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Abstract

Since the middle of the 1990s, studies of resting-state fMRI/BOLD data have
explored the correlation patterns of activity across the whole brain, which is re-
ferred to as functional connectivity (FC). Among the many methods that have
been developed to interpret FC, a recently proposed model-based approach de-
scribes the propagation of fluctuating BOLD activity within the recurrently
connected brain network by inferring the effective connectivity (EC). In this
model, EC quantifies the strengths of directional interactions between brain
regions, viewed from the proxy of BOLD activity. In addition, the tuning pro-
cedure for the model provides estimates for the local variability (input variances)
to explain how the observed FC is generated. Generalizing, the network dynam-
ics can be studied in the context of an input-output mapping - determined by EC
- for the second-order statistics of fluctuating nodal activities. The present pa-
per focuses on the following detection paradigm: observing output covariances,
how discriminative is the (estimated) network model with respect to various
input covariance patterns? An application with the model fitted to experimen-
tal fMRI data - movie viewing versus resting state - illustrates that changes in
excitability and changes in brain coordination go hand in hand.

1 Retrospective on neuroimaging data analysis

Information processing in the brain relies on detailed interactions between many
specialized neuronal subsystems that are organized in a distributed manner. The
study of brain function relies on neuroimaging techniques that indirectly mea-
sure brain activity, such as electroencephalogram (EGG), magnetoencephalo-
gram (MEG) and functional magnetic resonance (fMRI). In the case of fMRI,
scanners record the blood-oxygen-level dependent (BOLD) signals, which are
related to the energy consumption of brain cells. Early studies of task-evoked
activity focused on the differences in the mean recorded BOLD level between
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several conditions [2]: this node-centric viewpoint allowed for tying functions
(e.g., visual or auditory processing, memory, attention) to specific regions of
interest, or ROIs [14]. However, in order to uncover how the brain performs
tasks, the key is to understand the coordination between ROIs, not only which
ROIs become activated. For example, the recognition and manipulation of ob-
jects in a natural environment requires the binding of visual and motor percepts
together with memory.

In the 1990s, the activity of the human brain at rest has raised interest [3],
because the observed large BOLD fluctuations had a structured baseline that
could not be simply explained by observation noise [48]. This led to the con-
cept of functional connectivity (FC), which describes the correlation pattern of
BOLD signals for a network of ROIs [21]; see Fig. 1A for an schematic illus-
tration with 4 ROIs. FC-based analysis has then been applied to the study
of changes in the coordination between cortical regions for various tasks, for
instance involving memory [50]. In this network-oriented approach, the level
of correlated activity between ROIs is hypothesized to reflect the interaction
strength between them, although the precise relationship between BOLD sig-
nals to neuronal activity remains only partially understood [34, 20, 32]. In
comparison, for brain rhythms observed using MEG/EEG whose link with neu-
ronal activity is clearer, synchrony-based mechanisms have been proposed to
implement neural communication in a more concrete fashion [57, 6, 23].

To move beyond a phenomenological description of the observed brain activ-
ity, models have been proposed to describe how regional mechanisms and net-
work connectivity interplay to generate BOLD signals. The widely-used method
of dynamic causal modeling (DCM) targets the communication between ROIs
by estimating causal interactions between them, which is referred to as effective
connectivity, or EC [26, 58]. In a network, EC usually shapes FC in a non-
trivial fashion: weakly connected ROIs can exhibit strong correlation due to a
strong global feedback [47]. For the estimation procedure, defining observables -
namely how to measure the empirical brain activity and its counterpart in mod-
els - is clearly important here. Early DCM modeling aimed to reproduce BOLD
time courses, e.g., succession of word-listening and silence periods [25]; recently,
it has been modified to the statistics of the BOLD fluctuations measured by the
cross spectra, which is the Fourier transform of covariances between ROIs [27].
Note that, for the same observables, the estimated EC values depend on the
model details for the local dynamics.

Recent studies showed that the resting-state BOLD activity has a specific
temporal structure, which is modulated depending on the task performed by the
subject [33]. Moreover, the whole brain network exhibits a time-lag structure
where some ROIs lead others at the scale of the fMRI time resolution (TR,
typically 2 seconds) [43], which is also affected by behavior [44]. Note that
the timescale here is different from that used for ‘dynamic FC’, of the order
of a minute [9, 36]. It is important to Identify which timescales (or frequency
ranges) in the BOLD signals convey information about the behavioral conditions
in order to define the FC that a model should reproduce. The above-mentioned
results suggest that FC should be spatio-temporal, not simply spatial.
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In a complementary line of research, it has been argued that the study of
brain function requires modeling the whole brain activity, in order to capture
the distributed interactions across brain regions [15]. This differs from previous
studies where a few ROIs were selected a-priori [30, 58], leaving many unknowns
for unobserved parts of the brain. This is supported by a recent fMRI study,
which demonstrated that no localized subset of cortical or subcortical ROIs
could be isolated to predict the level of psychological pain rated by subjects
[10]. Rather, the relevant information turned out to be globally scattered over
the whole brain. Here a key point is understanding the interaction between
the local dynamics and network connectivity that generates the global activity
pattern [7, 18]. To investigate whole-brain communication, a specific focus of
modeling studies has been on bridging bottom-up and top-down approaches
by integrating anatomical and functional data [35, 41, 51]. Long-range white-
matter anatomical connections are the backbone of interactions between distant
brain regions and are known as structural connectivity, or SC [54]. SC can
be estimated using MRI and techniques like diffusion-tensor imaging (DTI) or
axonal tracing to estimate the density of the synaptic pathways connecting ROIs
[13, 37, 52]. The properties of the so-called brain connectome as a graph have
been extensively studied [31, 60] and are important to take into account to
understand brain function [59] and when designing whole-brain models [15, 16].

2 Noise-diffusion network model to interpret the
fMRI spatio-temporal structure

This section presents some details of a recent model [28], which was proposed to
address several issues raised in the previous introductory section. This genera-
tive model aims to reproduce the BOLD activity of the whole brain (or cortex)
parcellated into about a hundred ROIs [56, 31]. As depicted in Fig. 1B for 4
ROIs, the model comprises two sets of parameters:

• the spontaneous activity or local excitability received by each ROI, as
described by the (co)variance matrix Σ;

• the EC strengths between ROIs, corresponding to the directional curved
arrows.

Note that the framework can be extended to include input cross-covariances
between ROIs corresponding to off-diagonal elements in the matrix Σ [29]; see
dashed arrows in Fig. 1B. Earlier whole-brain modeling studies [15, 41] focused
on adjusting the local dynamics for ROIs while using SC values for EC, which is
then symmetric. In contrast, the present model is equipped with an optimization
procedure to obtain an estimated EC strength for each directional connection.
The rationale is that EC reflects the net effect of various mechanisms in gen-
erating FC, such as heterogeneous concentrations or types of neurotransmitters
and synaptic receptors, beyond simply the density of synaptic connections that
is measured in SC. SC is nevertheless used to determine the skeleton of EC (i.e.,
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Figure 1: A: Classical fMRI analysis relies on the level of correlation between the
BOLD activities of ROIs (here four), as measuring by the functional connectivity
(FC) corresponding to the bidirectional arrows. B: The dynamic model divides
the brain in a number of regions and describes the causal interactions between
them, or effective connectivity (EC represented by the light gray curved arrows).
Here the ROIs receive fluctuating inputs determined by their covariance matrix
Σ; off-diagonal elements of Σ correspond to cross-correlated inputs. C: The
model FC is the result of the operation of the recurrent EC on the the input
covariances Σ. D: Three examples for the combination of EC and Σ with two
connected nodes. The thickness of the gray and black arrows indicates the
respective strengths for EC and Σ; note the slightly unbalanced in Σ for the
right panel, which has opposite connectivity compared to the middle panel.
The resulting spatiotemporal FC is displayed below each network diagram: the
autocovariances of node 1 and 2 correspond to the solid black and dashed curve;
the cross-covariance is displayed in thick gray. The x-axis correspond to the time
shift (in TRs, the time resolution of fMRI, typically 2 s); a peak for positive
time shifts indicates that 1 leads 2. The curves are calculated using Eqs. (4)
and (5).
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which weights are optimized and which are kept equal to 0). To obtain direc-
tional EC, the key lies in using the spatio-temporal FC, which captures similar
information to the time-lag structure between ROIs [43, 44] and extends previ-
ous studies relying on zero-time-lag statistics of the BOLD signals - or spatial
FC [8, 16, 41]. In practice, we employ the BOLD covariances without and with
time shift ∆ for all pairs of ROIs indexed by i and j:

Q̃∆
ij =

1

T

∑
1≤t≤T

(sti − s̄i)(stj − s̄j) , (1)

where sti is the observed BOLD time series for ROI i. The entrainment between
ROIs also depends on the local activity regime of the target for each connec-
tion. To take this into account, the model optimization also tunes the input
(co)variances - the matrix Σ in Fig. 1B - in addition to EC. The optimization
procedure of the whole-brain EC model [28] aims to solve the trade-off between
the network size and robustness of the estimates:

• The model relies on simpler local dynamics than, e.g., the DCM [26].

• The network topology is determined by DTI measurements, which reduces
the number of parameters to estimate (typically, EC has a density of
30% compared to all possible connections, giving a few thousands EC
parameters to estimate for 100 ROIs).

• The inferred EC corresponds to a maximum-likelihood estimate and can
be extracted from single fMRI sessions (with a duration of 5-10 min).

Formally, the vector y of BOLD activities for all ROIs obeys a multivariate
Ornstein-Uhlenbeck (MOU) process:

dy(t) = Jy(t)dt+ dW (t) , (2)

where the Jacobian J is defined by the EC weights for its off-diagonal matrix
elements, whereas its diagonal elements are −1/τ for the time constant τ that
governs a homogeneous exponential decay of the activity for all nodes; τ is
estimated from the empirical data [28, Fig. 7B and C]. Formally, W is a Wiener
process, corresponding to spatially correlated and temporally uncorrelated white
noise. Note that the notation is adapted from the original papers. The model
FC is defined as the covariances of the BOLD time series, with a time shift ∆
as in Eq. (1):

Q∆ = 〈(yt − ȳ)(yt+∆ − ȳ)†〉 , (3)

where the † superscript indicates the matrix transpose. Assuming stationarity,
the following consistency equations give the model FC, defined as the second-
order statistics of the nodal activities [39]:

JQ0 +Q0J† + Σ = 0 , (4)

Q∆ = Q0eJ
†∆ . (5)
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Here the covariance matrix of ζ is Σ = 〈ζtζt†〉, without time shift. Note that
Eq. (4) implements a mapping between the input and output covariances, as
schematized in Fig. 1C. The viewpoint taken on the MOU process corresponds
to a noise-diffusion network, where the intrinsic variability of each node (de-
scribed by Σ) propagates in the network via EC. This should be conceptually
distinguished from the classical approach for linear regression, which consid-
ers that observation noise corrupts the deterministically evolving signals. In
other words, distinct profiles of local variability for the nodes indicate different
conditions in our context.

The combination of Σ and J uniquely determines the matrices Q0 and Q∆

in Eqs. (4) and (5): this bijection between the parameters and observables
allows for an unambiguous estimation [39] - up to the measurement noise of
course. To reproduce the empirically observed FC, the optimization procedure
[28] iteratively tunes both EC and Σ such that the model FC in Eqs. (4) and (5)
best resembles its empirical counterpart in Eq. (1). It is equivalent to a natural
gradient descent in the recurrently connected network with the spatio-temporal
FC as an objective function [11]. To some extent, the optimization resembles a
continuous-time version of Granger causality analysis of the BOLD signals [30],
but it estimates the connection strengths (not their likelihood) and incorporates
topological constraints given by SC.

The advantage of a proper model inversion over more phenomenological ap-
proaches [12, 43] lies in disentangling distinct contributions from Σ and EC
that shape the observed BOLD statistics. For the class of linear-feedback mod-
els considered here, the observation of the lag of cross-covariances (i.e., par-
tial observation of the temporal FC structure) or the zero-time lag covariances
(spatial FC structure) is not sufficient to unambiguously estimate EC and Σ,
as shown by the comparison of three simulated configurations with two nodes
in Fig. 1D. The left and middle network have very similar cross-covariances
(thick gray curve) with a maximum for a time shift of −1 TR. However, the
origin of this observed asymmetry in the temporal FC has a different origin for
the two networks: it arises from an imbalance between the Σ received by the
two nodes for the left panel, whereas a stronger EC from 2 to 1 than 1 to 2 is
the cause for the middle panel. Similarly, the middle and right networks have
almost exactly the same values for the three curves at the origin (time shift
equal to 0 TR). However, they have a very different temporal structure, each
reflecting the asymmetry in EC: stronger from 2 to 1 for the middle panel, and
the converse for the right panel (note that the input variances in the right panel
are slightly imbalanced to obtain similar zero-lag autocovariances to the middle
panel). As is well-known for processes with linear feedback, spatial information
about the covariances is not sufficient to estimate the input and connectivity
parameters [39]. This motivates the revised definition of (both empirical and
model) FC based on covariances with time shifts.

In line with many previous definitions of EC [26, 22, 42, 4], the model FC is
generated by the interplay between the network connectivity and local dynam-
ical variables, which must be taken care of in the estimation procedure. Note
that the noise-diffusion model ignores the hemodynamic response in the gener-
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ation of the BOLD signals that is explicitly modeled in DCM [5, 24]. In this
sense, the proposed model-based approach is more abstract and phenomenolog-
ical than, for example, recent studies [1, 46] that aim to provide a mechanistic
implementation of communication by synchrony/coherence for EEG and MEG
data [57, 23]. Nevertheless, the parameters of the model fitted to empirical FC
provide a biomarker for the brain dynamics - measured via the proxy of the
BOLD dynamics - in a space of a few thousands dimensions. Such biomarkers
can then be used to compare the coordination between ROIs across conditions
and interpret the change thereof [29], or examine individual differences in BOLD
activity [45].

3 Variance-based versus rate-based coding

Moving a step further to the abstract, let us consider a variant of the dynam-
ics defined in Eq. (2) by replacing ζ with a time-dependent variable x that is
characterized by its mean and its variance (discarding higher orders):

dy

dt
= Jy + x , (6)

for which the linear feedback is described by the Jacobian J . This model defines
two linear mappings, one for the means and one for the zero-lag covariances:

x̄ 7→ ȳ ' −J−1x̄ , (7)

P 0 7→ Q0 ,

where P 0 = 〈(xt − x̄)(xt − x̄)†〉 is the covariance of x, defined similarly to Q0

in Eq. (3) and corresponding to Σ for ζ. Note that the mapping for covariances
depends on the input details and may differ from the Eq. (4) that is specific to
the Wiener process.

These mappings can be used for detection, as illustrated for a single node
in Fig. 2. The corresponding paradigm for rate detection consists in inferring
changes in the input mean x̄ from the observation of the output mean ȳ, as
shown in Fig. 2A. It shows the desired situation when the changes in x̄ are
amplified in ȳ, which shifts the corresponding activity histogram upwards in the
right panel. As mentioned earlier, traditional approaches for task-evoked fMRI
activity compare the mean activity level of ROIs between task and rest, which
comply with the classical paradigm from information theory: a noisy input is
characterized by its mean and the variability is considered to be observation
noise or irrelevant information. A large variability for y reduces the detection
accuracy by increasing the overlap between the two histograms in the right
panel: for observations over short time windows, the evaluated means may
fluctuate dramatically. In Fig. 2B, the input variance P 0 is modified instead of
the mean x̄, which can be detected via the output variance Q0. The second-
order statistics are the basis for information here; note that the corresponding
observation noise would be of higher order. In the case of fMRI, this corresponds
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to changes in FC. Last, when mixed effects occur as in Fig. 2C, both methods
may be used to detect changes in x, but one may be more accurate than the
other. It is not clear for fMRI data when first- or second-order statistics are
more informative.

The detection scheme in Fig. 2 can be extended in two directions:

• non-zero time shifts for covariances in Eq. (7), involving P∆ and Q∆ for
some ∆ > 0;

• non-linear dynamics that dynamically regulate the gain for each node
depending on the input level.

Such an non-linear model implements a rich input-output mapping for covari-
ances, which can be used similarly to the rate mapping for information transmis-
sion. It is worth noting that the space for covariances is higher-dimensional than
that for means. This is reminiscent of the “correlation theory of brain function”
proposed by von den Malsburg [40]: elaborate representations of complex ob-
jects require flexible dynamics and interactions between spiking neurons. There-
fore, we use the terminology (co)variance-based coding to describe the second
mapping in Eq. (7). In the following, however, we focus on condition-specific
EC estimated over a recording period during which the network dynamics is
assumed to be stationary (in the same behavioral condition). Under these con-
ditions, a linearized EC can be evaluated to describe the net effect resulting
from the interplay between the local non-linearity and the network connectivity
[16]. We leave further developments for later study.

4 Selectivity of network connectivity to patterns
of local excitability

For fMRI, the parallel to Fig. 2B thus corresponds to flexible context-dependent
coordination between brain regions (FC repertoire), which is determined by a
specific EC for each behavioral condition. If this hypothesis is true, EC should
be “set” in accordance to Σ for each condition, such as to constrain the propa-
gation of local fluctuating activity (e.g., coming from sensory ROIs) to specific
pathways that organize the brain coordination. Now we look into real data to see
whether this phenomenon can be observed. We reanalyze the model estimates
obtained from 19 subjects in two conditions: watching a movie and at rest [29];
data are available at https://github.com/MatthieuGilson/EC_estimation.
Using the whole-brain dynamic model fitted to the fMRI measurements (cf.
Sec. 2), we examine to which extent the model FC reflects the changes in the
estimated local excitability Σ for the two conditions. Changes in the estimated
Σ presumably relate to the stimulus load; note that Σ is diagonal here, contrary
to [29].

First, we verify in Fig. 3A that the two sets of model FCs (over all subjects)
reflect the two conditions. To do so, we compare the matrix distances between
FC from all subjects in the same condition (gray arrow in the left panel) or
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Figure 2: A: Rate-coding paradigm: a (small) change in the mean x̄ of the
noisy input x results in a (large) change in the mean ȳ for y; each period is
indicated by its color, black and gray. The quality for detection is illustrated
by the distinct means for the two activity histograms in the right panel. B:
Variance-coding paradigm: the same dynamics can be used to detect a change
in the variance of x by observing the variance of y. Here, the quality of the
detection relates to the distinct widths of the histograms (same color coding
as in A). C: Mixed paradigm: both the mean and variance of x are changed
between the black and gray periods, which is reflected in the histograms for y.
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between the two (black arrow). Cross-covariances are discriminative against
the two conditions, as indicated by the significantly larger values for the inter-
condition distances in the right panel. In contrast, the distance distribution
over the subjects for variances in the movie condition is similar to the distance
distribution between FCs in the two conditions (middle panel).

Second, Fig. 3B examines to which extent the FC variances and cross-
covariances (diagonal and off-diagonal matrix elements, respectively) are the
expression of the condition-specific Σs. The corresponding model FCs obtained
for the same EC, but distinct Σ (see left diagram) are compared using a nor-
malized matrix distance; moreover, this is decomposed for the matrix elements
indicated on the x-axis of the middle and right panels in order to quantify
their relative contribution in shaping FC. Although variances are modified to
a greater extent than cross-covariances by swapping the conditions for Σ, the
cross-covariances turn out to be impacted as well. Interestingly, ECs that are
highly selective for variances are selective for cross-covariances too, as indicated
by the lines connecting the crosses for the same subject. This means that, for
each subject and condition, the mapping determined by EC is not independent
from the Σ it is paired with. Among cross-covariances, those concerning visual
and auditory ROIs are more affected than on average (‘vis-aud’ label), which
makes sense for the passive viewing and listening task. The interpretation is
that these high-activity ROIs feed the brain network in the movie condition [29].

5 Future perspective for fMRI analysis and quan-
tifying whole-brain communication

As mentioned in the beginning of the paper, the state of the art for the analysis
of task-evoked fMRI activity has shifted from studying the means of BOLD sig-
nals to their second-order statistics, that is, from a structure-centric viewpoint
(one region = one function) towards a network-oriented viewpoint, focused on
network interactions and correlation pattern [27, 15, 19]. Here a complementary
aspect has been highlighted based on the input-output mapping implemented by
the interactions between ROIs (as quantified by EC) in a whole-brain dynamic
model [28], which provides a mechanistic description of the interplay between
local and network properties in the generation of FC. This model appears par-
ticularly interesting in regards of new possibilities to stimulate the brain in a
non-invasive manner [53]: the modification of the local activity for certain ROIs
can be evaluated with the model to explore the resulting effects at the network
level. Here the discriminative power EC with respect to Σ corresponds to the
efficiency of stimulation protocols in changing FC. As another example, ther-
apies based on neurofeedback - where the patient sees her/his brain activity
and attempts to manipulate it - currently rely on changes in FC as well as in
BOLD activity level [38]. One can move one step further with the model and
aim to shape directional (BOLD) interactions between brain regions. The pro-
posed model with linear feedback [28] is arguably the simplest dynamics to take
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Figure 3: A: Comparison of the model FCs for the model fitted to empirical
data [29]: 19 subjects were scanned in two conditions, at rest and when watching
a movie. As shown in the left diagram, the FC distances are calculated for
all subjects within the same condition (same symbol in the left diagram, as
indicated by the gray arrow) and between the two conditions (distinct symbols
indicated by the black arrow and corresponding to ‘inter’ in the middle and
right plots). The middle plot displays the distances over all pairs of subjects for
the variances (the medians are indicated by the crosses), the right plot for the
cross-covariances; note that this distance measure is normalized by the mean
empirical FC averaged over the two conditions and for the corresponding matrix
elements. Significant differences between the ‘cross’ distribution and rest/movie
are indicated by the stars below (p < 0.01 for Welch’s t-test and Mann-Whitney
test); stars for the comparisons between rest and movie are not shown, although
they are significant. B: To quantify the selectivity of FC with respect to Σ for
each subject, the model FC fitted to the empirical data - corresponding to EC
and Σ for the same condition (here rest) - is compared with a surrogate mixed
FC when swapping Σ for the other condition, as illustrated in the left diagram;
only the spatial FC corresponding to Q0 in Eq. (4) is used here. Here the
distances are normalized to give 1 for a matrix compared to the null matrix with
zeros everywhere. The middle plot shows the distribution of normalized matrix
distances (as in A) between FC rest and mix for EC in the rest condition (each
cross representing a subject), and the right plot for EC in the movie condition.
The distance between the two FCs is calculated for several subsets of the matrix
elements: variances on the diagonal, cross-covariances outside the diagonal and
14 visual/auditory ROIs. 11
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time into account in the generation of FC, assuming stationarity for a given
condition; more detailed mechanisms should be incorporated in the dynamic
model in order to deepen its interpretation capabilities. However, the multipli-
cation of parameters is expected to reduce the estimation robustness, which is
problematic to obtain condition-specific estimates.
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[59] Zamora-López, G., Chen, Y., Deco, G., Kringelbach, M.L., Zhou, C.: Func-
tional complexity emerging from anatomical constraints in the brain: the
significance of network modularity and rich-clubs. Sci Rep 6, 38424 (2016).
DOI 10.1038/srep38424
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