Skip to main content
Log in

A normative approach to neuromotor control

  • Original Article
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

While we can readily observe and model the dynamics of our limbs, analyzing the neurons that drive movement is not nearly as straightforward. As a result, their role in motor behavior (e.g., forward models, state estimators, controllers, etc.) remains elusive. Computational explanations of electrophysiological data often rely on firing rate models or deterministic spiking models. Yet neither can accurately describe the interactions of neurons that issue spikes, probabilistically. Here we take a normative approach by designing a probabilistic spiking network to implement LQR control for a limb model. We find typical results: cosine tuning curves, population vectors that correlate with reaching directions, low-dimensional oscillatory activity for reaches that have no oscillatory movement, and changes in neuron’s tuning curves after force field adaptation. Importantly, while the model is consistent with these empirically derived correlations, we can also analyze it in terms of the known causal mechanism: an LQR controller and the probability distributions of the neurons that encode it. Redesigning the system under a different set of assumptions (e.g. a different controller, or network architecture) would yield a new set of testable predictions. We suggest this normative approach can be a framework for examining the motor system, providing testable links between observed neural activity and motor behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amirikian B, Georgopoulos AP (2000) Directional tuning profiles of motor cortical cells. Neruosci Res 36(1):73–79

    Article  CAS  Google Scholar 

  • Bourdoukan R, Barrett D, Denève S, Machens CK (2012) Learning optimal spike-based representations. In: Advances in neural information processing systems, pp 2285–2293

  • Churchland MM, Cunningham JP, Kaufman MT, Foster JD, Nuyujukian P, Ryu SI, Shenoy KV (2012) Neural population dynamics during reaching. Nature 487:51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corcos DM, Gottlieb GL, Agarwal GC (1989) Organizing principles for single-joint movements. II. A speed-sensitive strategy. J Neurophysiol 62(2):358–368

    Article  CAS  PubMed  Google Scholar 

  • Denève S, Alemi A, Bourdoukan R (2017) The brain as an efficient and robust adaptive learner. Neuron 94:969–977

    Article  CAS  PubMed  Google Scholar 

  • DeWolf T (2016) A spiking neural model of adaptive arm control. Proc R Soc B 283:20162134

    Article  PubMed  Google Scholar 

  • Georgopoulos AP (1982) On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J Neurosci 2:1527–1537

    Article  CAS  PubMed  Google Scholar 

  • Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population coding of movement direction. Science 233:1416–1419

    Article  CAS  Google Scholar 

  • Jordan MI, Gharamani Z, Jaakkola TS, Saul LK (1999) An introduction to variational methods for graphical models. Mach Learn 37:183–223

    Article  Google Scholar 

  • Kuo AD (1995) An optimal control model for analyzing human postural balance. IEEE Trans Biomed Eng 42:87–101

    Article  CAS  PubMed  Google Scholar 

  • Laje R, Buonomano DV (2013) Robust timing and motor patterns by taming chaos in recurrent neural networks. Nat Neurosci 16(7):925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Quoc V (2012) Building high-level features using large scale unsupervised learning. In: IEEE international conference on acoustics, speech and signal processing (ICASSP)

  • Li CSR, Padoa-Schioppa C, Bizzi E (2001) Neuronal correlates of motor performance and motor learning in the primary motor cortex of monkeys adapting to an external force field. Neuron 30:593–607

    Article  CAS  PubMed  Google Scholar 

  • Mante V, Sussillo D, Shenoy KV, Newsome WT (2013) Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503:78–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno-Bote R (2014) Poisson-like spiking in circuits with probabilistic synapses. PLoS Comput Biol 10:1003522

    Article  CAS  Google Scholar 

  • Mutha PK, Sainburg RL (2007) Control of velocity and position in single joint movements. Hum Mov Sci 26(6):808–823

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagasaki H (1989) Asymmetric velocity and acceleration profiles of human arm movements. Exp Brain Res 74(2):319–326

    Article  CAS  PubMed  Google Scholar 

  • Neal RM (1990) Learning stochastic feedforward networks. Technical Report. CRG-TR-90-7, Connectionist Research Group, Department of Computer Science, University of Toronto, Ontario

  • Padoa-Schioppa C, Li CSR, Bizzi E (2004) Neuronal activity in the supplementary motor area of monkeys adapting to a new dynamic environment. J Neurophysiol 91:449–473

    Article  PubMed  Google Scholar 

  • Rumelhart DE, Hinton GE, Williams RJ (1985) Learning internal representations by error propagation (No. ICS-8506). California Univ, San Diego, La Jolla Inst for Cognitive Science

  • Scott SH (2004) Optimal feedback control and the neural basis of volitional motor control. Nat Rev Neurosci 5:532

    Article  CAS  PubMed  Google Scholar 

  • Sussillo D, Abbott LF (2009) Generating coherent patterns of activity from chaotic neural networks. Neuron 63:544–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sussillo D, Barak O (2013) Opening the black box: low-dimensional dynamics in high-dimensional recurrent neural networks. Neural Comput 25:626–649

    Article  PubMed  Google Scholar 

  • Thalmeier D, Uhlmann M, Kappen HJ, Memmesheimer RM (2016) Learning universal computations with spikes. PLoS Comput Biol 12(6):e1004895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Todorov E (2004) Optimality principles in sensorimotor control. Nat Neurosci 7:907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walden RH (1999) Analog-to-digital converter survey and analysis. IEEE J Sel Areas Commun 17(4):539–550

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Berniker.

Additional information

Communicated by Manoj Srinivasan.

This article belongs to the Special Issue on Control Theory in Biology and Medicine. It derived from a workshop at the Mathematical Biosciences Institute, Ohio State University, Columbus, OH, USA.

Appendix

Appendix

The gradient for the cost function in Eq. 8 is as follows,

$$\begin{aligned}&L = \sum _k^N L_k + \lambda \sum _{i,j,p,q} \left[ (w^1_{ij})^2 + (w^2_{pq})^2\right] \end{aligned}$$
(10)
$$\begin{aligned}&L_k = \frac{1}{2n}(\mu (\Delta X^k)-\bar{O}^k)^T(\mu (\Delta X^k)-\bar{O}^k) \nonumber \\&\quad \quad = \frac{1}{2n}\sum _l^n (\mu _l(\Delta X^k)-\bar{o}^k_l)^2 \end{aligned}$$
(11)
$$\begin{aligned}&\text{ where } \nonumber \\&\bar{o}^k_l = p(o_l=1|\Delta X^k) \nonumber \\&\qquad = \sum ^M_v p(o_l=1|H^v) \prod ^m_i p(h_i|\Delta X^k) \end{aligned}$$
(12)

then we find the following,

$$\begin{aligned} \frac{\partial {}L_k}{\partial {}W^1_{pq}}= & {} \frac{-1}{n}\sum ^n_l[\mu _l(\Delta X_k)-\bar{o}_l]\left( \sum ^M_vp(o_l=1|h^v) ...\right. \nonumber \\&\left. \prod ^m_{j\ne {}p}p(h^v_j|x)dp(h^v_p|x)x_q\right) \end{aligned}$$
(13)
$$\begin{aligned} \frac{\partial {}L_k}{\partial {}B^1_{pq}}= & {} \frac{-1}{n}\sum ^n_l[\mu _l(\Delta X_k)-\bar{o}_l] \left( \sum ^M_vp(o_l=1|h^v)...\right. \nonumber \\&\left. \prod ^m_{j\ne {}p}p(h^v_j|x)dp(h^v_p|x)\right) \end{aligned}$$
(14)
$$\begin{aligned} \nonumber \frac{\partial {}L_k}{\partial {}W^2_{pq}}= & {} \frac{-1}{n}[\mu _p(\Delta X_k)-\bar{o}_p)]\left( \sum ^M_vdp(o_p=1|h^v)...\right. \nonumber \\&\left. \prod ^m_{j}p(h^v_j|x)h^v_q\right) \end{aligned}$$
(15)
$$\begin{aligned} \nonumber \frac{\partial {}L_k}{\partial {}B^2_{pq}}= & {} \frac{-1}{n}[\mu _p(\Delta X_k)-\bar{o}_p)]\left( \sum ^M_vdp(o_p=1|h^v)...\right. \nonumber \\&\left. \prod ^m_{j}p(h^v_j|x)\right) \end{aligned}$$
(16)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berniker, M., Penny, S. A normative approach to neuromotor control. Biol Cybern 113, 83–92 (2019). https://doi.org/10.1007/s00422-018-0777-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-018-0777-7

Keywords

Navigation