine velocity and reduced
to the necessary condition formulated as differential equation:

r′′′
2 − 2r′′ · r(4) + 2r′ · r(5) = const (5)

or, after differentiating both sides

r′ · r(6) = 0 . (6)

For curves in plane equations (5) and (6) respectively have the following form:

x′′′2 + y′′′2 − 2
(

x′′x(4) + y′′y(4)
)

+ 2
(

x′x(5) + y′y(5)
)

= const , (7)

8Usually denotes here geometric measurement along a path.
9Denotes here time or an arbitrary parameter.

10All necessary formulae from affine differential geometry are provided further in text. A
general background for the notions of equi-affine geometry which are used in this work can
be found elsewhere, eg. [86, 33]. The book [86] provides the most comprehensive treatise on
affine differential geometry that I am aware of. English translation of relevant parts of [86]
can be obtained from the author of the manuscript (FP) for non-commercial use in research
and teaching. Some parts of [86] are translated into English in Appendix A of [70].
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x′x(6) + y′y(6) = 0 . (8)

Equation (6) states that the scalar product between the first and the 6-th order
derivatives of the position vector with respect to path’s arc is zero. Studies
[73, 70, 74] used equation (6) for equi-affine arc in plane. Since derivations there
are applicable for an arbitrary feasible (strictly monotonous) parametrization
σ(t), that is when

dσ(t)

dt
6= 0, 0 ≤ t ≤ T , (9)

equation (6) is suitable for an arbitrary feasible geometric parametrization of
a curve and was also used for curves parameterized with the spatial equi-affine
arc [70, 74].

Consider the situation of looking for curves along which maximally smooth
trajectories would accumulate geometric measurement σ with constant rate. So
a curve is not given but has to be identified using equation (6). Arbitrary vec-
tor functions r(·) that are solutions of (6) do not necessarily represent curves’
parameterization with desirable measurement σ as demonstrated further in ex-
ample 3. Therefore, in the case of looking for curves parameterized with planar
and spatial equi-affine arcs equation (6) was endowed with additional condition:

in plane : x′y′′ − x′′y′ = 1 , (10)

in space :

∣

∣

∣

∣

∣

∣

x′ x′′ x′′′

y′ y′′ y′′′

z′ z′′ z′′′

∣

∣

∣

∣

∣

∣

= 1 (11)

guaranteeing that the solution parametrizes a curve with the planar or spatial
equi-affine arc respectively. So necessary condition for the vector functions
to describe planar paths whose maximally smooth trajectories satisfy the 2/3
power-law model was obtained in the form of the system of two differential
equations: (6) and (10).

Maximally smooth trajectories along parabolic segments have constant equi-
affine velocity and zero jerk cost [73, 70, 74]. Note that parabolas constitute
the only equi-affine solution of equation (6) whose coordinates are described by
polynomials of σ [69, 70, 74]. In general, only curves whose coordinates are 5-th
order polynomials of σ can have zero jerk cost.

Any curve can be geometrically parameterized in infinitely many different
ways. Widely known parametrization is based on the Euclidian arc-length.
In general, geometric parametrization of a curve can be implemented via a
continuous mapping of a scalar parameter onto the curve.

Example 2. A curve without inflection points can be parameterized with the
integral of Euclidian speed weighted with Euclidian curvature raised to certain

degree: σ̃β(t) =

∫ t

0

σ̇eu(τ) · [ceu(σeu(τ))]
β
dτ . This geometric parametrization is

legitimate for any β. It is measurement of the Euclidian arc when β = 0 and
measurement of the equi-affine arc when β = 1/3. ✷
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Geometric measurement σ̃β from example 2 is invariant under Euclidian
transformations for any β. However when β 6= 0 it is not equal to Euclidian
length.

Most of the results presented in this work were initially published as arXiv
manuscript [71] in September, 2014. Some explanations and formulae appearing
in the first version of arXiv manuscript were improved, corrected or removed
and novel material was added in arXiv versions 2 and 3. The current version
of the manuscript is result of significant revision. It contains novel solutions,
some formulations and explanations have been corrected and in many parts of
the text improved. The manuscript now contains discussion about performance
of the compromised motor control system in the framework of the theory under
consideration.

Methods and Results

Systems of differential equations, general case

Consider n times differentiable vector function in L-dimensional space rL(σ) =
(x1(σ), x2(σ), . . . , xL(σ)) and n times differentiable function σ(t) defined in the
interval t ∈ [0, T ], and strictly monotonous11, σ(0) = 0. Function σ(t) may
represent geometric arc defined based on the vector function rL(σ(t)) and its
derivatives with respect to time but is not limited to this. For example, when
σ(t) represents length of a curve drawn up to time t, σ(t) =

∫ t

0

√

‖ṙ(τ)‖2dτ . The
mean squared derivative cost functional [76] associated with n-th order deriva-
tive of the vector function and its geometric parametrization σ(t) is defined as
follows:

Jσ(rL, n) =

T
∫

0

{

[

dnx1(σ(t))

dtn

]2

+

[

dnx2(σ(t))

dtn

]2

+ . . .+

[

dnxL(σ(t))

dtn

]2
}

dt

=

T
∫

0

∥

∥

∥

∥

dn

dtn
rL(σ(t))

∥

∥

∥

∥

2

dt . (12)

I call the order of derivative n in the cost functional (12) degree of smoothness
or order of smoothness.

Movement paths providing optimal trajectories with constant rate of

accumulating geometric measurement

Given geometric parametrization σ of the vector function r (that describes a
curve along which the trajectory is “drawn”) in L-dimensional space, I denote
with σ̃∗

rL,n(t) temporal parametrization of “drawing” the path which provides

11So that the inverse function t = τ(σ) can be defined.
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minimal cost Jσ∗(rL, n) (in other words maximal smoothness of degree n) under
constraints at the boundary:



















˙̃σ∗
rL,n(t) = argmin

σ̇(t)
Jσ(rL, n), t ∈ [0, T ] ,

σ̇(0) = σ̇(T ) = Σ/T,
dkσ

dtk

∣

∣

∣

∣

t=0

=
dkσ

dtk

∣

∣

∣

∣

t=T

= 0, k = 2, . . . , n− 1 ,

(13)

dot denotes differentiation with respect to time t, Σ =
∫ T

0
σ̇(τ)dτ . The con-

straints at the boundary mean that the optimal rule of “drawing” along given
curve has to be picked out of functions whose first derivative at the boundaries
is equal to σ(T )/T and whose higher order derivatives up to order n−1 are zero
at the boundaries. The solution of the optimization problem without constraints
at the boundaries is also considered and is denoted as σ∗

rL,n(t):

σ̇∗
rL,n(t) = argmin

σ̇(t)
Jσ(rL, n), t ∈ [0, T ] . (14)

Solutions of the optimization problem without boundary conditions are allowed
to have arbitrary speed and its derivatives at the boundaries. For a given
dimension of the space L and the degree of smoothness n I aim to find curves
for which the solution of the optimization problem with constraints (13) provides
constant speed of “drawing” the curve:

Ãn,L =

{

rL : ˙̃σ∗
rL, n(t) = const =

Σ

T
, t ∈ [0, T ]

}

. (15)

The problem of identifying the curves under the same optimality criterion but
without the boundary conditions from (13) is also considered:

An,L =

{

rL : σ̇∗
rL, n(t) = const =

Σ

T
, t ∈ [0, T ]

}

. (16)

Solutions of the optimization problem (14) for the curves from the set An,L

(no boundary conditions are established) satisfy the boundary conditions estab-
lished in (13) anyhow and both optimization problems minimize the same cost
functional. Therefore all solutions (curves) belonging to the set An,L belong to

the set Ãn, L:

An, L ⊂ Ãn, L . (17)

So the necessary conditions derived for the curves from the class Ãn,L are obeyed

actually by the curves from both classes: Ãn, L and An, L.
Introduce a system of two differential equations:











∥

∥

∥

∥

dnr

dσn

∥

∥

∥

∥

2

+ 2

n−1
∑

i=1

(−1)i
(

dn−ir

dσn−i
· d

n+ir

dσn+i

)

= const

σ̇(t)|t(σ)=σ ≡ v(t)|t(σ)=σ = 1 ,

(18)

9



dot between two vectors denotes their scalar product. Differentiation of both
sides of the upper equation in (18) implies a system in which the upper equation
is represented just by the scalar product of the first and 2n-th order derivatives
of the position vector with respect to the geometric parameter σ:











dr

dσ
· d

2nr

dσ2n
= 0

σ̇(t)|t(σ)=σ ≡ v(t)|t(σ)=σ = 1 .

(19)

I consider the curves from the classes Ãn,L and An,L defined in (15) and
(16) respectively as candidates for geometric movement primitives. The systems
(18), (19) can be used as a tool for identifying such curves as follows from the
main mathematical result of this work:

Proposition 1. The curves along which optimal trajectories having degree of
smoothness n accumulate geometric measurement σ(t) with constant rate, that
is the curves from the sets Ãn, L and An,L, satisfy the upper equations in the
systems (18) and (19).

A detailed proof of proposition 1 is provided in Appendices A, B. Particular
cases of the system (19) together with known solutions are demonstrated for
different geometric parameterizations further in text in equations (31), (37),
(44), (53), (57), (61), (65), (71).

Now a number of important notes about the systems (18) and (19).

1. The upper equation in the systems (18) and (19) is independent on
the geometric parametrization of a curve. The equation is derived from
two criteria: (1) maximal smoothness (13) or (14) during accumulating
σ(t) along the vector function rL(σ) and (2) constancy of the rate of
accumulating σ(t) (15) or (16). Derivation of the upper equation is based
on the Euler-Poisson equation for variational problems. Particular cases
of the upper differential equation for planar curves when 2 ≤ n ≤ 4 and for
an arbitrary n are provided12 in Table 1. Orthogonality, and consequently
the left hand side of the upper equation in the systems, are invariant under
arbitrary Euclidian transformations, uniform scalings and reflections.

Relationship r(σ) can be substituted directly into the upper equation of
(19). Nevertheless usually curves used in different studies are parame-
terized by polar angle, length, one of the coordinates (e.g. y = y(x) for
a plane curve), etc, and not necessarily by the desirable geometric mea-
surement. However there is no need to write explicit relationship r(t(σ))
between the coordinates of the curve r(t) and the geometric parameter
σ in order to compute derivatives in the upper equation of (19) and to

12Cost functionals Jσ(rL, n) for the planar (L = 2) and spatial (L = 3) curves were used
in different motor control studies for orders of differentiation n equal to 2-4, eg. [43, 26, 105,
95, 69, 73, 76, 70, 4, 74].
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remain consistent with prescribed parametrization σ. If t is an arbitrary
argument and σ̇ is never zero then all derivatives of r(t(σ)) with respect to
σ can be computed by applying recursively the chain rule and derivative
of inverse function:

r′(σ)|σ=σ(t) =
ṙ(t)

σ̇
, r′′(σ)|σ=σ(t) =

d
(

ṙ(t)
σ̇

)

/dt

σ̇
, . . . . (20)

Assume a given curve is being tested for being a candidate primitive shape
(belonging to the classes Ãn,L, An, L) for concrete desirable σ̇. Then
derivatives in (20) can be computed in a program for symbolic compu-
tations, e.g. Mathematica, and the constraint formalized by the lower
equation in the systems (18) and (19) can be easily plugged into the up-
per equation.

2. In case one aims to find a novel candidate curve for geometric primitive
the lower equation in the systems (18) and (19) is needed to guaran-
tee that the solution of the parameter-independent upper equation indeed
represents a curve with required geometric parametrization and provides
consequent geometric invariance of the parametrization. In this case of
unknown candidate curve use of substitution (20) would be generally im-
practical to my view and system of two equations has to be solved. The
lower equation depends on the choice of geometric parametrization and
essentially represents functional form of its derivative with respect to an
arbitrary argument. Example 3 below demonstrates a curve that satisfies
the upper equation for equi-affine parametrization and is not consistent
with some other parameterizations.

3. Use of transversality conditions in addition to the upper equation in
the systems (18) and (19) can provide a more restricted necessary condi-
tion for a curve to belong to the set An,L.

4. The following sufficient condition for the curves from the set Ã3, L was
formulated earlier for the case of the minimum-jerk cost (n = 3) [70]:







r′′′
2 − 2r′′ · r(4) + 2r′ · r(5) = const0 ≥ 0

min
0≤σ≤Σ

[

9r′′′
2
+ 2r′ · r′′′ − 24r′′ · r′′′

]

= const1 ≥ 0 .
(21)

The left hand side of the upper equations in the system (21) is identical to
the left hands side of upper equation in the necessary condition (18) and
is restricted with the constraint on the sign of the constant in the right
hand side.
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Order Equation, exemplar or Derivative of Comments about Known solutions when σ
general case the equation equation is equi-affine arc

2 x′′2 + y′′
2 − 2x′x(3) − 2y′y(3) x′x(4) + y′y(4) = 0 Planar “minimum-
= const acceleration” criterion Parabolas

in motor control

3 x′′′2 + y′′′
2 − 2x′′x(4) − 2y′′y(4) x′x(6) + y′y(6) = 0 Planar “minimum- 2D: Parabolas, circles [70, 74],

jerk” criterion logarithmic spiral [8, 74],

+2x′x(5) + 2y′y(5) = const in motor control 3D: Parabolic screw line [70, 74],
3D: Elliptic screw line

4
(

x(4)
)2

+
(

y(4)
)2

x′x(8) + y′y(8) = 0 Planar “minimum- 2D: Parabolas, circles,

−2x′′′x(5) − 2y′′y(5) snap” criterion logarithmic spiral

+2x′′x(6) + 2y′′y(6) in motor control 3D: Parabolic & elliptic screw
−2x′x(7) − 2y′y(7) = const lines

. . . . . . . . .

n

(

x(n)
)2

+
(

y(n)
)2

+ x′x(2n) + y′y(2n) = 0 Planar equation

2
n−1
∑

i=1

(−1)i(x(n−i)x(n+i)

+y(n−i)y(n+i)) = const For L <= n, r = {x1, . . . , xL}

‖r(n)‖2 r′ · r(2n) = 0 s.t. xk(σ) =
σk

k!
,

+2
n−1
∑

i=1

(−1)i
(

r(n−i) · r(n+i)
)

L-dimensional space k = 1, . . . , L, σ is

= const equi-affine arc in dimension L

Table 1: Equations corresponding to different orders of smoothness in dimensions 2, 3, 4, n. Upper equation in the systems
(18), (19) which is necessarily satisfied by the curves belonging to the classes Ãn, L and An, L defined in (15) and (16) respectively.
Prime and order of differentiation in the brackets correspond to the derivative with respect to σ. Dot between two vectors in the row
corresponding to the case n denotes scalar product of the vectors. Details about planar solutions mentioned in Table 1 are provided in
Table 2. The spatial solutions are analyzed in the part related to the spatial equi-affine group.

1
2



In a different study Meirovitch has recently introduced a variational problem
for plane jerk without explicitly incorporating rate of accumulating arc (σ̇) and
with constraint in terms of path instead of relationship between movement speed
and duration; such representation enabled him to find an elegant proof of the
necessary condition on a given planar trajectory that minimizes jerk cost and
follows prescribed path:

ẋ
d6x

dt6
+ ẏ

d6y

dt6
= 0 , (22)

in other words being a necessary condition for a given trajectory satisfying the
constrained minimum-jerk model13. Given that σ(t) = t is always a legitimate
parametrization for a path of a given trajectory as condition (9) is satisfied for
such σ(t), equation (22) is equivalent to equation (8), that is the plane version
of the upper equation in (19) with n = 3, for every given trajectory (that itself
specifies movement path). The proof by Meirovitch, though elegant, does not
lead directly to the first integral (7) of equation (8). Equation(8) has recently
been used for mixture of geometries approach [55].

The process of identifying candidates for geometric primitives based

on proposed system (18) may follow either of the three approaches

1. Specify desirable (geometric) parametrization σ and solve the system (18)
(or (19)) to identify candidate curves along which optimal trajectories
conserve time derivative of prescribed geometric parameter, for example
equi-affine or affine arcs. Here the lower equation of the systems is used
as is.

2. Specify desirable (geometric) parametrization σ̃ and guess candidate curves
among solutions of the upper equations of either of the systems (18), (19):

∥

∥

∥

∥

dnr

dσn

∥

∥

∥

∥

2

+ 2

n−1
∑

i=1

(−1)i
(

dn−ir

dσn−i
· d

n+ir

dσn+i

)

= const , (23)

dr

dσ
· d

2nr

dσ2n
= 0 , (24)

where σ is an arbitrary parametrization including the possibility σ = t.
For example such solutions as polynomials of degree ≤ 2n−1 with respect
to σ or certain periodic functions can be easily guessed. Then among the
guessed candidate curves determine those (if any) consistent with both
equation (23) and desired parametrization σ̃, see also example 3. Segrega-
tion of the guessed curves is straightforward by either (a) parameterizing
them with desired σ̃ or (b) by using substitution (20); for a known curve
both (a) and (b) may be viewed as replacement of the condition formalized
by the lower equation in (18).

13Personal communication (August, 2015), apparently this result appears in Supplementary
Material to [55].
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3. Do not request any specific parametrization of candidate curves. Search
for candidate curves that are described by arbitrary vector functions sat-
isfying equation (23) (or (24)), remain with parameterizations induced by
identified solutions and possibly look for their geometric meanings. For
example whether σ is proportional to some geometric arc or another ge-
ometric parameter computed for a curve. Here the constraint formalized
by the lower equation of the systems (18), (19) does not exist from the
beginning but its equivalent14 might be derived.

In earlier studies [69, 70, 8, 74] and earlier versions of this manuscript (1 - 3)
known candidate curves were found using educated guess in Approaches 1 and
2. In the present version of the manuscript method 3 is also used to identify
additional candidate curves (75), (76) without prior knowledge about geometric
meaning of the parameter making these curves solutions of the system (18).

Future studies may create a machinery for solving systems (18), (19) and
make Approach 1 a handy tool for identifying candidate curves parameterized
by a measurement with desired properties. Equation (37) further in text demon-
strates example of what could become a part of Approach 1: the planar system
of equations (31) for n = 3 is written in the form of a single equation in terms
of curve’s equi-affine curvature. Equation (37) can be applied whenever one
wishes to characterize candidate curves with their equi-affine curvature.

Example 3. Time derivative of the equi-affine arc called equi-affine velocity is
computed as follows: σ̇ea ≡ vea = (ẋÿ− ẏẍ)1/3. Time derivative of the Euclidian

arc is computed as σ̇eu ≡ veu =
√

ẋ2 + ẏ2. Computation of Euclidian curvature
at some point of the trajectory is as follows:

ceu =
ẋÿ − ẏẍ

(ẋ2 + ẏ2)3/2
=

v3ea
v3eu

and therefore
vea = veu c

1/3
eu .

Consider parametrization with cumulative Euclidian speed weighted with Euclid-
ian curvature raised to the power β:

ṽβ ≡ veu ceu
β = (ẋ2 + ẏ2)1/2−3β/2 (ẋÿ − ẏẍ)β . (25)

Corresponding geometric measurement is equal to the integrated speed:

σ̃β(t) =

∫ t

τ=0

ṽβdτ

which is strictly monotonous function for the curve without inflection points
(though it does not necessarily represent an arc of a curve in some geometry).

14Meaning formula for σ̇ induced by its geometric properties and based on differentiation
with respect to an arbitrary parameter. Different examples of the lower equation can be found
further in text.
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Therefore σ̃β is legitimate geometric parametrization of a curve without inflec-
tion points. Obviously, the vector function

x = σ̃β , y = σ̃2
β/2 (26)

satisfies equations in Table 1 for n ≥ 2 as (2n)-th order derivatives of x, y with
respect to σ̃β are all zero. Such vector function describes parabola parameterized
with equi-affine arc, case of β = 1/3. If σ̃β(t) linearly depends on t meaning
constant speed α then x = αt, y = α2t2/2 implying ẋÿ − ẏẍ = α3. In turn,
substituting t = σ̃β/α into (25) implies

˙̃σβ ≡ ṽβ = (ẋ2 + ẏ2)1/2−3β/2 · α3β = (1 + σ̃2
β)

1/2−3β/2 · α3β 6= α whenβ 6= 1/3 .

This long way to show that parabola cannot be parameterized with σ̃β in canonical
form (26) whenever β 6= 1/3 was chosen for pedagogical reason. In particular, if
one uses Approach 2 to select curves along which maximally smooth trajectories
accumulate Euclidian arc with constant rate, parabolas would be filtered out with
the lower equation of system (19). ✷

The problem of deriving optimal temporal profile for a given path

Let some path r(s) be given. Consider the optimization problem (14) of finding
optimal trajectory r(s(t)) along the known path. Similar to the constrained
minimum-jerk model, optimal s(t) should be found, but now with degree of
smoothness n. Equation (24) is satisfied for such problem with arbitrary fea-
sible σ. In the spirit of the form (22) of planar equation (8) an alternative
notation can be adopted in equation (24) for convenience of analyzing this spe-
cific problem:

dr(s(t))

dt
· d

2nr(s(t))

dt2n
= 0 (27)

or simply
dr(t)

dt
· d

2nr(t)

dt2n
= 0 . (28)

Form (28) of (24) is true for any trajectory r(t) constrained by some path and
minimizing cost (12) because feasibility condition (9) is satisfied for σ(t) = t.

Now the rule for derivative of the nested function can be applied to equation
(27) in order to formulate the optimization problem (14) as differential equation
for s(t), generally non-linear.

Example 4. Consider an ellipse x(θ) = a cos θ, y(θ) = b sin θ and the problem
of finding an optimal rule of drawing an ellipse with n = 2, that is constrained
minimum-acceleration problem. Now use recursively df(σ(t))/dt = f ′σ̇ to de-
rive: d4f(σ(t))/dt4 = f (4)σ̇4+6f ′′′σ̈σ̇2+4x′′...σ σ̇+3x′′s̈2+x′d4s/dt4. Equation
(27) with n = 2 becomes for the ellipse:

−a2θ̇ sin θ ·
(

θ̇4 cos θ + 6θ̈θ̇2 sin θ − 4
...
θ θ̇ cos θ − 3θ̈2 cos θ − d4θ/dt4 sin θ

)

+

b2θ̇ cos θ ·
(

θ̇4 sin θ − 6θ̈θ̇2 cos θ − 4
...
θ θ̇ sin θ − 3θ̈2 sin θ + d4θ/dt4 cos θ

)

= 0 .

✷
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Example 4 demonstrates that generally it may be impractical to apply equa-
tion (27) to derive an optimal speed of “drawing” along given path.

Different parameterizations, arcs in the geometries of affine

group in plane and some of its subgroups, equations and

solutions

Different kinds of invariance were analyzed in the studies of action and percep-
tion of motion. For example, point-to-point hand movements are assumed to
produce nearly straight paths. Straight trajectories parameterized with Euclid-
ian arc (3) and having constant Euclidian velocity σ̇eu satisfy systems (18) and
(19) with arbitrary degree of smoothness. Straight paths are meaningful only in
Euclidian geometry among the six geometries considered in this study15. More
complex movements were analyzed in the frameworks of equi-affine and affine
geometries [68, 35, 69, 73, 70, 22, 74, 72, 5]. In this section I present system (19)
for different degrees of smoothness n while assuming constant speed of accumu-
lating arc in different geometries. The expressions for the rate of accumulating
arc that are presented below are based on the results from very useful book by
Shirokov & Shirokov [86]. Information about the relationship between the de-
rived system of equations (19) and candidate solutions is summarized in Table
2.

Explicit relationship x(σ), y(σ), z(σ) is shown below for some of the curves
in a number of geometries, z is not relevant for plane curves of course. The ex-
pressions for σ̇(t) are provided for every geometry/parametrization under con-
sideration.

Equi-affine group

Equi-affine transformations of coordinates involve 5 independent parameters
and are of the form:

x1 = αx+ βy + a
y1 = γx+ δy + b,

∣

∣

∣

∣

α β
γ δ

∣

∣

∣

∣

= 1 . (29)

The rate of accumulating equi-affine arc is called equi-affine velocity. It is com-
puted as follows [86]:

σ̇ea =

∣

∣

∣

∣

ẋ ẍ
ẏ ÿ

∣

∣

∣

∣

1/3

. (30)

System (19) in plane becomes:

{

x′x(2n) + y′y(2n) = 0
x′y′′ − x′′y′ = 1 .

(31)

15Equi-affine and similarity arcs of straight segments are zero, center-affine and affine arcs
are not defined, equi-center-affine arc is zero when straight line crosses the origin (the arcs
are introduced below).
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The lower equation guarantees that the solution of the upper equation is pa-
rameterized with the equi-affine arc

σea =

∫ t

0

σ̇ea(τ)dτ . (32)

Earlier studies used system (31) for the minimum-jerk cost functional (n = 3)
[69, 70, 74]. Here concrete curves are considered as candidate solutions, some of
them are filtered out for the prescribed equi-affine parametrization (Approach
2). The lower equation is automatically satisfied when a curve is parameterized
with desired geometric measurement or when substitution (20) is used for such
measurement.

The 1st and the 3rd order derivatives of the position vector of a planar curve
r(σea) with respect to the equi-affine arc are parallel. The parallelism follows
from the identity x′y′′ − x′′y′ = 1 which, in particular, appears in the system
(31). Apparently, the equi-affine curvature of a curve [86, 33, 10]

κea(σea) = x′′(σea)y
′′′(σea)− x′′′(σea)y

′′(σea) (33)

is a scaling factor between the 1st and the 3rd order derivatives of the position
vector: r′′′(σea) + κ(σea)r

′(σea) = 0 which implies the possibility to express
higher order derivatives of the vector r(σea) in terms of its 1st and 2nd order
derivatives when equi-affine curvature is a known function of the equi-affine arc.
In particular, system (31) with n = 3 can be rewritten. Given that

r′′′(σea) = −κea(σea)r
′(σea) , (34)

r(6)(σea) = r′′(σea)(κ
2
ea(σea)−3κ′′

ea(σea))+r′(σea)(4κ
′
ea(σea)κea(σea)−κ′′′

ea(σea))

and the upper equation of the system (31) for the case of n = 3 (r′ · r(6) = 0)
becomes

r′(σea) · r(6)(σea) = (r′(σea) · r′′(σea))(κ
2
ea(σea)− 3κ′′

ea(σea))

+ r′
2
(σea)(4κ

′
ea(σea)κea(σea)− κ′′′

ea(σea)) = 0 .
(35)

Noting that r′(σea) · r′′(σea) =
1

2

d

dσea
(r′

2
(σea)), equation (35) implies that

1

2

d

dσea
(r′

2
(σea)) = r′

2
(σea)

4κ′
ea(σea)κea(σea)− κ′′′

ea(σea)

3κ′′
ea(σea)− κ2

ea(σea)
. (36)

After integrating (36) the system (31) with n = 3 can be rewritten as follows:

r′
2
(σea) = r′

2
(0) exp [2 (F (σea)− F (0))] , (37)

where

F (σea) =

∫

4κ′
eaκea − κ′′′

ea

3κ′′
ea − κ2

ea

dσea .
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The expression for the equi-affine curvature can also be written for an arbi-
trary artument t [86]:

κea(t) =

√

√

√

√

√

3σ̇3
ea ·

∣

∣

∣

∣

ẋ d4x/dt4

ẏ d4y/dt4

∣

∣

∣

∣

+ 12σ̇3
ea ·
∣

∣

∣

∣

ẍ
...
x

ÿ
...
y

∣

∣

∣

∣

− 5

∣

∣

∣

∣

ẋ
...
x

ẏ
...
y

∣

∣

∣

∣

2

9σ̇8
ea

. (38)

The results for candidate solutions (parabola, circle, logarithmic spiral) are
as follows:

1. Parabola is parameterized with equi-affine arc, up to an equi-affine trans-
formation, as follows:

x = σea

y = σea
2/2 .

(39)

So x and y coordinates of the parabola in equi-affine parametrization are
always polynomials of up to 2-nd degree with respect to σea. The class
of parabolas constitutes obvious solution of (31) for n ≥ 2. The class
of parabolas is invariant under arbitrary affine transformations [70, 74].
Drawing parabolas with constant equi-affine velocity does minimize the
cost functional (12) for n ≥ 2 and provides zero cost. Corresponding
results for n = 3 were reported in [69, 70, 74].

Measuring path along parabola with equi-affine arc has the following in-
teresting property. If, for three points F , G, H on a parabola, the chord
FH is parallel to the tangent to the parabola at the intermediate point G,
then the equi-affine arc measured along parabola between F to G equals to
the equi-affine arc measured between G to H16. Such chord and tangent
are demonstrated in Figure 1.

2. Circle is parameterized with equi-affine arc as follows:

x = x0 + κ
−3/4
ea · cos(√κeaσea)

y = y0 + κ
−3/4
ea · sin(√κeaσea) .

(40)

For an arbitrary n ≥ 1 circle is non-invariant solution under arbitrary equi-
affine transformations, however circles are invariant solutions (remain cir-
cles) under Euclidian transformations (59) composed with uniform scaling
(47) including reflection (48).

3. Logarithmic spiral can be parameterized with polar angle:

x = x0 + const · eβϕ · cosϕ
y = y0 + const · eβϕ · sinϕ .

(41)

16The proof is provided in Appendix D of [70].
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Figure 1: Tangent to a parabola and parallel chord are connected with

path’s portions having equal equi-affine arc. Tangent to depicted parabolic
segment at point G is parallel to the chord FH . Equi-affine arc between F and G
is equal to the equi-affine arc between G and H . In the canonical coordinate system
parabola is described by the relationship x = −y2/(2p), where p is the focal parameter.
If tangent is parallel to the chord then, in canonical coordinate system, y coordinate
of the point of touch by the tangent (G) is average of the y-coordinates of the chord
(FH)

Introducing parametrization with equi-affine arc from (30) and integrating

dσea/dϕ = (const2(1 + β2))1/3 · e2βϕ/3

with initial condition ϕ(0) = 0 results in:

ϕ(σea) =
3

2β
ln

(

2βσea

3
· (const2(1 + β2))−1/3 + 1

)

which can be substituted into (41) to imply the expressions for x(σea), y(σea).
Apparently, (41) is solution for (31) only for certain values of β which de-
pend on the degree of smoothness n. The values of β corresponding to
n ≤ 5 are as follows.

(a) n = 1, 2: no solutions.

(b) n = 3: β = ±3/
√
7 (see also [8, 74]) or β ≈ ±1.13389.

(c) n = 4: β = ±
√

43±4
√
97

33 or β ≈ ±0.330499, β ≈ ±1.58014.

(d) n = 5: β = ±
√

3
13 and β = ±

√

489±12
√
1609

275 or β ≈ ±0.166808,

β ≈ ±0.480384, β ≈ ±1.87844.
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Affine group

Planar affine transformations of coordinates involve 6 independent parameters
and are of the form:

x1 = αx+ βy + a
y1 = γx+ δy + b,

∣

∣

∣

∣

α β
γ δ

∣

∣

∣

∣

6= 0 . (42)

The speed of accumulating affine arc is computed as follows17:

σ̇a =

√

√

√

√

√

3σ̇3
ea ·

∣

∣

∣

∣

ẋ d4x/dt4

ẏ d4y/dt4

∣

∣

∣

∣

+ 12σ̇3
ea ·
∣

∣

∣

∣

ẍ
...
x

ÿ
...
y

∣

∣

∣

∣

− 5

∣

∣

∣

∣

ẋ
...
x

ẏ
...
y

∣

∣

∣

∣

2

9σ̇6
ea

= σ̇ea
√
κea ,

(43)
where σ̇ea is equi-affine velocity (30) and κea is equi-affine curvature (33). Sys-
tem (19) in plane becomes















x′x(2n) + y′y(2n) = 0

3(x′y′′ − x′′y′) ·
∣

∣

∣

∣

x′ x(4)

y′ y(4)

∣

∣

∣

∣

+ 12(x′y′′ − x′′y′) ·
∣

∣

∣

∣

x′′ x′′′

y′′ y′′′

∣

∣

∣

∣

− 5

∣

∣

∣

∣

x′ x′′′

y′ y′′′

∣

∣

∣

∣

2

9(x′y′′ − x′′y′)2
= 1 .

(44)
Here concrete curves are considered as candidate solutions, some of them are
filtered out for the prescribed affine parametrization (Approach 2). The lower
equation is automatically satisfied when a curve is parameterized with desired
geometric measurement or when substitution (20) is used for such measurement.
The results for candidate solutions (parabola, circle, logarithmic spiral) are as
follows:

1. Parabolas’ affine arc is zero, same as equ-affine arc of the straight line
is zero or Euclidian length of a point is zero. Therefore testing whether
parabolas are solutions of the system (44) is meaningless. Affine curvature
[86]

κa = κ−3/2
ea · dκea/dσea (45)

of a parabola is not defined.

Non-ambiguity in sequences of affine transformations for piece-

wise parabolic representation of “drawing” patterns. Equi-affine
curvature (33) is zero for parabolas, positive constant for ellipses including
circles, and negative constant for hyperbolas [86]. The main theorem of the
equi-affine theory of plane curves states that “the natural equation κea =
f(σea) defines a plane curve up to an arbitrary equi-affine transformation”
[86]. Therefore given two arbitrary parabolic segments having the same

17The formula for the speed of accumulating affine arc parameterized with an arbitrary
parameter t (the middle formula in (43)) in [86] contains misprint and therefore it is different
from (43). The rightmost formula in (43) can be found in [86].
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equi-affine arc and noting that their equi-affine curvatures are identical,
one segment can be transformed into the other by applying a unique equi-
affine transformation [70, 74].

Consequently, given two arbitrary parabolic segments with prescribed ini-
tial and final points, there exists a unique affine transformation (42) map-
ping one segment to the other18 in such a way that initial and final points
are matched. However when direction of drawing is not prescribed there
exist two affine transformations (42) mapping one parabolic segment to
the other. The determinants of the linear part of the two transformations
have opposite signs and the same absolute value, say |w|.
Specifically, say parabolic segment P1 connects pointA1 toB1 and parabolic
segment P2, belonging to the same plane, connects point A2 to B2, as de-
picted in Figure 2. There exists unique affine transformation mapping
P1 into P2 in such a way that A1 is mapped into A2 (correspondingly
B1 into B2). There also exists unique affine transformation mapping P1

into P2 and A1 into B2 (correspondingly B1 into A2). Note also that

|w| = |σea,2/σea,1|3/2, σea,i is equi-affine arc (32) of the ith segment. This
property of existence and uniqueness of affine transformation relating two
oriented parabolic segments follows from the main theorem of the equi-
affine theory of plane curves mentioned above and possibility to represent
any affine transformation with unique superposition of uniform scaling
(either with or without reflection) and equi-affine transformation:

Taffine = Tequi-affine ◦ Tscaling . (46)

Uniform scaling without reflection is defined as 2x2 identity matrix mul-
tiplied by the scaling coefficient:

Tno reflection
scaling = |w| ·

(

1 0
0 1

)

. (47)

Uniform scaling with reflection is defined as reflection transformation mul-
tiplied by the scaling coefficient:

Twith reflection
scaling = |w| ·

(

1 0
0 −1

)

. (48)

Parabolic segments connected into a sequence always have well identified
initial and final points. Sequences of parabolic-like components revealed
in monkey drawing movements [70, 74, 72] were usually implemented with
unchanged direction of motion. Therefore piece-wise parabolic representa-
tion of complex patterns with sequences of affine transformations applied
to a single (arbitrary!) parabolic template is unambiguous.

18Already without requirement for equality of their equi-affine arcs as in case of equi-affine
transformation.
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Decomposition of affine transformation (46) into sequence of two transfor-
mations, one of them scaling, may also take place in processing of spatial
information in the brain. In particular, study [84] demonstrated that a
pair of mental transformations, size scaling and rotation, produced ad-
ditive effects on reaction time, consistent with serial processing of these
transformations. Rotations constitute a subgroup of Euclidian transfor-
mations that in turn form a subgroup of equi-affine transformations.

2. Circle. Noting that affine arc is integrated square root of equi-affine
curvature (33) (σa =

∫ √
κeadσea [86]) and that equi-affine curvature of

a circle is positive constant one immediately obtains for a circle: σea =

κ
−1/2
ea σa. Substituting into (40) one gets:

x = x0 + κ
−3/4
ea · cos(σa)

y = y0 + κ
−3/4
ea · sin(σa)

(49)

which is solution of the system (44). Circles constitute non-invariant solu-
tions under arbitrary affine transformation for arbitrary n ≥ 1. The class
of circles is invariant under similarity transformations (63) and scalings
with reflection (48).

3. Logarithmic spiral. The speed of accumulating affine arc of the loga-
rithmic spiral (41) with respect to changing polar angle ϕ is the following
constant [8]:

dσa/dϕ =

√

9 + β2

3
.

So setting ϕ(0) = 0,

ϕ(σa) =
3

√

9 + β2
σa .

The expression for the logarithmic spiral (41) becomes

x(σa) = x0 + const · exp
(

β 3√
9+β2

σa

)

cos

(

3√
9+β2

σa

)

y(σa) = y0 + const · exp
(

β 3√
9+β2

σa

)

sin

(

3√
9+β2

σa

)

.

(50)

The values of β for which logarithmic spiral satisfies the system (44) de-
pend on the degree of smoothness n as follows.

(a) n = 1: no solutions.

(b) n = 2: β = ±
√
3 or β ≈ ±1.73205.

(c) n = 3: β = ±
√

5± 2
√
5 (see also [8, 55]) or β ≈ ±0.726543, ±3.07768.

(d) n = 4: β6−21β4+35β2 = 7 implying19 β ≈ ±0.481575, ±1.25396, ±4.38129.

(e) n = 5: β6−33β4+27β2 = 3 implying β ≈ ±0.36397, ±0.8391, ±5.67128.

19 Of course, exact solutions with roots can be written for this cubic equation.
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Figure 2: Two oriented parabolas. Parabolic segment P1 connects point A1 to
B1 and is ”drawn” counter-clock-wise. Parabolic segment P2 connects point A2 to
B2 and is also ”drawn” counter-clock-wise. Affine transformation (42) that maps P1

to P2 and preserves the counter-clock-wise orientation has positive determinant of its
linear part and transfers point A1 into point A2, correspondingly B1 into B2. There
also exists a unique affine transformation that maps P1 into P2 while transferring
A1 into B2, correspondingly B2 into A1. The determinant of the linear part of such
transformation is negative, orientation of ”drawing” flips from counter-clock-wise (A2

towards B2) into clock-wise (B2 towards A2).
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Center-affine group

Center-affine transformations of coordinates involve 4 independent parameters
and are of the form:

x1 = αx+ βy
y1 = γx+ δy ,

∣

∣

∣

∣

α β
γ δ

∣

∣

∣

∣

6= 0 . (51)

The speed of accumulating center-affine arc is computed as follows [86]:

σ̇ca =

√

√

√

√

√

ǫ
σ̇3
ea

∣

∣

∣

∣

x ẋ
y ẏ

∣

∣

∣

∣

, (52)

with ǫ = sign [(x′y′′ − y′x′′) · (xy′ − yx′)]. System (19) in plane becomes















x′x(2n) + y′y(2n) = 0

(

x′y′′ − x′′y′

xy′ − x′y

)2

= 1 .

(53)

Here concrete curves are considered as candidate solutions, some of them are
filtered out for the prescribed center-affine parametrization (Approach 2). The
lower equation is automatically satisfied when a curve is parameterized with
desired geometric measurement or when substitution (20) is used for such mea-
surement. The results for candidate solutions (parabola, circle, logarithmic
spiral) are as follows:

1. Parabola. As mentioned above, drawing parabola with constant equi-
affine velocity does minimize the cost functional for n ≥ 2. Drawing
parabola with constant equi-affine velocity results in non-constant denom-
inator in the expression of center-affine speed (52)20. Therefore expression
(52) implies that the center-affine speed of the optimal trajectory along
parabola is not constant and so the upper equation of the system (53) is
not satisfied.

2. Circle. Using parametrization of a circle with equi-affine arc as in (40),
equation (52) implies that for a circle whose center coincides with the
origin the center-affine speed is related to the equi-affine velocity as follows:

σ̇ca = κea
1/8 · σ̇ea .

Equi-affine curvature of a circle is positive constant. Therefore drawing
a circle with constant center-affine speed is equivalent to drawing a circle
with constant equi-affine velocity. So system (53) is satisfied for any circle
centered at the origin and for any n ≥ 1 as circles satisfy the upper
equation for the equi-affine parametrization.

20Take σea(t) = t and substitute vector function describing a parabola, x = σea, y = σea
2/2

into the denominator of (52).
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3. Logarithmic spiral. Direct computation based on (52) implies that the
speed of accumulating center-affine arc with respect to changing polar
angle ϕ from (41) is the following constant

dσca/dϕ =
√

1 + β2 .

Assuming the curve is centered at the origin (for every point on the curve,
the angle between tangent to the curve at that point and the vector con-
necting the point to the origin is the same) and ϕ(0) = 0,

ϕ(σca) =

√

1

1 + β2
σca .

The expression for the logarithmic spiral (41) becomes

x(σca) = const · exp
(

β
√

1
1+β2σca

)

cos
(√

1
1+β2σca

)

y(σca) = const · exp
(

β
√

1
1+β2σca

)

sin
(√

1
1+β2σca

)

.
(54)

Logarithmic spiral satisfies the system (53) while corresponding values of
β depend on the degree of smoothness. The dependence is the same as in
the case of affine arc!

Equi-center-affine group

Planar equi-center-affine transformations of coordinates involve 3 independent
parameters and are of the form:

x1 = αx+ βy
y1 = γx+ δy ,

∣

∣

∣

∣

α β
γ δ

∣

∣

∣

∣

= 1 . (55)

The speed of accumulating equi-center-affine arc is computed as follows [86]:

σ̇eca =

∣

∣

∣

∣

x ẋ
y ẏ

∣

∣

∣

∣

. (56)

System (19) in plane becomes







x′x(2n) + y′y(2n) = 0

xy′ − x′y = 1 .
(57)

Here concrete curves are considered as candidate solutions, some of them are
filtered out for the prescribed equi-center-affine parametrization (Approach 2).
The lower equation is automatically satisfied when a curve is parameterized
with desired geometric measurement or when substitution (20) is used for such
measurement. The results for candidate solutions (parabola, circle, logarithmic
spiral) are as follows:
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1. Parabola. Note that the square root of the equi-center-affine speed is
exactly the denominator in expression (52) for the center-affine speed and
is non-constant when the equi-affine speed is constant. Therefore opti-
mal drawing of parabola has non-constant equi-center-affine speed, more
detailed explanation is provided in case of the center-affine arc.

2. Circle. Again, note that the square root of the equi-center-affine speed is
equal to denominator of the center-affine speed (52) while the numerator
is a function of the equi-affine speed. Given that both the equi-affine and
center-affine speeds are constant for optimal drawing of a circle centered
at the origin, conclude that the equi-center-affine speed is also constant
for this motion.

3. Logarithmic spiral. Direct computation based on (56) implies that the
speed of accumulating equi-center-affine arc with respect to changing polar
angle ϕ from (41) is the following constant

dσeca/dϕ = const · exp (2βϕ) .

Assuming the curve is centered at the origin as explained in the part
related to the center-affine arc and ϕ(0) = 0,

ϕ(σeca) =
1

2β
ln

(

2 β σeac

const
+ 1

)

. (58)

The expression for x and y coordinates of the logarithmic spiral can be
obtained by substituting (58) into (41) and setting x0 = y0 = 0.

The values of β for which logarithmic spiral parameterized with equi-
center-affine arc satisfies the upper equation of system (57) depend on the
degree of smoothness n as follows.

(a) n = 1: no solutions.

(b) n = 2: β = ±
√
0.6.

(c) n = 3: β = ±
√

1

189

(

95− 4
√
505
)

≈ ±0.164448.

(d) n = 4: 19305β6 − 25333β4 + 1435β2 − 7 implying21

β ≈ ±0.0734067, ±1.11945, ±0.231726.

(e) n = 5: 1276275β8− 1992932β6+169442β43− 1988β2+3 = 0 imply-
ing22 β ≈ ±0.0420802, ±0.109069, ±0.275325, ±1.21328.

Euclidian group

Euclidian transformations of coordinates are 3-parametric, they are of the form:

x1 = x cos θ − y sin θ + a
y1 = x sin θ + y cos θ + b ,

(59)

21Expressions with roots can be written for solutions of this cubic equation.
22Expressions with roots can be written for solutions of this quartic equation.
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The speed of accumulating Euclidian arc which is a standard notion of tangential
speed whose integral is equal to the length of the drawn trajectory is computed
as follows:

σ̇eu =
√

ẋ2 + ẏ2 . (60)

System (19) in plane becomes











x′x(2n) + y′y(2n) = 0

√

x′2 + y′2 = 1 .

(61)

Here concrete curves are considered as candidate solutions, some of them are fil-
tered out for the prescribed Euclidian parametrization (Approach 2). The lower
equation is automatically satisfied when a curve is parameterized with desired
geometric measurement or when substitution (20) is used for such measurement.
The results for candidate solutions (parabola, circle, logarithmic spiral) are as
follows:

1. Parabola. Drawing parabola with constant equi-affine velocity does min-
imize the jerk and has non-constant Euclidian speed. Therefore the upper
equation of the system (61) is not satisfied for parabolas parameterized
with Euclidian arc.

2. Circle. Motion with constant Euclidian speed along a circle is equivalent
to motion with constant angular speed, therefore it is also equivalent to
motion with constant equi-affine velocity. So the system (61) is satisfied
for circles.

3. Logarithmic spiral. Direct computation based on (41) and (60) im-
plies that the speed of accumulating Euclidian arc-length with respect to
changing polar angle ϕ is the following expression

dσeu/dϕ = const ·
√

1 + β2 · eβϕ .

After setting ϕ(0) = 0,

ϕ(σeu) = ln

(

β

const ·
√

1 + β2
σeu + 1

)

/β .

The expression for the logarithmic spiral (41), up to Euclidian transfor-
mations, becomes

x(σeu) =

(

β√
1+β2

σeu + const

)

cos

[

ln

(

β

const
√

1+β2
σeu + 1

)

/β

]

y(σeu) =

(

β√
1+β2

σeu + const

)

sin

[

ln

(

β

const
√

1+β2
σeu + 1

)

/β

]

.

(62)
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Logarithmic spiral satisfies the system (61) when the value of β is chosen
appropriately for each value of the degree of smoothness n. For n ≤ 5 the
values of β are as follows.

(a) n = 1: β is arbitrary. However the case of n = 1 does not actually
correspond to a practical optimization problem because the corre-
sponding cost function obtains the same values for any rule σ(t),
either having constant derivative or not.

(b) n = 2: no solutions.

(c) n = 3: β = ± 1√
5
(see also [8, 55]) or β ≈ ±0.447214.

(d) n = 4: 84β4 − 35β2 + 1 = 0 implying β = ±
√

35±
√
889

168 or β ≈
±0.17566, ±0.621136.

(e) n = 5: 3044β6−1869β4+126β2−1 = 0 implying β ≈ ±0.095726, ±0.258088, ±0.733636.

These values of β are different from the values of β in cases of equi-affine,
affine or equi-center-affine arcs.

Similarity group

Similarity transformations of coordinates involve 4 independent parameters and
are of the form:

x1 = ρ (x cos θ + y sin θ) + a
y1 = ρ (−x sin θ + y cos θ) + b ,

(63)

The similarity group consists of combined parallel translations and rotations
(both forming Euclidian group), and uniform scaling defined by the parameter
ρ, without reflection. The speed of accumulating the arc in the similarity group
is computed as follows [86]:

σ̇si =
σ̇3
ea

σ̇2
eu

. (64)

System (19) in plane becomes















x′x(2n) + y′y(2n) = 0

x′y′′ − x′′y′

x′2 + y′2
= 1 .

(65)

Here concrete curves are considered as candidate solutions, some of them are fil-
tered out for the prescribed similarity parametrization (Approach 2). The lower
equation is automatically satisfied when a curve is parameterized with desired
geometric measurement or when substitution (20) is used for such measurement.
The results for candidate solutions (parabola, circle, logarithmic spiral) are as
follows:
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1. Parabola. Equation (64) implies that coordinates of a parabola param-
eterized with the similarity arc, up to a similarity transformation, are:

x(σsi) = const · tan (σsi)
y(σsi) =

const
2 tan2 (σsi) .

As in the case of Euclidian arc, noting that maximally smooth drawing
of parabola has constant equi-affine velocity and at the same time non-
constant rate of accumulating Euclidian and similarity arcs, conclude that
parabolas parameterized with similarity arc do not satisfy the upper equa-
tion of the system (65).

2. Circle. Drawing a circle with constant equi-affine velocity is equivalent to
drawing the circle with constant Euclidian speed. Therefore formula (64)
implies for circles that constancy of the similarity speed is also equivalent
to the constancy of the equi-affine velocity. So system (65) is satisfied for
any circle as circles satisfy the corresponding system of equations for the
equi-affine parametrization.

3. Logarithmic spiral. Direct computation based on (64) implies that the
speed of accumulating similarity arc with respect to changing polar angle
ϕ from (41) is equal to 1:

dσsi/dϕ = 1 .

Setting ϕ(0) = 0, obtain
ϕ = σsi .

For n ≤ 5 logarithmic spiral satisfies the system (65) for the same values
of β(n) as in the case of affine and center-affine groups!

Parametrization with polar angle

Sufficiently short segments of any smooth curve with non-zero curvature can
be appropriately translated and rotated so that they can be further parame-
terized with polar angle, for example part of a circle translated so that circle’s
center coincides with the origin. Plane curve parameterized with polar angle is
represented in polar coordinates (ρ, θ), ρ ≥ 0 as follows:

x(θ) = ρ(θ) cos(θ)
y(θ) = ρ(θ) sin(θ) .

Note that for an arbitrary parametrization θ(t)

θ̇ =
ẋy − ẏx

x2 + y2
.

So, for parametrization with polar angle the system (19) in plane becomes














x′x(2n) + y′y(2n) = 0

x′y − y′x

x2 + y2
=

σeca

x2 + y2
= 1 .

(66)
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Here concrete curves are considered as candidate solutions, some of them are
filtered out for the prescribed parametrization with polar angle (Approach 2).
The lower equation is automatically satisfied when a curve is parameterized
with desired geometric measurement or when substitution (20) is used for such
measurement.

Parabolas are not solutions of the system (66) while circles are and logarith-
mic spirals (translated to be centered at the origin23) are for the same values of
β as in case of affine arc.

I call ”cosh spiral”, ”sinh spiral” the following curves

x(σ) = cos(σ) cosh(βσ)
y(σ) = sin(σ) cosh(βσ) ,

(67)

x(σ) = cos(σ) sinh(βσ)
y(σ) = sin(σ) sinh(βσ) .

(68)

The coordinates of both curves are equal to the sum/difference of coordinates
of two logarithmic spirals with values of β having opposite signs24. Neither
of the two curves satisfies the upper equation in the systems (18), (19) when
parameterized by any of six above-mentioned arcs (equi-affine, affine, center-
affine, equi-center-afine, Euclidian, similarity). Nevertheless both curves satisfy
system (66) for parametrization with polar angle when values β(n) for n ≤
5 are the same as in case of logarithmic spiral parameterized with affine arc
(the values of β(n) can be found earlier in text). Note also that the curves in
equations (67), (68) have been translated so that the logarithmic spirals whose
coordinates are summed/subtracted are centered at the origin. The curves in
(67), (68) are invariant solutions of (66) under rotations and reflections. The
”cosh” and ”sinh” spirals and logarithmic spiral, all three with the same value

of β =
√

5− 2
√
5 are depicted in Figure3.

Pseudo solutions

I call pseudo-solution a vector function that satisfies the upper equation of
the systems (18), (19) but does not satisfy the lower equation of the system.
In other words parametrization of the curve provided by the vector function
is not consistent with desired geometric parameter. Example 3 demonstrates
that vector function (26) parameterizes parabola with equi-affine arc and is
solution of the system (19) while considering the same vector function being
parameterized with Euclidian arc results in pseudo solution.

Summary for known planar solutions

The results for candidate planar solutions considered above are summarized in
Table 2. In particular, Table 2 shows that parabolas constitute affinely invariant

23For every point on a circle or logarithmic spiral, the angle between tangent to the curve
at that point and the vector connecting the point to the origin is the same.

24cosh(βσ) = 1
2

(

eβσ + e−βσ
)

, sinh(βσ) = 1
2

(

eβσ − e−βσ
)

.
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ρ(θ) = cosh(β θ)
ρ(θ) = sinh(β θ)

ρ(θ) = eβ θ

Figure 3: Three spirals. ”cosh spiral” (67) (solid), ”sinh spiral” (68) (dots) and

logarithmic spiral (41) (dashed), all three have β =
√

5− 2
√
5 that makes the curves

solutions of the upper equation for parameterizations with polar angle (cosh and sinh
spirals) and affine/center-affine/similarity arcs/polar angle (logarithmic spiral). Draw-
ing is implemented counter-clock-wise, 0 ≤ θ ≤ 4. The spirals in the plot are identified
with their equations in polar coordinates.
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solutions of the equations (18) and (19) for all degrees of smoothness above 1
in equi-affine geometry and are not solutions for any n in any other geometry
considered. Circles are solutions in all geometries for any degree of smoothness
and possess invariance under composition of Euclidian transformations (59) and
scaling (47) including reflection (48). Logarithmic spirals were analyzed for up to
5th degree of smoothness. For degrees of smoothness 2-5 the parameter β of the
logarithmic spiral (41) depends on the degree of smoothness and the geometry
in which the curve with such β constitutes solution of the equation. Circles and
logarithmic spirals are analyzed separately, however a circle can be considered
as a particular case of logarithmic spiral with β = 0. In case of center-affine
and equi-center-affine geometries the curves are not invariant under translation
and therefore should be translated appropriately before parameterizing with
corresponding arcs; so in these two geometries I consider circles and logarithmic
spirals centered at the origin and straight lines crossing the origin.

For a logarithmic spiral (41), in the geometries analyzed in this work, the
left hand side of the upper equation in the system (18) is equal to some function
of β (say f(β)) multiplied by a function depending exponentially on the polar
angle25. Therefore only logarithmic spirals with β nullifying f(β) are solutions
of (18), (19) implying that the constant in the right hand side of the upper
equation in (18)26 is zero for all solutions of (18) being logarithmic spirals in
the geometries considered.

25In other words, Left Hand Side = f(β) · exp(g(β) · ϕ).
26First integral of the upper equation in the system (19).
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Object Invariance for n Equi-affine Affine Center-affine Equi- Euclidian Polar
solutions arc arc (circle and log spiral center- arc angle
of (19) are centered affine

at the origin) arc
& similarity arcs

Parabola Affine ≥ 2 Any Not relevant None None None None
(zero arc)

Straight Affine ≥ 1 Not relevant Not relevant Not relevant Not Any Not
line (zero arc) (arc not defined) (arc zero or relevant relevant

not defined) (zero) (zero)

Circle Uniform scaling ≥ 1 Any Any Any Any Any Any
and Euclidian

Logarithmic 2 None β ≈ ±1.732 β = ±
√
0.6, None

spiral (41) 3 β ≈ ±1.134 β ≈ ±0.727, β ≈ ±0.164 β ≈ ±0.447
Uniform scaling β ≈ ±3.078 Same Same
and Euclidian 4 β ≈ ±0.330, β ≈ ±0.482, β ≈ ±0.073, β ≈ ±0.176,

β ≈ ±1.580 β ≈ ±1.254, as β ≈ ±1.119, β ≈ ±0.621 as
β ≈ ±4.381 β ≈ ±0.232

5 β ≈ ±0.167, β ≈ ±0.364, affine β ≈ ±0.042, β ≈ ±0.096, affine
β ≈ ±0.480, β ≈ ±0.839, β ≈ ±0.109, β ≈ ±0.258,
β ≈ ±1.878, β ≈ ±5.671 β ≈ ±0.275, β ≈ ±0.734

β ≈ ±1.213

“cosh spiral” Uniform scaling None None None None Same as
(67) affine
“sinh spiral” and Euclidian for log.
(68) spiral

Table 2: Known solutions and their invariance for different degrees of smoothness. Known solutions of the systems (18) and
(19) in plane for different orders of trajectory smoothness n and geometric parameterizations invariant in affine group and four of its
subgroups. Invariance of the class of curves and value of the parameter β of the logarithmic spiral are indicated. Curves parameterized
with center-affine and equi-center-affine arcs and with polar angle are considered centered at the origin by parallel translation: straight
lines cross the origin, tangents to logarithmic spirals and circles have constant angle with the vectors connecting corresponding points on
the curves to the origin.
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Solutions in space for spatial curves parametered with 3D

equi-affine arc

Equi-affine transformations of coordinates in space involve 11 independent pa-
rameters and are of the form:

x1 = α1 1x+ α1 2y + α1 3z + a
y1 = α2 1x+ α2 2y + α2 3z + b
z1 = α3 1x+ α3 2y + α3 3z + c,

∣

∣

∣

∣

∣

∣

α1 1 α1 1 α1 3

α2 1 α2 1 α2 3

α3 1 α3 1 α3 3

∣

∣

∣

∣

∣

∣

= 1 . (69)

The speed of accumulating spatial equi-affine arc is computed as follows [86]:

σ̇ea3 =

∣

∣

∣

∣

∣

∣

ẋ ẍ
...
x

ẏ ÿ
...
y

ż z̈
...
z

∣

∣

∣

∣

∣

∣

1/6

(70)

and is called spatial equi-affine velocity. It has been proposed that 3-dimensional
movements conserve spatial equi-affine velocity and the conservation phenomenon
was called the “1/6 power-law” [67, 53]. The system (19) becomes























x′x(2n) + y′y(2n) + z′z(2n) = 0

∣

∣

∣

∣

∣

∣

x′ x′′ x′′′

y′ y′′ y′′′

z′ z′′ z′′′

∣

∣

∣

∣

∣

∣

= 1 .
(71)

A list of all spatial curves, up to spatial equi-affine transformations, with con-
stant spatial equi-affine curvature and torsion27 is provided in [86]. Considering
these curves as candidate solutions, some of them got filtered out for the pre-
scribed parametrization (Approach 2). The lower equation is automatically
satisfied when a curve is parameterized with desired geometric measurement or
when substitution (20) is used for such measurement. Only the following two
curves from the list are solutions of the system (71).

1. Parabolic screw line [70, 74] can be parameterized with spatial equi-
affine arc

σea3 =

∫ t

0

σ̇ea3(τ)dτ . (72)

up to a spatial equi-affine transformation, as follows:

x = σea3

y = σea3
2/2

z = σea3
3/6 .

(73)

27Formula for the spatial equi-affine curvature[86]: χ(σea3) =

∣

∣

∣

∣

∣

∣

x′ x′′′ x(4)

y′ y′′′ y(4)

z′ z′′′ z(4)

∣

∣

∣

∣

∣

∣

. For-

mula for the equi-affine torsion[86]: τ(σea3) = −

∣

∣

∣

∣

∣

∣

x′′ x′′′ x(4)

y′′ y′′′ y(4)

z′′ z′′′ z(4)

∣

∣

∣

∣

∣

∣

. The differentiation is

implemented with respect to the spatial equi-affine arc.
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Parabolic screw line is invariant solution under arbitrary spatial equi-affine
transformations when n ≥ 2. The class of parabolic screw lines is invariant
under arbitrary spatial affine transformations.

2. Elliptic screw line can be parameterized with spatial equi-affine arc up
to a spatial equi-affine transformation as follows:

x = const · cos
(

const−1/3σea3

)

y = const · sin
(

const−1/3σea3

)

z = const−1/3σea3 .

(74)

Spatial Euclidian transformations composed with scaling and reflection
transformations applied to elliptic screw lines result in solutions of the
system (71) as well for n ≥ 1. However the cost functional with n = 1
obtains the same values for any rule σ(t). Therefore the case of n = 1 is
not interesting. Arbitrary equi-affine transformations of the elliptic screw
line of the form (74) will not necessarily be solutions of the system (71).

Both parabolic and elliptic screws have constant spatial equi-affine curvature
(zero for the parabolic screw) and zero equi-affine torsion [86]. Their Euclidian
curvature and torsion are not zero. Elliptic screw has constant Euclidian cur-
vature and torsion. Study [8] used another method to show that trajectories
along the curves with constant Euclidian curvature and torsion simultaneously
satisfy the constrained minimum-jerk model and the 1/6 power-law.

Parabolic screw line parameterized with Euclidian arc is not solution of the
3-dimensional versions of the upper equations in the systems (18), (19) while
elliptic screw is.

Case of arbitrary parametrization, dimension and order of

smoothness

Equation (24) can be used to easily identify some curves being solutions for
parameterizations whose properties are not prescribed in advance.

1. Curves rL(σ) = (r1(σ), . . . , rL(σ)) in L dimensional space whose coor-
dinates are polynomials of order ≤ 2n − 1 of an arbitrary parameter σ
obviously satisfy equation (24) as their 2n-th order derivatives with re-
spect to σ are all zero:

ri(σ) =

2n−1
∑

k=0

ai,kσ
k, i = 1, . . . , L . (75)

Such solutions are invariant under arbitrary linear transformations and
translations in L dimensional space, including affine transformations. Parabo-
las constitute a particular case of (75) for L = 2 and curve’s coordinates
being particular 2-nd order polynomials with respect to σea.

35



2. In spaces of dimensions L ≥ 2 take any two coordinates to be described as
coordinates x and y of (a) logarithmic spiral (41) or of (b) ”cosh spiral”
(67), or of (c) ”sinh spiral” (68). Whenever L ≥ 3 describe the rest L− 2
coordinates with arbitrary polynomials of order ≤ 2n− 1. Obviously, left
hand side of the equation (24) will be the same as the left hand side of the
planar version of the equation for the curves (a)-(c) because 2nth order
derivatives of the polynomials vanish. Therefore the curves of the form
(a) - (c) will satisfy equation (24) with the same values β(n) as in case
of parametrization with polar angle in plane presented earlier in text. So,
without limitation of generality

r1(σ) = x(σ) ,
r2(σ) = y(σ) ,

ri(σ) =
∑2n−1

k=0 ai−2,kσ
k, i = 3, . . . , L ,

(76)

with x(σ), y(σ) being coordinates of the above-mentioned curves (a) - (c).
Geometric parametrization of the curves (a) - (c) induced by σ is invariant
(still parameterizes solutions) when a curve undergoes Euclidian transfor-
mation and uniform scaling (including reflections) in L dimensional space
because such transformations preserve orthogonality.

Discussion

This work considers the problem of finding paths whose maximally smooth tra-
jectories accumulate geometric measurement along the path with constant rate.
The order of smoothness is arbitrary. Class of differential equations obeyed by
such paths is derived. System of two differential equations corresponds to each
order of smoothness n. Systems of special interest and their known solutions
are presented. Detailed exposition with clarifying examples is provided for the
rationale of the research question, derivation of the equations and their appli-
cations for different orders of smoothness, in different geometries (equi-affine
and 5 other geometries) and dimensions. Derived class of equations constitutes
generalization of earlier works on one hand and a tool for further developments
in the field of motor control on the other hand, eg. finding more solutions and
thus revealing new candidates for primitive shapes.

Earlier works proposed several curves for whom presumably the predictions
of the constrained minimum-jerk model (n = 3) have constant rate of accumu-
lating equi-affine velocity [69, 73, 70, 8, 74], or planar Euclidian or affine velocity
[8], see also [55]. Logarithmic spirals with such properties were proposed by Ido
Bright[8]. Equations with values of n different from 3 and solutions of the sys-
tem of equations in arbitrary dimensional space L is the main novelty of this
work. Classes of curves described by formulas (75), (76) and their particular
cases (67), (68) in plane have been proposed in the framework of invariance-
smoothness criteria for movement trajectories for the first time.
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Empirical rationale

This work presents mathematical result of a largely predictive study. Neverthe-
less the incentive of deriving the equations for degrees of smoothness above 3 is
based on several pieces of already existing empirical evidence related to impor-
tance of geometric invariance and kinematic smoothness in control of biological
movements. Empirical findings revealed that geometric properties of biological
movements dictate their speed, eg. the two-thirds power-law [50] which is equiv-
alent to piece-wise constancy of movement’s equi-affine velocity. Further studies
of the geometric aspects of biological movements supported the validity of the
two-thirds power-law and existence of the neural representation of the equi-affine
velocity during movements’ perception and performance [104, 51, 70, 15, 74].

During practice monkey scribbling movements became clustered into a small
number of relatively long parabolic-like movement elements; analysis of motor
cortical activity underlying monkey scribbling movements supported the hy-
pothesis about parabolic movement primitives being represented in motor cor-
tical activity synchronized to neural states [70, 74, 72]. Sosnik et. al. demon-
strated that over the course of practice sequences of nearly straight point-to-
point drawing movements by humans get coarticulated into smooth movements
that can be well approximated with minimum-jerk trajectories passing through
a single via-point [90]. Such trajectories are parabolic-like [70, 87, 74]. Therefore
convergence of non-smooth movements into smooth parabolic-like is natural for
monkeys and humans. Parabolas constitute an equi-affine solution of the derived
class of equations (that is for σ = σea) for an arbitrary degree of smoothness n
above 1 and not only for n = 3.

Equation (6) was applied earlier to the parametrization with planar and
spatial equi-affine arcs [70, 74]. Further work [5, 27] analyzed geometric in-
variance and suggested that biological movements may be represented not only
in either equi-affine or Euclidian geometries but simultaneously in multiple,
and including affine, geometries while geometric representation guides temporal
properties of movements. The predictions of the theory were tested on three
data sets: drawings of elliptical curves, locomotion and drawing of complex
figural forms. The authors claimed that their theory accounted well for the
kinematic and temporal features of the movements, in most cases overperform-
ing the constrained minimum jerk model. In addition, more recent findings
show neural representation of scale invariance [37] (relevant for the similarity
group (63)). An important empirical evidence showed connection between the
level of activation in different motor ares (M1, PMd, pre SMA) and the degree
of motion smoothness acquired during learning to coarticulate point-to-point
segments into complex smooth trajectories [89]. So there exists an empirical ev-
idence that 1) invariance in different geometries and 2) level of hand trajectory’s
smoothness are represented in neural activity. Those two empirical character-
istics of drawing-like movements and their mathematical properties motivated
extension of the equation (6) to arbitrary degree of smoothness and further
demonstration of the method in different geometries here, including geometries
defined by the similarity, center-affine and equi-center-affine groups. The two
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above-mentioned features being merged result in paths satisfying the derived
systems of equations. The methodology demonstrated in the manuscript may
be further applied for parameterizations not mentioned in this work.

Incorporation of movement primitives paradigm, type of geometric invari-
ance, and level of trajectory’s smoothness into methods for decoding neural
data may provide additional information useful for the algorithms employed for
brain-machine interfaces. Earlier works proposed neural network models for
composing complex movements from primitives [80, 36].

Earlier empirical studies demonstrated existence of spontaneously generated
hand trajectories with nearly straight28 [26] and parabolic-like [70, 74, 72] paths.
Empirical study of additional (to straight and parabolic segments) solutions of
the derived equations as candidate movement primitives may lead to better
understanding of movements’ neural representation and production. At the
moment I point to the following candidates: circles and logarithmic spirals
(2 dimensions) and parabolic and elliptic screws (3 dimensions). Circles are
actually a particular case of the logarithmic spiral (41) with β = 0.

A different study related to the research topic presented here reported that
logarithmic spirals are affine orbits (have constant affine curvature (45)29) and
investigated logarithmic spirals in the framework of the mixed-geometry ap-
proach [56, 55]. Work [55] focused on logarithmic spirals and other affine orbits
and showed for each spiral to which mixture of geometries it belongs with re-
spect to jerk minimization. An algorithm for representing movements based on
mixed geometry approach and jerk optimization was proposed [56].

Formula (45) can be integrated to show that equi-affine curvature κea of
any curve with constant affine curvature κa is the following function of curve’s
equi-affine arc: κea(σea) = 4/ (κaσea + const)

2
. Therefore equation (34) can be

integrated30 and used in form (37) of the system (31) to show that logarithmic
spirals found earlier for the equi-affine parametrization are the only solutions
with constant affine curvature.

Geometric invariance and smoothness of contours are also relevant for the
visual system. In this respect the primary visual cortex (V1) can be viewed
as the bundle of what are called 1-jets of curves in R [64]. The 1-st order jet
of a function f is characterized by three slots: the coordinate x, the value of
f at x, y = f(x), and the value of its derivative p = f ′(x). The latter is
the slope of the tangent to the graph of f at the point a = (x, f(x)) of R.
“Jets are feature detectors specialized in the detection of tangents. The fact

28The end-points of the trajectories were prescribed but not trajectories’ form.
29So indeed, for logarithmic spiral (41) its affine curvature is equal to the following constant:

κa = 4β/
√

9 + β2.
30Following 2.14 of [46], (1) if κ2

a > 16, x′(σea) = C1x (κaσea + const)1/2+
√

1−(16/κa) +

C2x (κaσea + const)1/2−
√

1−(16/κa); (2) if κ2
a = 16, x′(σea) = C1x

√
κaσea + const +

C2x
√
κaσea + const · ln (κaσea + const); (3) if κ2

a < 16, x′(σea) =

C1x
√
κaσea + const · cos

(

0.5
√

16/κa − 1 · ln (κaσea + const)
)

+ C2x
√
κaσea + const ·

sin
(

0.5
√

16/κa − 1 · ln (κaσea + const)
)

. The same for the y coordinate. The 3rd case is

recognized as logarithmic spirals for certain choice of constants C.
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that V1 can be viewed as a jet space explains why V1 is functionally relevant
for contour integration. ... The Frobenius integrability condition ... is an
idealized mathematical version of the Gestalt principle of good continuation”
[64]. Smooth drawings possess nice integrability properties. Edge completion as
the interpolation of gaps between edge segments, which are extracted from an
image, can be performed by parabolas [34]. Smoothing may be applied by the
motor system at the transitions between neighboring superimposed movement
elements and thus the geometric levels of planning may precede the temporal
level (see also [96]).

Different levels of smoothness at different movement’s stages may be em-
ployed by the neural system even for well-practiced performance. In that case
solutions of the system (19) with different degrees of smoothness nmight be com-
bined together. Parabolic shapes satisfy equations (19) and constitute the class
of the only affine invariant solutions for the case of the minimum-acceleration
and minimum-jerk cost functionals [69, 70, 74]. Possibility of non-parabolic
equi-affine invariant solutions for higher degrees of smoothness has to be checked.
Nevertheless, existence of non-parabolic solutions points to non-parabolic candi-
dates for primitive shapes. Use of non-parabolic primitive shapes in production
of complex movements might be efficient, for example, for movement segments
which presumably are not represented solely in equi-affine geometry. Connec-
tion between the mechanisms of (1) action and (2) perception, and relevance of
geometric invariance and smoothness for both mechanisms were observed in ear-
lier studies. Therefore the proposed method of identifying geometric primitives
may be meaningful for both motor and visual systems.

Obviously, minimum-jerk cost, as a scalar product, is invariant under Eu-
clidian transformations. Left hand side of the upper equations in the systems
(18), (19) is composed of scalar products and therefore upper equations’ so-
lutions are invariant (remain solutions) under Euclidian transformations and
uniform scaling with and without reflection but not general transformations
that do not preserve orthogonality, e.g. arbitrary equi-center-affine transfor-
mation and transformations containing them (center-affine, equi-affine, affine).
Therefore invariance of solutions was indicated in earlier works [70, 74] and is in-
dicated here in Table 2. Minimum-jerk trajectories constrained with via-points
are not invariant under arbitrary equi-affine transformations (and correspond-
ingly affine) [69]. A recent follow up study [55] thoroughly analyzed geometric
invariance of the minimum-jerk trajectories with via-point.

Representation of movements in different geometries, com-

positionality, variability, and decision-making

Straight point-to-point trajectory is described in the framework of the minimum-
jerk model as 5th order polynomial of time [43, 26]:

r(t) = r0+A

[

10

(

t− t0
td

)3

− 15

(

t− t0
td

)4

+ 6

(

t− t0
td

)5
]

, t0 ≤ t ≤ t0+ td ,

(77)
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where td, t0 and A are movement’s duration, starting time, and the vector
connecting movement’s start (r0) and end points respectively. Trajectories de-
scribed by (77) have symmetric bell-shaped tangential velocity profile [26].

Minimum-jerk trajectories connecting two end-points and passing through a
via-point [26] are parabolic-like [70, 74, 87]. Such parabolic-like trajectories can
be approximated based on vectorial composition of 3 point-to-point (straight)
minimum-jerk movements, each having its own amplitude, duration, starting
time and direction31 [70, 72]. Composed triplets of point-to-point minimum-
jerk trajectories were found to fit well piece-wise parabolic monkey scribbling
movements [74]. Moreover, a (straight) point-to-point minimum-jerk trajectory
can be approximated with composition of 3 smaller and slower point-to-point
minimum-jerk trajectories with each of 3 having the same direction, amplitude
and duration [70, 72]. So piece-wise parabolic trajectory can be decomposed
in a hierarchical manner into short point-to-point minimum-jerk trajectories32,
the algorithm is described further in text.

Straight segments form primitive shapes in Euclidian geometry. For other
geometries considered in this work straight segments have either zero arc (equi-
affine, equi-center-affine33, similarity arcs) or their arc is not defined at all
(center-affine and affine arcs). Correspondingly parabolic segments are primi-
tive shapes in equi-affine geometry, in other geometries considered in this work
parabolic segments either have zero arc (affine arc) or do not satisfy equations
(18), (19). So construction of parabolic-like (equi-affine) primitives can be based
on sequential representation of Euclidian primitives getting coarticulated! Such
construction demonstrates a plausible realization of simultaneous representa-
tion of movements in different geometries. Representation of movements in
several geometries suggested by Bennequin et. al. [5, 27] as weighted mix-
ture of different geometric arcs and proposed as a basis for geometric rationale
of movement timing can also be viewed through the (coexisting) perspective of
coarticulation of primitives in one geometry into primitives in another geometry.
Indeed, analysis of monkey scribblings showed that jerky unordered movements
converged into organized piece-wise parabolic performance [69, 73, 70, 74, 72],
while sequences of point-to-point trajectories by humans got coarticulated into
sequences of smooth trajectories [90] that are parabolic-like [70, 87, 74].

Variability of well-practiced spontaneous monkey scribbling movements was
influenced by getting or not getting a reward [70, 72]. Tuning of primitives’
onset in different kinds of goal-directed movements (achieving a prescribed
movement goal or implementing spontaneous search for invisible target) may
be guided by decision-making and/or action selection based on ongoing feed-
back/reinforcement signals, e.g. receiving or not receiving a reward. Therefore

31This is similar to vectorial concatenation of two point-to-point movement elements into a
single trajectory (without rest point in the middle) in the double-step paradigm [23].

32Such decomposition is not just an exemplar case but this is a universal property for
parabolic segments because it is preserved under arbitrary affine transformations and affine
transformations can be used to map the piece of parabola approximating the path into an
arbitrary parabolic segment.

33Consider lines translated to cross the origin.
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greater variability of non-rewarded movements was interpreted as characterizing
monkey’s decision-making about concatenating concurrent, already preplanned,
piece-wise parabolic movement sequence with another primitive element of mon-
key’s scribbling repertoire. It was suggested that paradigms involving decision-
making might be advantageous in studies investigating movement construction
based on the compositionality of movement primitives [70, 72]. Below algorithm
describes how trajectories composed of (1) parabolas and (2) straight lines, both
classes are invariant under affine transformations, may be composed of identi-
cal elementary building blocks. Different syntactic rules of combining higher
level primitives (e.g. piece-wise parabolic sequences) may be developed during
practice.

Hierarchical construction of complex trajectories based on

primitives in Euclidian and equi-affine geometries

Assume that a rule of implementing a slow and short point-to-point minimum-
jerk movement of the end-effector could be built in, eg. in the nervous system
of humans or for a robotic arm. Let the peak speed of such rule of motion be
equal to vp. Proceed as follows34.

1. Segment the trajectory into approximately straight and curved portions.

2. Approximate curved portions of the trajectory path with parabolic seg-
ments. The less is their curvature at the “vertex” the “wider” is parabola,
while “width” is measured with parabola’s focal parameter.

3. Decompose each parabolic portion of the trajectory into three point-to-
point trajectories.

4. Decompose identified straight portions of the trajectory into short and
slow point-to-point trajectories: for each straight portion i compute peak
speed vp, i(A, td) given its Ai and td, i from (77); the number of lower hier-
archical levels for each portion will be approximately equal to ln(vp/vp, i)/ ln(0.55).
The slow and short rule of motion (assumed to be known) lies at the lowest
level of hierarchy of each decomposed straight movement segment.

Parabolic-like trajectories and relatively long straight movements form the
top of the hierarchical pyramid, each level below the top consists of shorter and
slower straight trajectories; the number of elements is 3 times the number of
elements at the level above. The peak speed of the point-to-point trajectories ≈
0.55 of the peak speed of the longer point-to-point trajectories one level above.
One may attempt to perturb the decomposition during a number of trials in
order to construct more accurate and optimal performance.

Given that a point-to-point trajectory (77) connects two states of rest by def-
inition one may allow certain parts of the longer straight movements to overlap,

34Parts of the method were reported and illustrated in [70, 72].
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eg. an original straight portion of the trajectory and a point-to-point trajec-
tory obtained during decomposition of the parabolic-like segment. By means of
such overlaps it is possible to avoid intermediate states of rest during the entire
piece-wise parabolic trajectory.

What happens when the motor control system is compro-

mised

View on motor output when the system is compromised may provide an ad-
ditional insight. Motor control studies of patients suffering from Parkinson’s
decease (PD) observed and quantified violations of known motor regularities
like the two-thirds power-law, isochrony, kinematic smoothness. Compliance
with the isochrony principle [106] was impaired for the PD patients versus the
control group in experiment involving point-to-point movement via an interme-
diate target [24]. The same study also reported that patients’ velocity profiles
demonstrated substantial abnormalities including lack of smoothness and mul-
tiple small peaks or plateaus in the velocity profile.

In the framework of geometric invariance the two-thirds power-law is equiv-
alent to constant rate of accumulating equi-affine arc thus implying movement
timing being proportional to accumulated equi-affine arc. Apparently, patients
with PD demonstrated impairments in how the two-thirds power-law charac-
terizes their perception of planar motion [16]. In particular, patients with PD
perceived on average movements closer but not equal to a constant Euclidian
velocity as more uniform than movements with constant equi-affine velocity, in
contrast to choices of control subjects [16]. In compliance with other studies
mentioned in [16] this result demonstrates central, eg. visuo-motor, and not
purely motor impairment of PD patients and supports again central (not purely
motor) role of geometric characteristics of biological motion. Supporting the
central role of geometric invariance, fMRI study of healthy humans demon-
strated that basal ganglia respond preferentially to visual motion with constant
rate of accumulating the equi-affine arc [15] while basal ganglia is also the main
location of disfunction in PD. In terms of the mixed-geometry approach by
Bennequin et. al. [5] one can hypothesize that dominance of the equi-affine
contribution to movement representation is replaced with more dominant con-
tribution of Euclidian measurement of trajectory’s arc in case of PD patients.

Task-incidental degrees of freedom values of PD patients (while off dopamin-
ergic medication) were abnormally variable during automated movements while
task-relevant components abnormally dominated patients’ intentional motions
[97]. Moreover, patients’ transition between voluntary and automated modes of
joint control was abrupt, and, unlike normal controls, the type of visual guid-
ance differentially affected their postural trajectories. These finding provided
support to the view that PD patients lack automated control that contributes
to impairments in voluntary control and that basal ganglia are critical for multi-
joint control [97]. A different study demonstrated that for PD patients attention
induced a shift from the automatic mode to the controlled pattern within the
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striatum35 while for the control subjects attention had no apparent effect on the
striatum when movement achieved the automatic stage [109]. Basal ganglia con-
tributes to decision making processes including decisions related to perception
and action (eg. see [6, 12, 18]).

Given a plausibly intimate relationship between movement variability and
decision-making in the framework of movement compositionality (no need for
decision-making during completing a preplanned well-practiced motor program
would reduce variability), to my view, non-typical variability patterns demon-
strate that PD may impair the decision-making process for choosing primitives
composing movements. Disfunction of this decision-making process may also
contribute to such PD disorders as lack of smoothness and irregularity of the
velocity profiles leading in turn to (at least partial) failure to exploit more
advantageous parsimonious representation provided by invariance of geometric
primitives36. Another cause to observed movement variability features of PD
patients could be disruption of their ability to coarticulate sequences of ele-
mentary submovements into complex and smooth task dependent primitives.
Apparently, study with the double-step paradigm reported that the PD pa-
tients have impaired abilities to process simultaneously the motor responses
to two visual stimuli which are presented in rapid succession [66]. I hypoth-
esize that during practice intact motor control system tends to achieve motor
performance based on smooth and stereotypical (often following coarticulation)
patterns characterized with convergence to low variability and low-dimensional
representation that manifests the principle of greater parsimony 37 [70].

Assessment of behaviors by means of measuring stochastic properties of
intra-trial variability based on special characteristic (micro-movements) was pro-
posed recently in the framework of autism spectrum disorders (ASD) and PD
studies [99, 98]. The method successfully characterized behaviors of subjects.
Apparently, ASD results, in part, from impaired basal ganglia function (eg. see
[1, 75]). Probably, mechanisms related to geometric invariance and decision
making could also be impaired to certain degree in case of ASD. Knowing the
differences between judgements of observed movement speed uniformity between
the PD patients (whose basal ganglia function is impaired) and control subjects
[16], it would be interesting to implement similar experiment with ASD patients
and to assess their location on the scale Euclidian – equi-affine uniformity versus
control and PD subjects. Another interesting approach could be to implement
setup of compositionality and movement primitives studies with ASD and PD
patients, for example setups from the studies of movement coarticulation [90]
and point of no return [70, 91], and to compare the performance of the 3 types
of subjects: PD, ASD and controls.

Impairment of decision-making mechanisms employed in motor control may
disrupt a plausible hierarchical procedure (described above) of constructing

35A component of the basal ganglia.
36In the framework of approach of this manuscript geometric primitives provide more par-

simonious representation for smooth movements
37The motor control system tends to achieve more parsimonious control strategies through

practice/learning
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smooth complex trajectories from geometric primitives. Such impairment may
also destroy higher level mechanisms of (1) binding primitives from different
geometries and (2) Bennequin’s time representation based on weighted mixture
of different geometric arcs. Lack of smoothness is a typical consequence of a
vast range of neurological disorders, for example stroke, ataxia, Huntington’s
disease, secondary parkinsonism. Probably, some of those disorders are charac-
terized with certain levels of disfunction in movement compositionality.

I am not aware about studies analyzing equi-affine and affine invariants of
movement trajectories produced by the patients with neurodegeneration (eg.
PD) or neurodevelopmental disorder (eg. ASD). Numerical computations of
such quantities [10] are highly sensitive to non-smoothness and irregularities
in trajectories’ data, require data regularization38 and therefore would be es-
pecially challenging for motor output produced by patients characterized by
non-smooth movements. Still, in the current work, geometric invariance of
movement primitives is associated with simultaneous ability to successfully coar-
ticulate basic movement elements into smooth movement blocks after practicing
novel motor task.

Afterword

To my view the following insight of a prominent mathematician of the 20-th cen-
tury Andrey Kolmogorov anticipated the idea of geometric movement primitives
[48]: “If we turn to the human activity – conscious, but not following the rules
of formal logic, i.e. intuitive or semi-intuitive activity, for example to motor
reactions, we will find out that high perfection and sharpness of the mechanism
of continuous motion is based on the movements of the continuous-geometric
type ... One can consider, however, that this is not a radical objection against
discrete mechanisms. Most likely the intuition of continuous curves in the brain
is realized based on the discrete mechanism”39.

The way of representing the “continuous curves in the brain” as coarticulated
geometric primitives might go beyond planning trajectory paths and may cor-
respond to perception processes and geometric imagination as well. Moreover,
I speculate that at certain hierarchical level of cognitive processes the “discrete
mechanisms” of complex movements and language intersect. Observations of
low-dimensional representation of monkey scribbling movements with parabolic
primitives and reward-related concatenation of parabolic segments into complex
trajectories [70, 72] support feasibility of this speculation.

A Derivation of the proposition

Here upper equation from the system (18) is derived for the curves belonging to
the classes Ãn,L and An, L. The derivation of the equations proofs Proposition

38In particular because of high order differentiation. Text S1 of [72] describes regularization
procedure used in equi-affine analysis of monkey scribbling movements.

39Translated from Russian by FP.
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1.

Derivation

Geometric parametrization σ of a curve is given. The rule σ(t) of accumulating
σ with time along the curve is strictly monotonous and differentiable as many
times as necessary. Noting that there is one-to-one continuous correspondence
between t and σ, for the function σ(t) ∈ [0, Σ] define an inverse function t =
τ(σ) ∈ [0, T ]. The following notation is used:

v ≡ v(σ) ≡ d

dt
σ(t)

∣

∣

∣

∣

t=τ(σ)

≡ σ̇(t)|t=τ(σ) .

Further the following property based on the chain rule is used for a differentiable
function f :

d

dt
f(σ(t)) =

dσ

dt
· d

dσ
f(σ) ≡ σ̇

d

dσ
f(σ) ≡ vf ′ , (A.1)

where prime denotes differentiation with respect to σ. So, for example, two
higher order derivatives of σ with respect to time will be:

w = w(σ) ≡ d2

dt2
σ(t)

∣

∣

∣

∣

t=τ(σ)

=
d

dt
[v(σ(t))]

∣

∣

∣

∣

t=τ(σ)

= v
d

dσ
v = v′v (A.2)

j = j(σ) =
d3

dt3
σ(t)

∣

∣

∣

∣

t=τ(σ)

= v
d

dσ
w = v′′v2 + v′

2
v .

Without limitation of generality further derivations will be implemented for
trajectories in 2 dimensions. Derivations for the trajectories in 3 or higher
dimensions are identical. So consider Jσ(rL, n) from (12) with L = 2 and use
(A.1) to implement change of variables:

Jσ(r2, n) =

T
∫

0

{

[

dnx(σ(t))

dtn

]2

+

[

dny(σ(t))

dtn

]2
}

dt = (A.3)

Σ
∫

0

1

v

{

[

dnx(σ(t))

dtn

]2

+

[

dny(σ(t))

dtn

]2
}∣

∣

∣

∣

∣

t=τ(σ)

dσ =

Σ
∫

0

1

v
In(x

′, x′′, . . . , x(n); y′, y′′, . . . , y(n); v, v′, . . . , v(n−1))dσ ,

where In denotes the expression parameterized with σ:

In ≡
[

dnx(σ(t))

dtn

]2

+

[

dny(σ(t))

dtn

]2
∣

∣

∣

∣

∣

t=τ(σ)

. (A.4)

For example:
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Example A.1. In case n = 3, one has:

Jσ(r2, 3) =

T
∫

0

(
...
x 2 +

...
y 2)dt =

Σ
∫

0

1

v

[

(x′′′2 + y′′′
2
)v6 +

9(x′′2 + y′′
2
)w2v2 + (x′2 + y′

2
)j2 + 6(x′′′x′′ + y′′′y′′)v4w +

2(x′′′x′ + y′′′y′)v3j + 6(x′′x′ + y′′y′)vwj
]

dσ =

Σ
∫

0

1

v
· I3(x′, x′′, x′′′; y′, y′′, y′′′; v, v′, v′′) dσ

with w, j from (A.2). ✷

I approach the optimization problems (13) and (14) with a standard method
from the calculus of variations, the Euler-Poisson (E-P) equation with Lagrange
multiplier (eg. [28]). The Lagrange multiplier (λ) is used to guarantee that the

speed of accumulating the arc is feasible:

∫ Σ

0

dσ

v
= T .

E-P(In/v) =
∂(In/v)

∂v
− d

dσ

(

(∂(In/v))

∂v′

)

+
d2

dσ2

(

∂(In/v)

∂v′′

)

− . . .(A.5)

+(−1)n−1 dn−1

dσn−1

(

∂(In/v)

∂v(n−1)

)

+ λ
∂

∂v

(

1

v

)

=

= v(2n−3)(. . .) + v(2n−4)(. . .) + . . .+ v′(. . .)

+v2n−2 (. . .) + λ
∂

∂v

(

1

v

)

= 0 . (A.6)

Expressions in brackets (2n−3), (2n−4), etc. from (A.6) denote differentiation
with respect to σ of corresponding order. All derivatives of v in the brackets
(. . .) in (A.6) have order lower than the order of derivative of v multiplying the
brackets. Note that the term v2n−2 in (A.6) represents the value of the speed
to the power of 2n− 2 and not the order of derivative. So the expression

v2n−2 (. . .) + λ
∂

∂v

(

1

v

)

is the only part of (A.6) which contains no derivatives of v. Let us denote
by µn the expression in the brackets multiplied by v2n−2, so the Euler-Poisson
equation (A.6) can be rewritten as follows:

E-P(I) = v(2n−3)(. . .) + v(2n−4)(. . .) + . . .+ v′(. . .) + v2n−2µn + λ
∂

∂v

(

1

v

)

= 0

(A.7)
Now as an
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Example A.2. Consider the case of minimum-jerk criterion, in other words
the 3rd order smoothness (n = 3). Using derivations identical to the ones in
[70, 74], the Euler-Poisson equation corresponding to (A.6) will be as follows:

v′′′ · (. . .) + v′′ · (. . .) + v′ · (. . .) +

+v4 · (x′′′2 + y′′′
2 − 2x′′x(4) − 2y′′y(4) + 2x′x(5) + 2y′y(5)) + λ

∂

∂v

(

1

v

)

= 0 .

Here
µ3 = x′′′2 + y′′′

2 − 2x′′x(4) − 2y′′y(4) + 2x′x(5) + 2y′y(5) . ✷

The desirable v for the optimal solution is constant, according to (15). There-
fore all derivatives of v are zero and the Euler-Poisson equation for the desired
v reduces to the following:

v2n−2µn − λ

v2
= 0 .

As stated above, v, λ are constant, therefore under the assumption v 6= 0 which
obviously takes place,

µn = const . (A.8)

Proposition A.1.

µn =
[

x(n)
]2

+
[

y(n)
]2

− 2
[

x(n−1)x(n+1) + y(n−1)y(n+1)
]

+ 2
[

x(n−2)x(n+2) + y(n−2)y(n+2)
]

+ . . .+ (−1)n−1 · 2
[

x′x(2n−1) + y′y(2n−1)
]

,

or more formally

µn =
[

x(n)
]2

+
[

y(n)
]2

+ 2

n−1
∑

i=1

(−1)i
(

x(n−i)x(n+i) + y(n−i)y(n+i)
)

, (A.9)

which is the 2-dimensional version of the upper equation in system (18).

Proof. In order to find the expression for µn implement the differentiation in the
Euler-Poisson equation (A.5). Apparently, the argument of the cost functional
from (A.3),

[

dnx(σ(t))

dtn

]2

+

[

dny(σ(t))

dtn

]2

can be split into the ′′x“ and ′′y“ parts and therefore the functional argument
In of the Euler-Poisson equation is splittable as well:

In = In, x + In, y =

{

[

dnx(σ(t))

dtn

]2

+

[

dny(σ(t))

dtn

]2
}∣

∣

∣

∣

∣

t=τ(σ)

. (A.10)
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The result of differentiation in the x part

In, x =

[

dnx(σ(t))

dtn

]2
∣

∣

∣

∣

∣

t=τ(σ)

(A.11)

is identical to the result of differentiation in the y part In, y =
[

dny(σ(t))
dtn

]2
∣

∣

∣

∣

t=τ(σ)

up to the name of the argument (x being replaced by y).
So without limitation of generality I implement the proof for the ′′x“ part

only and need to prove that

(E − P )
In, x
v

= (E − P )







1

v

[

dnx(σ(t))

dtn

]2
∣

∣

∣

∣

∣

t=τ(σ)







= (A.12)

= v2n−2

(

(

x(n)
)2

− 2x(n−1)x(n+1) + 2x(n−2)x(n+2) + . . .+ (−1)n−1 · 2x′x(2n−1)

)

+ v′(. . .) + v′′(. . .) + . . .+ v(n)(. . .) + λx
∂

∂v

(

1

v

)

.

The result for the y part being identical to (A.12) with proper replacement of
x terms with y terms described above will immediately imply equality (A.9)
which I am proving.

Now the expression for dnx(σ(t))/dtn will be rewritten and parameterized
with σ. Time derivatives of x(σ(t)) parameterized by σ are computed as follows:

ẋ|t=τ(σ) =
dx

dσ

dσ

dt

∣

∣

∣

∣

t=τ(σ)

= x′v

ẍ|t=τ(σ) = v ·
(

ẋ|t=τ(σ)

)′
= x′′v2 + x′v′v

...
x |t=τ(σ) = v ·

(

ẍ|t=τ(σ)

)′
= x′′′v3 + 3x′′v′v2 + x′v′′v2 + v′

2
(x′v) .

It can be shown by induction that

dnx(σ(t))

dtn

∣

∣

∣

∣

t=τ(σ)

= vn−1

[

n
∑

k=2

(

n

k

)

x(n−(k−1))v(k−1) + x(n)v

]

+
∑

i, j>0

v(i)v(j)(. . .) .

(A.13)
Expressions denoted by (. . .) and multiplied by the product of derivatives of v,
v(i)v(j), in (A.13) are irrelevant in our derivations as their contribution to In, x
will be zeroed out under the assumption of constant speed (v = const).
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Expression (A.13) implies for the squared derivative:

[

dnx(σ(t))

dtk

]2
∣

∣

∣

∣

∣

t=τ(σ)

= v2n−2

[

n
∑

k=2

(

n

k

)

x(n−(k−1))v(k−1) + x(n)v

]2

(A.14)

+
∑

i, j>0

v(i)v(j)(. . .) =
∑

i, j>0

v(i)v(j)(. . .)

+ v2n−2

[

(

x(n)
)2

v2 + 2vx(n)
n
∑

k=2

(

n

k

)

x(n−(k−1))v(k−1)

]

.

So for In, x from (A.11)

In, x
v

= v2n−1 ·
[

x(n)
]2

+ 2 · v2n−2 · x(n)
n
∑

k=2

(

n

k

)

x(n−(k−1))v(k−1) +
∑

i,j>0

v(i)v(j)(. . .) (A.15)

and the Euler-Poisson equation (A.6) for In, x/v will be as follows:

(E − P )
In, x
v

= λx
∂

∂v

(

1

v

)

+ (2n− 1)v2n−2
[

x(n)
]2

− 2

(

n

2

)

· d

dσ

[

v2n−2 · x(n) · x(n−1)
]

+ 2

(

n

3

)

· d2

dσ2

[

v2n−2 · x(n) · x(n−2)
]

+ . . .

+ (−1)n−1 · 2 ·
(

n

n

)

· dn−1

dσn−1

[

v2n−2 · x(n) · x′
]

+
∑

i>0

v(i)(. . .) =

∑

i>0

v(i)(. . .) + λx
∂

∂v

(

1

v

)

+ (2n− 1)v2n−2
[

x(n)
]2

+

2

n
∑

k=2

(−1)k−1

(

n

k

)

· dk−1

dσk−1

[

v2n−2 · x(n) · x(n−(k−1))
]

=

∑

i>0

v(i)(. . .) + λx
∂

∂v

(

1

v

)

+ (2n− 1)v2n−2
[

x(n)
]2

+

2v2n−2
n
∑

k=2

(−1)k−1

(

n

k

)

· dk−1

dσk−1

[

x(n) · x(n−(k−1))
]

. (A.16)

The values of binomial coefficients in (A.16) form a slice of Pascal triangle
without two numbers at the boundary. A property of Pascal triangle introduced
in Proposition B.1 of Appendix B implies that

(2n− 1)v2n−2
[

x(n)
]2

+ 2v2n−2
n
∑

k=2

(−1)k−1

(

n

k

)

· dk−1

dσk−1

[

x(n) · x(n−(k−1))
]

=

v2n−2

(

(

x(n)
)2

− 2x(n−1)x(n+1) + 2x(n−2)x(n+2) + . . .+ (−1)n−1 · 2x′x(2n−1)

)
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and so

(E − P )
In, x
v

=
∑

i>0

v(i)(. . .) + λx
∂

∂v

(

1

v

)

+ v2n−2

{

[

x(n)
]2

+ 2

n−1
∑

i=1

(−1)ix(n−i)x(n+i)

}

,

which completes the proof of Proposition A.1 meaning that the Proposition 1
is true.

B A property of Pascal’s triangle

Binomial coefficients of the form
(

N
k

)

, k = 0, . . . , N form theNth row of Pascal’s
triangle. Denote the elements of the Nth row of the triangle as

αN,k ≡
(

N

k

)

.

An example of the first 9 rows of Pascal’s triangle is demonstrated in Table B.1.
The first 5 rows of Pascal’s triangle with coefficients α replacing the numbers
are demonstrated in Table B.2.

N = 0: 1
N = 1: 1 1
N = 2: 1 2 1
N = 3: 1 3 3 1
N = 4: 1 4 6 4 1
N = 5: 1 5 10 10 5 1
N = 6: 1 6 15 20 15 6 1
N = 7: 1 7 21 35 35 21 7 1
N = 8: 1 8 28 56 70 56 28 8 1

Table B.1: An example of the first 9 rows of Pascal’s triangle.

N = 0: α0, 0

N = 1: α1, 0 α1, 1

N = 2: α2, 0 α2, 1 α2, 2

N = 3: α3, 0 α3, 1 α3, 2 α3, 3

N = 4: α4, 0 α4, 1 α4, 2 α4, 3 α4, 4

Table B.2: An example of the first 5 rows of Pascal’s triangle when coefficients
α replace the numbers.

The values of α at the next level i of the triangle are obtained recursively
from the values at the level i− 1 according to the following rule:

αi, j = αi−1, j−1 + αi−1, j . (B.1)
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while
α0, 0 = 1; α−1, i = 0; αi, i+1 = 0 ∀i . (B.2)

I prove a formula which establishes a relationship between the elements in a
row of Pascal’s triangle and in the “diagonal” whose left most element appears
adjacent to the left most element of the sequence of coefficients in the row; an
example is provided below.

Proposition B.1.

N
∑

k=i

(−1)i−k+1αk−1, i−1 · αN,k = −1, i ≤ N . (B.3)

The numbers αk−1, i−1 belong to the “diagonal” and elements αN, k belong to
the row N . An example of the relationship stated in equation (B.3) is provided
in Table B.3. Expression (B.3) might be already known. However I could not
find it elsewhere.
N = 0: 1
N = 1: 1 1
N = 2: 1 2 1
N = 3: 1 3 3 1

N = 4: 1 4 6 4 1
N = 5: 1 5 10 10 5 1
N = 6: 1 6 15 20 15 6 1
N = 7: 1 7 21 35 35 21 7 1
N = 8: 1 8 28 56 70 56 28 8 1

Table B.3: Example of the relationship (B.3) between the elements in a row and
the diagonal whose leftmost elements are adjacent in a way demonstrated. The
elements used in the computation are shown in bold. Here N = 8, i = 4. The
computation is as follows: −1 · 70 + 4 · 56− 10 · 28 + 20 · 8− 35 · 1 = −1.

Proof. Induction40 is used to derive the formula (B.3). For the row with N = 3
in Table B.1 the equality (B.3) is true for any value of i ≤ 3. Assume the
equality is true for some N and for an arbitrary i ≤ N at row N . Further
rewrite (B.3) for the row N + 1 and use (B.1) for αN+1, k:

N+1
∑

k=i

(−1)i−k+1αk−1, i−1 · αN+1, k =
N+1
∑

k=i

(−1)i−k+1αk−1, i−1 · (αN, k−1 + αN,k) =

N+1
∑

k=i

(−1)i−k+1αk−1, i−1 · αN,k−1 +

(

N
∑

k=i

(−1)i−k+1αk−1, i−1 · αN,k+

(−1)i−(N+1)+1αN+1−1, i−1 · αN,N+1

)

40Proposition B.1 proven here by induction can also be proven by looking for the coefficient
of xN−i in the product (1 + x)−i · (1 + x)N as suggested by Ron Adin.
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From (B.2) αN,N+1 = 0 and from (B.3) and the assumption of induction
∑N

k=i(−1)i−k+1αk−1, i−1 · αN,k = −1. Therefore, and using again (B.1) for
αk−1, i−1,

N+1
∑

k=i

(−1)i−k+1αk−1, i−1 · αN+1, k =

N+1
∑

k=i

(−1)i−k+1αk−1, i−1 · αN,k−1 − 1 + 0 =

N+1
∑

k=i

(−1)i−k+1 (αk−2, i−2 + αk−2, i−1) · αN, k−1 − 1 =

N+1
∑

k=i

(−1)i−k+1αN,k−1 · αk−2, i−1 +
N
∑

k=i−1

(−1)(i−1)−k+1αN,k · αk−1, (i−1)−1 − 1 =

(−1)i−i+1αN, i−1 · αi−2, i−1 +
N+1
∑

k=i+1

(−1)i−k+1αN, k−1 · αk−2, i−1 − 1− 1 .

Now note that αi−2, i−1 = 0 from (B.2) and use the substitution j = k − 1 to
get:

N+1
∑

k=i

(−1)i−k+1αk−1, i−1 · αN+1, k = −2 + (−1) ·
N
∑

j=i

(−1)i−j+1αN, j · αj−1, i−1 =

−2 + 1 = −1

Application of the derived property (B.3) to the Euler-

Poisson equation

An optimization problem (14) is under consideration.
The problem of finding vector functions for which the speed of accumulating

the parameter σ(t) is constant and is constrained at the boundaries is stated in
the manuscript. Derivation of the differential equation satisfied by the solutions
of the optimization problem applies Euler-Poisson equation and leads to the
following expression from (A.16):

(2n− 1)
[

x(n)
]2

+ 2

n
∑

k=2

(−1)k−1

(

n

k

)

· dk−1

dσk−1

[

x(n) · x(n−(k−1))
]

, (B.4)

where

x(n) ≡ dn

dσn
x(σ) .

Here I show how property (B.3) helps to rewrite the expression (B.4) in a simpler
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form:

(2n− 1)
[

x(n)
]2

+ 2

n
∑

k=2

(−1)k−1

(

n

k

)

· dk−1

dσk−1

[

x(n) · x(n−(k−1))
]

=

[

x(n)
]2

− 2x(n−1)x(n+1) + 2x(n−2)x(n+2) + . . .+ (−1)n−1 · 2x′x(2n−1) =

[

x(n)
]2

+ 2
n−1
∑

i=1

(−1)ix(n−i)x(n+i) . (B.5)

Interestingly, differentiation of (B.5) leads to simply a constant multiplied by a
single product of the 1st and 2n-th order derivatives of x with respect to σ:

d

dσ

{

[

x(n)
]2

+ 2

n−1
∑

i=1

(−1)ix(n−i)x(n+i)

}

= 2 · (−1)n−1 · x′x(2n) .

Derivation of the expression (B.5)

Applying Leibnitz rule to (B.4)

(2n− 1)
[

x(n)
]2

+ 2

n
∑

k=2

(−1)k−1

(

n

k

)

· dk−1

dσk−1

[

x(n) · x(n−(k−1))
]

=

(2n− 1)
[

x(n)
]2

+ 2

n
∑

k=2

(−1)k−1

(

n

k

)

·
k−1
∑

j=0

(

k − 1

j

)

x(n+j)x(n−(k−1)+k−1−j) =

(2n− 1)
[

x(n)
]2

+ 2
n−1
∑

j=0

x(n+j)x(n−j)





n
∑

k=j+1

(−1)k−1

(

k − 1

j

)

·
(

n

k

)



− 2n
[

x(n)
]2

.

Substituting i = j + 1:

(2n− 1)
[

x(n)
]2

+ 2

n
∑

k=2

(−1)k−1

(

n

k

)

· dk−1

dσk−1

[

x(n) · x(n−(k−1))
]

=

−
[

x(n)
]2

+ 2
n
∑

i=1

x(n+(i−1))x(n−(i−1))

[

n
∑

k=i

(−1)k−1

(

k − 1

i− 1

)

·
(

n

k

)

]

=

−
[

x(n)
]2

+ 2

n
∑

i=1

x(n+(i−1))x(n−(i−1))

[

n
∑

k=i

(−1)−k+1

(

k − 1

i− 1

)

·
(

n

k

)

]

=

−
[

x(n)
]2

+ 2

n
∑

i=1

x(n+(i−1))x(n−(i−1))

[

n
∑

k=i

(−1)i · (−1)i−k+1

(

k − 1

i− 1

)

·
(

n

k

)

]

= (B.6)

−
[

x(n)
]2

+ 2

n
∑

i=1

(−1)i+1x(n+(i−1))x(n−(i−1)) =
[

x(n)
]2

+ 2

n
∑

i=2

(−1)i+1x(n+(i−1))x(n−(i−1)) =

[

x(n)
]2

+ 2

n−1
∑

j=1

(−1)jx(n+j)x(n−j) .
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Property (B.3) was used for the expression in brackets in (B.6). ✷
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