Skip to main content
Log in

An insect-inspired model for visual binding II: functional analysis and visual attention

  • Original Article
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

We have developed a neural network model capable of performing visual binding inspired by neuronal circuitry in the optic glomeruli of flies: a brain area that lies just downstream of the optic lobes where early visual processing is performed. This visual binding model is able to detect objects in dynamic image sequences and bind together their respective characteristic visual features—such as color, motion, and orientation—by taking advantage of their common temporal fluctuations. Visual binding is represented in the form of an inhibitory weight matrix which learns over time which features originate from a given visual object. In the present work, we show that information represented implicitly in this weight matrix can be used to explicitly count the number of objects present in the visual image, to enumerate their specific visual characteristics, and even to create an enhanced image in which one particular object is emphasized over others, thus implementing a simple form of visual attention. Further, we present a detailed analysis which reveals the function and theoretical limitations of the visual binding network and in this context describe a novel network learning rule which is optimized for visual binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7(6):1129–1159

    Article  CAS  PubMed  Google Scholar 

  • Blakemore C, Tobin EA (1972) Lateral inhibition between orientation detectors in the cat’s visual cortex. Exp Brain Res 15(4):439–440

    Article  CAS  PubMed  Google Scholar 

  • Brooks RA (1991) Intelligence without representation. Artif Intell 47(1):139–159

    Article  Google Scholar 

  • Brooks RA (1995) Intelligence without reason. Building embodied, situated agents, The artificial life route to artificial intelligence, pp 25–81

  • Cichocki A, Bogner RE, Moszczyński L, Pope K (1997) Modified Herault–Jutten algorithms for blind separation of sources. Digit Signal Process 7(2):80–93

    Article  Google Scholar 

  • Comon P (1994) Independent component analysis, A new concept? Signal Process 36(3):287–314

    Article  Google Scholar 

  • DiCarlo JJ, Zoccolan D, Rust NC (2012) How does the brain solve visual object recognition? Neuron 73(3):415–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douglas RJ, Martin KA, Whitteridge D (1989) A canonical microcircuit for neocortex. Neural Comput 1(4):480–488

    Article  Google Scholar 

  • Guo L, Garland M (2006) The use of entropy minimization for the solution of blind source separation problems in image analysis. Pattern Recogn 39(6):1066–1073

    Article  Google Scholar 

  • Hassenstein B, Reichardt W (1956) Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Z Naturforsch B 11(9–10):513–524

    Google Scholar 

  • Hebb DO (1949) The organization of behavior: a neuropsychological theory. Wiley, New York

    Google Scholar 

  • Herault J, Jutten C (1986) Space or time adaptive signal processing by neural network models. In: AIP conference proceedings, vol 151. Snowbird, UT, pp 206–211

  • Hopfield JJ (1991) Olfactory computation and object perception. Proc Natl Acad Sci USA 88(15):6462–6466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyvärinen A, Oja E (1998) Independent component analysis by general nonlinear Hebbian-like learning rules. Signal Process 64(3):301–313

    Article  Google Scholar 

  • Itti L, Koch C (2001) Computational modelling of visual attention. Nat Rev Neurosci 2(3):194–203

    Article  CAS  PubMed  Google Scholar 

  • Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal 20(11):1254–1259

    Article  Google Scholar 

  • Joho M, Mathis H, Lambert RH (2000) Overdetermined blind source separation: Using more sensors than source signals in a noisy mixture. In: Proceedings international conference on independent component analysis and blind signal separation. Helsinki, Finland, pp 81–86

  • Jutten C, Herault J (1991) Blind separation of sources, Part I: an adaptive algorithm based on neuromimetic architecture. Signal Process 24(1):1–10

    Article  Google Scholar 

  • Lee DK, Itti L, Koch C, Braun J (1999) Attention activates winner-take-all competition among visual filters. Nat Neurosci 2(4):375–381

    Article  CAS  PubMed  Google Scholar 

  • Linster C, Smith BH (1997) A computational model of the response of honey bee antennal lobe circuitry to odor mixtures: overshadowing, blocking and unblocking can arise from lateral inhibition. Behav Brain Res 87(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Mach E (1866) Über die physiologische Wirkung räumlich vertheilter Lichtreize (On the physiological effects of spatially distributed light stimuli). Akad der Wiss, Wien, Sitzber, Math-Nat K 54(2):393

  • Markram H, Lübke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275(5297):213–215

    Article  CAS  PubMed  Google Scholar 

  • Moran J, Desimone R (1985) Selective attention gates visual processing in the extrastriate cortex. Science 229(4715):782–784

    Article  CAS  PubMed  Google Scholar 

  • Mu L, Ito K, Bacon JP, Strausfeld NJ (2012) Optic glomeruli and their inputs in Drosophila share an organizational ground pattern with the antennal lobes. J Neurosci 32(18):6061–6071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen AP, Spetch ML, Crowder NA, Winship IR, Hurd PL, Wylie DR (2004) A dissociation of motion and spatial-pattern vision in the avian telencephalon: implications for the evolution of visual streams. J Neurosci 24(21):4962–4970

    Article  CAS  PubMed  Google Scholar 

  • Northcutt BD, Higgins CM (2017) An insect-inspired model for visual binding II: functional analysis and visual attention. In: Review, Biol Cybern

  • Northcutt BD, Dyhr JP, Higgins CM (2017) An insect-inspired model for visual binding I: learning objects and their characteristics. In: Review, Biol Cybern

  • Okamura JY, Strausfeld NJ (2007) Visual system of Calliphorid flies: motion- and orientation-sensitive visual interneurons supplying dorsal optic glomeruli. J Comp Neurol 500(1):189–208

    Article  PubMed  Google Scholar 

  • Paulk AC, Phillips-Portillo J, Dacks AM, Fellous JM, Gronenberg W (2008) The processing of color, motion, and stimulus timing are anatomically segregated in the bumblebee brain. J Neurosci 28(25):6319–6332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paulk AC, Dacks AM, Phillips-Portillo J, Fellous JM, Gronenberg W (2009) Visual processing in the central bee brain. J Neurosci 29(32):9987–9999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivera-Alvidrez Z, Lin I, Higgins CM (2011) A neuronally based model of contrast gain adaptation in fly motion vision. Vis Neurosci 28(5):419–431

    Article  PubMed  Google Scholar 

  • Scholl BJ (2001) Objects and attention: the state of the art. Cognition 80(1):1–46

    Article  CAS  PubMed  Google Scholar 

  • Shamma SA (1985) Speech processing in the auditory system II: lateral inhibition and the central processing of speech evoked activity in the auditory nerve. J Acoust Soc Am 78(5):1622–1632

    Article  CAS  PubMed  Google Scholar 

  • Snyder AW (1979) Handbook of sensory physiology, vol VII/6A, chap 5. In: Autrum H (ed) Physics of vision in compound eyes. Springer, Berlin, Heidelberg, pp 225–313

    Google Scholar 

  • Sorouchyari E (1991) Blind separation of sources. Part III: stability analysis. Signal Process 24(1):21–29

    Article  Google Scholar 

  • Strausfeld NJ, Okamura JY (2007) Visual system of Calliphorid flies: organization of optic glomeruli and their lobula complex efferents. J Comp Neurol 500(1):166–188

    Article  PubMed  Google Scholar 

  • Strausfeld NJ, Sinakevitch I, Okamura JY (2007) Organization of local interneurons in optic glomeruli of the Dipterous visual system and comparisons with the antennal lobes. Dev Neurobiol 67(10):1267–1288

    Article  PubMed  Google Scholar 

  • Trentelman H, Stoorvogel AA, Hautus M (2012) Control theory for linear systems. Springer, London

    Google Scholar 

  • van Santen JPH, Sperling G (1985) Elaborated Reichardt detectors. J Opt Soc Am A 2(5):300–320

    Article  PubMed  Google Scholar 

  • von der Malsburg C (1999) The what and why of binding: the modeler’s perspective. Neuron 24(1):95–104

    Article  PubMed  Google Scholar 

  • Werner G (2012) From brain states to mental phenomena via phase space transitions and renormalization group transformation: proposal of a theory. Cogn Neurodyn 6(2):199–202

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang HH, Si A (1997) Adaptive online learning algorithms for blind separation: maximum entropy and minimum mutual information. Neural Comput 9(7):1457–1482

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Air Force Office of Scientific Research for early support of the modeling research on this project with Grant Number FA9550-07-1-0165, and the Air Force Research Laboratories for supporting this research to maturity with STTR Phase I Award Number FA8651-13-M-0085 and Phase II Award Number FA8651-14-C-0108, both in collaboration with Spectral Imaging Laboratory (Pasadena, CA). We would also like to thank the reviewers, whose input greatly enhanced this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brandon D. Northcutt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Northcutt, B.D., Higgins, C.M. An insect-inspired model for visual binding II: functional analysis and visual attention. Biol Cybern 111, 207–227 (2017). https://doi.org/10.1007/s00422-017-0716-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-017-0716-z

Keywords

Navigation