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Abstract

Patient-specific models for diagnostics and treatment planning require reliable parameter 

estimation and model predictions. Mathematical models of physiological systems are often 

formulated as systems of nonlinear ordinary differential equations (ODEs) with many parameters 

and few options for measuring all state variables. Consequently, it can be difficult to determine 

which parameters can reliably be estimated from available data. This investigation highlights 

pitfalls associated with practical parameter identifiability and subset selection. The latter refer to 

the process associated with selecting a subset of parameters that can be identified uniquely by 

parameter estimation protocols. The methods will be demonstrated using five examples of 

increasing complexity, as well as with patient specific model predicting arterial blood pressure. 

This study demonstrates that methods based on local sensitivities are preferable in terms of 

computational cost and model fit when good initial parameter values are available, but that global 

methods should be considered when initial parameter value are not known or poorly understood. 

For global sensitivity analysis, Morris screening provides results in terms of parameter sensitivity 

ranking at a much lower computational cost.
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1 Introduction

The use of mathematical models allows for prediction of hidden dynamics, making it 

possible to test hypotheses in silico. It is desirable that models be as simple as possible, but 

not so simple that they fail to predict relevant dynamics. Ideally, models should not contain 

more parameters than required, and it should be possible to determine parameters uniquely 

from available data.

For an input-output relation y = f(θ), a set of inputs; e.g. parameters, initial or boundary 

conditions, θ = [θ1, … , θp] are said to be identifiable at θ* if f(θ) = f(θ*) implies that θ = 
θ* for all admissible θ [45, 9]. Alternatively, if multiple parameter configurations yield the 

same output, the parameters are said to be unidentifiable [4, 26].

Parameters that minimally affect outputs when varied across the admissible space are 

broadly termed noninfluential. Specifically, parameters θ are defined as noninfluential on 
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the space NI(θ) if |f(θ) − f(θ*)| < ε for all {θ, θ*} ∈ NI(θ). The space of influential 

parameters I(θ) is defined as the orthogonal complement of NI(θ) [38]. The challenge of 

identifiability associated with noninfluential parameters may be enhanced when large parts 

of the system modeled is hidden for observation [4, 5, 31].

Parameters that do not uniquely influence the model output may stem from the model 

structure regardless of the parameter configuration and input [6, 26], but may also arise due 

to restrictions in parameter values, model inputs, or outputs [16]. Following the definition 

from Bellman and Åström [6], parameters that are unidentifiable due to the model structure 

are referred to as structurally unidentifiable, whereas parameters that are unidentifiable due 

to practical restrictions, such as availability of data or physical restrictions, are referred to as 

practically unidentifiable [16].

Many complex models rely on numerical methods for finding solutions, which in itself 

brings about challenges associated with identifiability of the solution due to numerical 

precision, problem discretization, and how these may change with model parametrization. 

For such problems it is interesting to study how identifiability challenges arises both from 

the structure of the model, but also from the limitations brought about by parametrization, 

data, model implementation, etc. This study focuses on methods for practical identifiability, 

which are based on numerical methods, rather than structural identifiability, which is often 

based on an algebraic approach. We refer readers to studies by others, e.g. Eisenberg et al. 

[11], Mahdi et al. [23], and Transtrum et al. [42] for works addressing structural 

identifiability from an algebraic perspective.

To illustrate challenges associated with identifiability, this investigation reviews a number of 

methods for determining which parameters have no effect on the model output and sets of 

parameters that may have a redundant effect on the model output. Methods assessing how 

variations (uncertainty) in parameters affect the model output are referred to as sensitivity 

analysis (SA), whereas methods for additionally investigating interactions between 

parameters are referred to as identifiability analysis (IA). Figure 1 illustrates the relationship 

between the properties: Influential (sensitivity), structural, and practical identifiable. While it 

is rather obvious that not all influential parameters are structurally identifiable, it is less 

obvious why parameters can be practical but not structural identifiable. One example is 

highly - but not perfectly - correlated parameters. They can be impossible to estimate in 

practice with real data, while the algebraic structure of the model denote the parameters 

identifiable. On the other hand practical identifiability requires that the parameters be both 

structurally identifiable and influential.

This study presents three methods for quantifying sensitivities: derivative-based (local) 

sensitivities, Sobol indices [39], and Morris elementary effects [27]. In addition, the 

Structural Correlation Method (SCM) [9, 28] and Orthogonal Sensitivities Method (OSM) 

[22] are included to demonstrate practical identifiability and subset selection. These methods 

use statistical identifiability methods to perform subset selection and com pare model fit for 

subsets recovered using each method. To investigate the efficiency of these methods, we 

apply them to a variety of examples of increasing complexity and with different 

identifiability challenges. The first example illustrates structurally unidentifiable parameters, 
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the second discusses identifiability problems materializing due to sparse data, and the third, 

practical problems arising in a simple viscoelastic model with structurally identifiable 

parameters. Finally, the proposed methods are applied to analyze a more complex model 

predicting systemic arterial blood pressure in humans.

2 Methods

We present concepts and methods in the context of a system of ordinary differential 

equations defined by

ẋ(t) = f (t, x(t), u(t), θ)
y ti = h x ti , u ti , θ , (1)

where x is the model state vector, t is the independent variable, u(t) is the model input, θ is 

the parameter vector, and h(x, u, θ) is the observation function that relates the model states 

to the observable model output y(ti) at t = ti.

2.1 Sensitivity analysis

Local sensitivity analysis refers to analysis that quantifies how the model output changes 

with changes in parameter values. Global sensitivity analysis more broadly quantifies how 

variability or uncertainties in responses can be apportioned to variability, or certainties in 

parameters considered throughout the admissible parameter space. We discuss three different 

methods. Derivative-based (local) sensitivities quantify the local influence of each parameter 

on the model output computed from the partial derivative of the model output with respect to 

each model parameter. This method is local in the sense that it is evaluated at a nominal set 

of parameter values. In addition, we present two global methods computing sensitivities over 

a parameter space: Sobol indices [39] and Morris elementary effects [27]. All methods 

presented here are chosen to study practical identifiability analysis, and rely on numerical 

analysis of the model response. These are chosen as they reflect problems arising in analysis 

of real models composed of highly-nonlinear systems, where numerical methods are 

required to obtain solutions. The response displayed by such models are greatly dependent 

on the parameter values. Therefore, practical methods for analyzing identifiability will also 

greatly depend on reasonable initial guess for parameter values and ranges. Given that 

models typically are built using physical principles we expect that reasonable parameter 

range can be obtained from a priori knowledge of system behavior, such as steady-state or 

mean values.

2.1.1 Derivative-based (local) sensitivities—Local derivative-based sensitivities 

Sθi
y (t) can be computed by differentiating the model output y(t) with respect to the parameters 

θ¡ evaluated at Θ,

Sθi
y (t, θ) = ∂y(t, θ)

∂θi
. (2)
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For some problems, these can be calculated analytically, but for more complex problems it is 

advantageous to numerically approximate local sensitivities. Local sensitivities are typically 

computed using sensitivity equations, finite differences or automatic differentiation [30,38].

The sensitivity equations method utilize the fact that the sensitivities of the model states to 

parameter values Sθi
x = ∂x

∂θi
 can be computed as solutions to the ode

d
dt

∂x
∂θi

= d f
dθi

+ d f
dx

∂x
∂θi

dSθi
x

dt = Jθi
+ JxSθi

x ,

(3)

obtained by differentiating the model dx
dt = f (t, x, θ) with respect to the parameters θ¡. Here 

Jθ = ∂ f
∂θ  denotes the parameter Jacobian, and Jx = ∂ f

∂x  the model Jacobian, which can be 

calculated analytically. Subsequently, the sensitivities of the model output Sθi
y  can be 

calculated by application of the chain rule on the output function y = h(x, t, θ).

Alternatively, the derivative with respect to θi can be approximated using the finite-

difference scheme

Sθi
y (t) =

y t, θ + hei − y(t, θ)
h ,

Here the step size h is chosen to reflect the precision of the model output, and e¡ is the unit 

vector in the i’th component direction. If the error in the model evaluation is on the order of 

ε, the step size should be h = √ε to obtain an error of same magnitude in the sensitivities 

[29]. Alternatively, one can avoid underflow due to subtraction by employing complex sums 

[25].

Finally, automatic differentiation (AD) is a third option that uses the chain rule while solving 

the differential equations by extending the basic numerical operations to include calculation 

of the derivative through recursive and automatic application of the chain rule [14]. AD 

routines have been developed for variety of programming languages such as C/C++, Fortran, 

Matlab and Python [38], and are now included in optimization packages and modeling 

frameworks such as ACADO [17] and CasADi [3]. Accessibility of AD has improved 

tremendously in recent years, and offers a tool for differentiation that ensures precision in 

the derivatives without the hassle of adjusting the step sizes or calculating the model 

Jacobian analytically [13].

2.1.2 Sobol sensitivity indices—This method was originally developed by Sobol [41] 

but several variations exists [33]. The description of the Sobol sensitivity indices and the 
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algorithm for calculating first-order effects follows that of Smith [38], but with 

modifications to reflect the algorithm presented by Jansen [20].

Consider a scalar-valued nonlinear model

Y = f (Θ) (4)

with parameters represented by the vector of random variables Θ = [Θ1, … , Θp]. Here 

Θi ∈ Γi ⊂ ℝ, where Γ¡ is the domain of the random variable Θi. The joint probability density 

function is defined as ρΘ(θ) = ∏k = 1
p ρΘk

θk , where ρΘk
θk  denotes the marginal probability 

density function. For mutual independent variables, the joint distribution is simply the 

product of the marginal densities.

To avoid scaling issues, we transform parameters to Γk = [0, 1]. We assume that they are 

uniformly distributed to avoid inadvertent biases [10].

Consider the model decomposition

f (θ) = ∑
i ⊆ 1, 2, …, p

f i θi (5)

where f is the model output, i = {i1, … , is} is the parameter set with cardinality s, 

θi = θi1
, …, θis

 and f∅ = f0 [40, 38]. If

∫0
1

f i θi ρk θk dθk = 0,

for any parameter θk and i = {1, … , s} that includes k, the decomposition is unique and the 

component functions are given by

f i θi = ∫[0, 1]p − s f (θ)ρθ θ i dθ i − ∑
l′ ⊂ i
l′ ≠ i

f l′ θl′ .

To determine the effect of the parameter interaction in the set i, consider the conditional 

partial variance

Di = ∫[0, 1]s
f i
2 θi ρθ θi dqi = var [𝔼(Y |θi)] − ∑

l′ ⊂ i
l′ ≠ i, l′ ≠ ∅

Dl′,

and the total variance
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D = ∫0
1

f 2(θ)ρΘ(θ)dθ − f 0
2 = ∑

i ⊆ 1, 2, …, p
i ≠ ∅

Di .

The Sobol indices are defined as

Si =
Di
D giving ∑

i ⊆ 1, 2, …, p
i = ∅

Si = 1 . (6)

The total sensitivity index

STi
≡ ∑

kii ∈ k
Sk (7)

describes the sensitivity of the model output variance to the parameter k, including the 

effects of interactions with other parameters.

A Monte Carlo approach for estimating the first-order indices S¡ (6) and total indices STi
 (7) 

requires M2 model evaluations for each parameter, where M is the number of points in the 

parameter space used to evaluate the conditional mean 𝔼(Y |θi); see Smith [38]. Saltelli et al. 

[33] proposed an algorithm that reduces the number of model evaluations required to M(p 
+ 2), whereas Algorithm 1, used in our study, is due to Jansen [20] and requires 2M(p + 2) 

evaluations for a better trade-off between precision and least squares error. It should be 

noted that these algorithms truncate the variance decomposition after 2nd order. If higher-

order interactions are present in the model, these algorithms may yield incorrect estimates.

2.1.3 Morris elementary effects—Morris screening computes the sensitivity of the 

model output to each parameter θi by sampling the elementary effects [27,38]

di(Θ) =
f Θ + Δei − f (Θ)

Δ ,

from a grid with points Γℓ = 0, 1
ℓ − 1 , …, 1  in the parameter distribution range Γ = {0, 1}. 

The number of points (in each dimension) of the grid and their value Δ is important as they 

determine the sampling of the parameter space. By choosing ℓ to be even and Δ = ℓ
2(ℓ − 1) , it 

is possible to ensure an even probability sampling from Γℓ that guarantees equal probability 

for all points in the grid [38]. Similar to the Sobol indices f denote the scalar-valued 

nonlinear model given in (4).

By estimating the mean and variance of the distribution |di(θ)|, for which
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ui* = 1
r ∑

j = 1

r
|di

j(θ)| ,

σi
2 * = 1

r − 1 ∑
j = 1

r
di

j(θ) − μi
2 ,

μi = 1
r ∑

j = 1

r
di

j(θ)

we obtain an estimate of the sensitivity noting large local changes attributed to parameter θi.

The implementation presented in Algorithm 2 creates a trajectory through the grid in the 

parameter space, such that for each step in the trajectory, just one parameter is changed. 

Creating such a trajectory one elementary effect sampling

Algorithm 1

Sobol indices.

Using 2M model evaluations for each of the p parameters:

1. Create two M × p sample matrices

A =

θ1
1 ⋯ θi

1 ⋯ θp
1

⋮ ⋮

θ1
M ⋯ θi

M ⋯ θp
M

, B =

θ1
1 ⋯ θi

1 ⋯ θ p
1

⋮ ⋮

θ1
M ⋯ θi

M ⋯ θ p
M

,

where θi
j and θ i

j are parameter samples drawn from the distribution 

corresponding to parameter i, for each sampled parameter configuration j = 1,

…,M. In addition, create the matrix

C = [A B]T ,

where T denotes transpose.

2. Create two M × p matrices

AB
i =

θ1
1 ⋯ θi

1 ⋯ θp
1

⋮ ⋮

θ1
M ⋯ θi

M ⋯ θp
M

, BA
i =

θ1
1 ⋯ θi

1 ⋯ θ p
1

⋮ ⋮

θ1
M ⋯ θi

M ⋯ θ p
M

,

3. Compute the model output vectors

yA = f (A), yB = f (B), y
AB

i = f AB
i , y

BA
i = f BA

i ,
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nothing that

yC = yAyB
T .

4. Estimates of the first order sensitivity indices can be computed by

Si* =

1
M ∑ j = 1

M yA
j y

BA
i

j − yA
j yB

j

1
2M ∑ j = 1

M yC
j yC

j − 1
M ∑ j = 1

M yC
j 2 =

1
M yA

T y
BA

i − yB

1
2M yC

TyC − 1
M ∑ j = 1

M yC
j 2 ,

STi
* =

1
M ∑ j = 1

M yA
j y

Ab
i

j
2

1
2M ∑ j = 1

M yC
j yC

j − 1
M ∑ j = 1

M yC
j 2 =

1
M yA − y

AB
i

T
yA − y

AB
i

1
2M yC

TyC − 1
M ∑ j = 1

M yC
j 2 .

can be obtained for each of the p parameters using p + 1 function evaluations [27, 38].

It should be noted that both the Morris- and Sobol based methods are based on the 

assumption of mutually independent parameters and can yield inaccurate results for 

correlated parameters. Whereas extensions to Sobol theory exist for correlated parameters, 

they require knowledge of the underlying distribution and can yield negative indices that are 

difficult to interpret.

2.2 Parameter interactions

We employ two methods for constructing parameter subsets with no parameter interactions 

using the Structural Correlation Method (SCM) and the Orthogonal Sensitivities Method 

(OSM). These methods are investigated. Both methods are

Algorithm 2

Morris Indices.

For each j = 1,…,r:

1. Sample an initial parameter vector θ* from the uniform distribution 𝒰[0, 1]p .

2. Create a (p + 1) × p permutation matrix B* where each row represents a 

parameter configuration. A completely deterministic permutation matrix is 

given by

B j* = J p + 1, pθ* + ΔB ,

where Jp+1,p is a (p + 1) × p matrix of ones, Δ is the chosen grid step size, and 

B is a lower triangular matrix of ones. Each row in B* differs in exactly one 
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column, corresponding to the parameter for which the step is made. A random 

permutation matrix can be obtained by applying the orientation matrix

B j* = J p + 1, pθ* + Δ
2 2B − J p + 1, p D* + J p + 1, p P* ,

where the p × p matrix D* is diagonal with elements randomly chosen from 

the set {−1, 1}, and the p × p matrix P* is created by perturbing the columns 

of a p × p identity matrix.

3. Evaluate the model output for each of these p + 1 configurations, in the (p 
+ 1) × 1 vector

y j = f B j* .

4. Through analysis of B* determine which two consecutive rows k and k + 1 

that corresponds to each parameter i, and calculate the corresponding 

elementary effect,

di
j =

y j, k + 1 − y j, k
Δ .

Finally, the sampling mean μi* and variance σi
2 * for each parameter i can be 

estimated by

ui* = 1
r ∑

j = 1

r
di

j(θ) ,

σi
2 * = 1

r − 1 ∑
j = 1

r
di

j(θ) − μi
2 ,

μi = 1
r ∑

j = 1

r
di

j(θ) .

based on the linearization of model output, which can be obtained without significant 

computational cost. Other methods, including the profile likelihood approach by Raue et al. 

[31], can provide more insight into parameter interactions, but crequire a significantly higher 

computational cost. Both the SCM and the OSM methods are based on analysis of the Fisher 

Information Matrix (F) given by

Olsen et al. Page 9

Biol Cybern. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



F = STS , (8)

where S is the sensitivity matrix defined in (2), evaluated at a nominal parameter value.

For least-squares optimization problems, the goal is to determine a parameter vector θ* that 

minimizes the objective function

SS = 1
2 ∑

i = 0

n − 1
ri

2, ri = vi − yi , (9)

where ri are the residuals, i.e. vi the measured data and yi = f(t¡) the ith output of the 

function. For this optimum, the gradient vector is zero; i.e. g(θ*) = 0. The second-order 

Taylor expansion of the objective function at the optimum point θ* in the parameter space is 

given by

SS (θ) = SS θ* + ΔTg + ΔTHΔ + 𝒪 Δ3 , (10)

where Δ = (θ − θ*), g is the gradient

g j = ∂SS
∂θ j

= ∑
i = 0

n − 1
ri

∂ri
∂θ j

and H is the Hessian – a symmetric matrix with second-order partial derivatives – of the 

objective function with entries

H jk =
∂g j
∂θk

= ∑
i = 0

n − 1 ∂ri
∂θk

∂ri
∂θ j

+ ri
∂2ri

∂θ j∂θk
.

Ignoring higher-order terms of the Taylor expansion in (10), and re-arranging terms yields

SS(θ) = SS θ* + ΔTHΔ

since g(θ*) ≈ 0. If H is singular there exists some Δ ≠ 0, such that HΔ = 0, which in turn 

means that SS(θ) = SS(θ*), and thereby, that the minimizer of the objective function is not 

unique and some parameters are unidentifiable.

When r is small or when r varies linearly near a minimum of (9), a reasonable approximation 

to the Hessian is obtained by neglecting the second-order term [47]
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H jk ≈ ∑
i = 0

n − 1 ∂ri
∂θk

∂ri
∂θ j

.

Since ri = v¡− y¡ the derivative of the residual is given by

∂ri
∂θ j

= −
∂yi
∂θ j

= − Si j

and the Hessian approximation can be formulated as matrix product

H ≈ STS = F

and the FIM can be used in place of the Hessian for local identifiability analysis. Whereas 

the previous presentation is formulated using the absolute sensitivities, similar arguments 

can be made for relative sensitivities

Si j =
∂lnyi
∂lnθ j

.

Defining yi = lnyi and θ j = lnθ j, the Hessian of the relative objective function is then 

formulated as

H = STS ,

which can be approximated by the FIM using the relative sensitivities.

As noted previously, parameter identifiability requires that the Hessian H ≈ STS is non-

singular. An immediate consequence of this is that the columns of S need to be nonzero and 

cannot be linearly dependent.

2.2.1 Structural Correlation Method—Correlations between parameters can be used 

to describe how the parameter values depends on each other when fitting experimental data 

from the same system. With a series of estimates for parameters a and b, the covariance and 

correlation are given by

Cov[a, b] = E[(a − E[a]) (b − E[b])] ,

cor [a, b] = Cov[a, b]
Cov [a, a]Cov [b, b] .

While this makes it clear how to understand what correlations are, the computational cost 

associated with this method is high.
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For problems with constant measurement variance σ, the parameter covariance is the inverse 

of the FIM (given in (8)), i.e.

C = F−1,

which enables the calculation of correlations by

ci j =
Ci j

CiiC j j
.

In the structural correlation method, a pair of parameters with a large correlation – their 

uncertainty is strongly coupled – cannot both be estimated [19]. For practical applications, a 

correlation threshold γ < 1 is set to determine pairs of parameters that are correlated. For 

each pairwise correlated parameters, the least sensitive is identified as described in 

Algorithm 3.

2.2.2 Orthogonal sensitivities—The orthogonal sensitivities method developed by Li, 

Henson and Kurtz [22] combines two of the methods presented by Miao et al. [26]: the 

principal component analysis (PCA) and the orthogonal method. Whereas the structural 

correlation method is based on removing pair-wise correlation, the orthogonal sensitivities 

method constructs a subset by

Algorithm 3

Structural Correlation Method

1. For each parameter, compute the norm of the sensitivity of the model output 

to this parameter. We choose the 2-norm

S j = ∑
i = 0

N − 1
S j

2 ti .

2. Fix insensitive parameters for which S j < ε, where ε is the precision used 

when calculating the sensitivities.

3. Repeat the following steps.

a. Calculate the covariance matrix by inverting the FIM, C = (F)−1 = 

(STS)−1, and determine correlations as described in Section 2.2.1. If 

the largest correlation is smaller than some value γ, the subset 

reduction procedure is complete. If the matrix is invertible, some 

parameters are perfectly correlated, and analysis can only be 

continued when one of these fixed.

b. For the correlation with the largest absolute value, fix the parameter 

with the lowest overall sensitivity, determined by the norm of the 

sensitivities S j .
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c. The parameter to be fixed is noted, and the column of S 
corresponding to this parameter are removed from S, before 

correlations are calculated again, and the process is repeated until 

the stopping criteria in (a) is satisfied.

adding one parameter at the time. For each parameter, an importance index e is calculated 

using PCA and each time the subset of already selected parameters is updated, we compute 

the orthogonality index d for the remaining parameters. At each iteration the parameter with 

the highest product I = ed is added to the subset [22].

3 Results

In this section, we illustrate challenges associated with the various identifiability concepts 

using the algorithms summarized in Section 2. This will be accomplished using four 

examples illustrating different causes of unidentifiability: problem structure, availability of 

data, and a mixture of both. Note, that for the global sensitivity methods, the parameter 

values are mapped from [0, 1] to relevant intervals when the model is evaluated.

3.1 Structural unidentifiability

Consider a distensible blood vessel with a volume given by x. Blood flow into the vessel qin 

= bu(t) is proportional to u(t) with proportionality b, while the flow out is proportional to the 

volume qout = −ax. Here a is the constant of proportionality. Assume data y is proportional 

to the blood volume, y = cx, and treat the initial blood volume as a parameter x0. For this 

system, the change in blood volume x can be quantified by the differential equation

ẋ(x, t)
y(x)

=− ax+bu(t), x(0)= x0
= cx ,

(13)

Algorithm 4

Orthogonal Sensitivities Method

1. For each parameter j calculate the Importance Index

e j =
∑i = 1

m λiQ ji

∑i = 1
m λi

, (11)

where γi is the i’th eigenvector of the matrix F = STS with the corresponding 

eigenvector being the i’th column of the matrix Q.

2. Select the parameter with the highest value of e as the first parameter, θk1
.

3. Repeat the following steps until no more parameters can be added to the 

subset.
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a. Calculate the projection of the sensitivity vector SΘlk + 1
 for each 

parameter j that has not been selected, onto the space spanned by the 

sensitivities of the k already selected parameters 

θ𝓁1
, …, θ𝓁k

, Ss = Span Sθ𝓁1
, …, Sθ𝓁k

,

s j = ∑
i = θ𝓁1

θ𝓁k
αiSi .

This is accomplished by finding the coefficients αi that solves

min
αi

1
2 S j − s j

T
S j − s j ,

which is equivalent to solving the linear system

sθ𝓁1

T sθ𝓁1
⋯ sθ𝓁k

T Sθ𝓁1
⋮ ⋱ ⋮

sθ𝓁1

T sθ𝓁k
⋯ sθ𝓁k

T sθ𝓁k

α =

S j
TSθ𝓁1

⋮
S j

Tsθ𝓁

, (12)

as long as the columns corresponding to the already selected 

parameters are linearly independent.

b. The linear independence of each parameter j is determined by 

considering the sine of the angle between the projection s and S j .

This yields the orthogonality index,

d j = sin arccos
S j

Ts

S j s
.

c. Select the parameter j that has the highest Identifiability Index,

I = e jd j ,

Note: Relative sensitivities were used in [22] but absolute sensitivities may be 

used as well.

where a, b, c and x0 are model parameters. The model output is taken to be
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y(t) = cx(t) = cx0e−at + cb∫
0

t
e−a(t − s)u(s)ds . (14)

Note that the parameter c only appears in combination either with the initial condition 

parameter x0 or with the parameter b. Hence, c, b and x0 are not mutually identifiable since 

they are not uniquely determined by the data.

The local sensitivities can be calculated analytically by way of the ODE system

∂y
∂a (t, θ) = −ctx0e−at − cb∫

0

t
(t − s)e−a(t − s)u(s)ds,

∂y
∂b (t, θ) = c∫

0

t
e−a(t − s)u(s)ds,

∂y
∂c (t, θ) = x0e−at + b∫

0

t
e−a(t − s)u(s)ds,

∂y
∂x0

(t, θ) = ce−at .

(15)

Using the input function u(x) = sin(x), parameters a = 1.5, b = 2, c = 3 and x0 = 1 for t¡ ∈ [0, 

7] yield the sensitivities shown in Fig. 2.

When all parameters are included, or when only a is excluded, the matrix STS is singular due 

to linear dependence between the sensitivities to the parameters b, c and x0. This is indicated 

by condition numbers on the order of 1016, whereas fixing of b, c or x0 reduces the condition 

number to 101. We note that this matches well with the seemingly linear dependence of the 

sensitivities shown in Fig. 2.

Using the orthogonal sensitivities (OSM) in Algorithm 4, we obtained the ranking compiled 

in Table 1. We note that:

1. a is ranked as most influential. The sensitivity plot in Fig. 2 confirms this, yet b 
and c are almost as influential.

2. b is ranked 2nd. The orthogonality of b is only 0.45 which is lower than that of 

x0, but b is chosen since the importance index is higher.

3. x0 is ranked 3rd. The importance index of x0 is lower (0.18) than that of c (0.39), 

which is understandable considering the magnitude of the sensitivities in Fig. 2. 

However, since the sensitivity to x0 has a larger projection (0.97) to those already 

selected, x0 is chosen over c.

4. c is ranked last. When a, b, x0 have already been chosen, the orthogonality index 

of c is 0.00. This confirms the observation that the sensitivities are linearly 

dependent.
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Since there is a linear dependence in S, the FIM (8) is not invertible. Hence, it is impossible 

to calculate statistical correlations of the parameters using the Cramer-Rao bound [26]. As 

suggested by the Structural Correlation Method (SCM) one have to remove the least 

sensitive parameter if the sensitivity matrix is singular and so on until a non-singular 

sensitivity matrix is obtained. Removing one of the parameters b, c or x0 the correlation 

matrix can be calculated. This results in off-diagonal elements with an absolute value 

significantly lower than 1, indicating that all remaining parameters are identifiable when b, c 
or x0 is fixed. This problem with linear dependence could also be remedied by non-

dimensionalization, here employed by scaling the model with respect to the initial condition, 

e.g. letting x = x/x0 , x0 = 1, which in turn would give the output 

yy(t) = cx(t) = ce−at + cb∫ 0
t e−a(t − s)u(s)ds, where b = b/x0.

One important final remark is that fixing parameters reduces the degrees of freedom of the 

model and changes the model. For this example, the interaction between b, c and x0 makes it 

impossible to determine which two parameters are identifiable. Since fixing one parameter 

effectively changes the model, it does not make sense to compare parameter values for x0 in 

an optimization where a is fixed with another value obtained with b fixed. These two 

estimates of x0 should not be expected to be similar as they are de facto parameters of 

different models. In other cases, it may be that noninfluential parameters are fixed. In 

contrast to cases with parameter interactions, this does not introduce a bias, as the 

noninfluential parameters have no impact on model behavior, and therefore also no impact 

on parameter estimates.

For the global sensitivity analysis methods the parameters are sampled from a uniform 

distribution ranging from 3
4  to 5

4  times the nominal value used for the local sensitivities. The 

model is evaluated for the times t¡ = i/100, i ∈ [0,700], and the output considered is the sum 

of squares,∑i = 0
700 y2 ti . The total sensitivity index for the Sobol method and the elementary 

effects of the Morris method yields the same ordering of the parameters: c, x0, a, b. These 

are different from the results obtained with the local methods, and also from what one would 

expect observing the local sensitivities in Fig. 2.

3.2 Practical unidentifiability

For practical unidentifiability, we consider two cases. The first case illustrates how 

parameters can be unidentifiable due to practical restrictions in model output measurements. 

This example shows how such restrictions can render a parameter noninfluential or fail to 

highlight differences in model effects. The second case is a model of a viscous material 

using a Voigt body model. While it is structurally identifiable, like the example in the first 

case, it is not clear whether the parameters are practically identifiable.

3.2.1 Case A: Aliasing—Consider the function
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f (t, θ) = ∑
k = 1

p
θk

2 f k(t), f k(t) = sin(2πkt) . (16)

If the function is restricted to a certain rate, one may experience aliasing - appearing when 

an oscillating signal is recorded at a rate that make the signal appear to be oscillating at a 

lower frequency or not at all. This example is a nonlinear version of the aliasing example 

presented by Smith [38].

Assume that the function f can be evaluated at n evenly spaced values 

ti = iΔt, i = 0, …, n − 1, Δt = 1
n − 1 , and that the parameters are restricted to the interval (0, 

1). For example, for n − 1 = 4 the function can be observed/evaluated at the points t = 0, ¼, 

½, ¾, 1.For p = 4 and n − 1 = {4, 8, 16, 256} the results are shown in Fig. 3(a)-(d), 

respectively. Panel (a) shows that for n − 1 = 4, there are only two non-zero basis functions 

and hence it is impossible to estimate all four parameters. Furthermore, the basis functions, 

f1 and f3 are linear dependent, implying that all possible model outputs can be represented 

by either of these functions. In (b) three basis function are non-zero, but no basis functions 

are linearly dependent. Hence, the parameters determining the weight of the non-zero basis 

functions are identifiable. For (c-d) all basis functions are non-zero and linearly independent, 

implying that all parameters are identifiable. The configurations corresponding to panel (a-c) 

will be analyzed using the methods of in Section 2.2.1.

The local sensitivities can be calculated analytically. They are given by

∂ f
∂θk

(t, θ) = 2θk f k(t) . (17)

Since it has already been shown that the basis functions are linearly dependent if evaluated 

at n − 1 = 4, 8, the sensitivities will also be linearly dependent. Therefore, it is known in 

advance that it is not possible to estimate all parameters uniquely for these configurations. 

Since the basis functions are linearly independent for n − 1 = 16 so are the sensitivities, and 

all parameters are identifiable.

Structural Correlation Method: Since there is a linear dependence between the four basis 

functions (two of them being zero), the FIM F = STS is not invertible, and therefore a linear 

combination of columns is trivially zero. Calculating the condition numbers, the F = STS-

matrix for different values of n reveals that there is linear dependence in the sensitivities for 

n − 1 = 4, 8, but not for n − 1 = 16. As the FIM is invertible for n − 1 = 16, correlations can 

be calculated. This results in the correlation matrix with all zero entries indicating that no 

parameters are correlated.

Orthogonal Sensitivities Method: Table 2 shows the rankings obtained using the 

Orthogonal Sensitivities Method for n − 1 = 4,8,16. For n − 1 = 4 only one parameter is 
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found to be identifiable, whereas three are found identifiable for n − 1 = 8, and all 

parameters are identifiable for n − 1 = 16.

For the global sensitivity analysis methods we assume that parameters are independent and 

uniformly distributed,

θi 𝒰(0, 1) .

From the local analysis and arguments determining the dimension of the spanned space, it is 

expected that parameters θ2 and θ4 are noninfluential for n − 1 = 4, that θ4 is noninfluential 

for n − 1 = 8, and that all parameters are influential for n − 1 = 16. In addition, it is expected 

that the effect of all influential parameters on the model output are similar in magnitude.

Sobol indices: The estimated first-order Sobol indices Si* and total indices STi*  are listed in 

Table 2. As expected, for n − 1 = 4 only θ1 and θ3 have an effect on the model output, while 

θ2 and θ4 have no effect. Also, note that the total effect estimates STi*  are similar for θ1 and 

θ3.

Likewise, for n − 1 = 8 and n − 1 = 16 the estimated indices match the expected behavior 

from the analysis of local sensitivities and the basis functions of the model.

Morris indices: All parameters are expected to have equal sensitivities, due to equal weights 

and same mean value. Parameter sets reducing to the same basis functions (n − 1 = 4) are 

expected to show some second- or higher-order effects. The resulting indices are shown in 

Table 2. The ordering predicted by the two global methods are consistent.

Next, we expand this aliasing example to p = n − 1 = 10 with results shown in Table 3. Both 

Sobol indices and Morris elementary effects suggests that all parameters are equally 

influential except for θ5 and θ10, which have negligible impact on the model output. This is 

confirmed by Fig. 4 where the graphs of the corresponding basis functions are plotted for the 

given resolution, and three higher resolutions. When n − 1 = 10, all samples of basis 

functions corresponding to θ5 and θ10 are zero. This result is consistent with the rankings 

obtained using OSM, also shown in Table 3. As indicated by these tables, there are two 

parameters θ5 and θ10 that do not contribute to the model output. For these subsets, the FIM 

is singular, and correlations cannot be calculated by inverting the FIM. Here consideration of 

which parameters’ fixation reduces the FIM condition number the most is required.

For the problem with p = 4 and n − 1 = 8, due to the resolution the parameter θ4 is 

noninfluential, while θ1, θ2, θ3 are linearly independent, and are therefore all identifiable. 

Adding to the sum an interaction term θ1 θ4 sin(2πt), gives the response-function

f (t, θ) = θ1θ4sin(2πt) + ∑
k = 1

4
θk

2sin(2πkt) . (18)
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One would expect that θ4 now has influence on the model output, but that a large part of the 

influence is through interaction. Table 4 shows the ordering from OSM using parameter 

values θ¡ = 1, as well as Sobol indices and Morris elementary effects. From OSM, we 

observe that the parameter θ4 has an impact (the parameter e = 0.18)], but it is does not 

contribute any dynamics not already represented by the other parameters, namely θ1 that it is 

linearly dependent on. Again, since there is a linear dependence in the sensitivities, 

correlations cannot be calculated from FIM. For the global methods, we note that all 

parameters are found to be influential, confirming that these methods measure sensitivity 

and not identifiability.

3.2.2 Case B: Voigt body model—The previous aliasing example illustrated a case of 

practical unidentifiability. Unfortunately, for most models identifiability issues are more 

complex, as illustrated in this example.

Consider the two-element Voigt body model, shown in Fig. 5, which models the viscoelastic 

strain of the baroreceptor neurons in large arteries [2, 8, 24]. The deformation of the 

components can be described by the differential equations

dε1
dt = − α1 + α2 + β1 ε1 + β1 − β2 ε2 + α1 + α2 εw

dε2
dt = −α2ε1 − β2ε2 + α2εw ,

(19)

where α¡ = KN/B¡ and β¡ = K¡/B¡. Let ε1 be the model output, the Heaviside function be the 

model input εw = H, and nominal parameter values be α1 = 2, α2 = 1, β1 = 2, β2 = 0.4. For 

the global sensitivity analysis methods, we sample the parameter values with uniform 

probability on the intervals of 75 – 125% of the nominal value; e.g. α1 ∈ 2 × (0.75, 1.25). 

We take the output variable to be ∫ 0
5ε1

2(t)dt. The model is solved for t ∈ (0, 5), with the 

Heaviside function changing at t = 0.5. Parameters α1, α2 determine how the strain is 

distributed between the two Voigt bodies, whereas β1, β2 determine the relaxation time for 

each Voigt body.

The local sensitivities are calculated using sensitivity equations and are plotted in Fig. 6 

whereas analysis results are presented in Table 5.

Mahdi, Meshkat and Sullivant [23] found that the model is structurally identifiable, when 

regarding wall strain εw as model input and ε1 as model output. Our analysis suggests that 

some parameters may be difficult to determine in practice. OSM yields that α1 and β1 have 

low identifiability indices based on low importance indices, while SCM yields large 

correlations between parameters in the pairs (α1, α2), (α1, β2) and (α2, β2). The global 

sensitivity analysis methods yield similar influence for all parameters.

3.3 Application to a physiological model

For the final application in mathematical biology, we consider a model of the cardiovascular 

system that describes the blood pressure in the systemic circulation of the human body. The 
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model is derived from an electrical circuit analogy with a forcing function that models the 

pumping heart. It is described by a system of linear differential equations with an explicit 

forcing function. While the model is fairly simple, the relationship between, and 

identifiability of, the model parameters is not obvious due to the nonlinear dependence of 

model output on the parameters. We will analyze the model, build subsets and test the ability 

of the subsets to fit experimental data.

The model lumps the circulation into 5 compartments; Upper body arteries (au), lower body 

arteries (al), lower body veins (vl), upper body veins (vu) and the heart (h). For a more 

thorough description of the model see [46]. Figure 7 shows a schematic of the model, where 

components are depicted with the symbol of their electrical equivalent.

The model dynamics can be described from equations relating pressure (analogous to 

voltage) p¡, flow (analogous to current) q¡ and volume (analogous to charge) V¡. As for most 

compartment models, the change in volume V is given by

dV
dt = qin − qout ,

and the flow and pressure related as described by Ohm’s law; i.e.

q =
pin − pout

R ,

where R is the resistance, and finally pressure and volume is related as

p − pext = C V − Vun . (20)

Here C is the compartment compliance (analogous to capacitance), Vun the compartment 

unstressed volume, and pext = 0 is the tissue pressure.

The left ventricular pressure is predicted similar to (20), except it is formulated using a time 

varying elastance function Elv(t) (inverse of compliance, E = 1/C) given by

plv = Elv(t) V − Vun ,

Elh t =

EM − Em
2 1 − cos π t

TM
+ Em 0 ≤ t ≤ TM

EM − Em
2 1 + cos π

t − TM
TR

+ Em TM ≤ t ≤ TM + TR ,

Em TM + TR < t .

Figure 8 shows experimental blood pressure data and model output from the upper body 

arteries, computed using nominal parameter values. Since the blood pressure model does not 

have any description of the fluid dynamics of the blood, it is not able to predict the second 

peak in each cycle, as it originates from a reflective wave in the arteries. In attempt to 
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encapsulate the modeled dynamics, we have selected two points in each cycle where the 

arterial blood pressure is not affected by the reflected wave for optimization during systole 

and diastole. Subsequently, for SA we selected five points centered around each of these, as 

illustrated in Fig. 8, resulting in the output times t = ti, i ∈ [1, 5 × 2 × N] for N cycles. 

Inspired by Williams et al. [46], we added total blood volume and cardiac output (CO) – the 

total blood flow – to the model output, but only evaluate these at systole; that is, t = 
t8+10(j−1), j ∈ [1, N],

ym = pm t1 , …, pm t10N , COm t8 , …, COm t8 + 10(N − 1) , Vm t8 , …, Vm t8 + 10(N − 1) .

To balance the importance between matching pressure, blood volume, and cardiac output, 

blood volume and cardiac output are scaled by a constant factor α = 5. The resulting 

residual is given by

r = 1
10N + α2N

y1
m − y1

d

y1
d , …,

y10N
m − y10N

d

y10N
d , α

y10N + 1
m − y10N + 1

d

y10N + 1
d , …, α

y12N
m − y12N

d

y12N
d .

Initial values for parameter values and state variables (given in Table 8) are calculated from 

steady state data, as described by Williams et al. [46]. These values are used to calculate 

local sensitivities via sensitivity equations. For the global sensitivity analysis methods, to 

restrict parameters to positive values, the parameters are assumed to be lognormally 

distributed. Parameter values are sampled using a uniform distribution for the Morris and 

Sobol methods, and translated to corresponding percentile on log-normal distribution for the 

parameters. As the Morris methods sample from the extreme points on ℓ-grid, the sampled 

points have been scaled to fall within the 1 and 99 percentiles, since the 0 percentile 

corresponds to 0, and the 100 percentile does not have a well-defined value on the log-

normal distribution. The global methods consider the least squares error J = rTr for the 

analysis.

Model data include upper body arterial pressure and heart rate measured over 32 cycles for a 

subject resting in supine position. Heart rate is used as a model input to set the length of 

each cardiac cycle, and blood pressure is to be compared to the model output. The fact that 

data is only available from one compartment means that the model is likely 

overparametrized. As common from electrical circuits, it can be observed that the two paths 

from the arterial to the venous side becomes almost equivalent. For this reason, interactions 

are expected between corresponding parameters in the upper and lower part of the 

circulation.

Figure 9 shows the ordering when parameters are ranked by the two-norm of sensitivities. 

Fixing the three least influential parameters, and then iteratively fixing the least influential 

parameter for the largest correlation pair until no correlation exceed 0.9 yields the subset

θSCM = EM, Em, tM, Ralvl, Cal, Cvl, Rvlvu, Raual ,
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using the SCM method.

Considering parameters with an I-value lower than 5 × 10−3 as unidentifiable, the OSM 

method yields the parameters

θOSM = EM, Em, tM, Ralvl, Cal, Cvu, Cau, V0

as shown in Table 6.

Table 6 also shows the sensitivity indices obtained for the Sobol and Morris methods. The 

two methods agree remarkably well, yielding just two parameters that differ in order. 

Choosing eight parameters, as with the local methods, the global sensitivity analysis 

methods yields the subset

θ Sobol  = θ Morris  = R alvl , R auvu , C al , C au , Em, EM, Cvu, Cvl .

The three subsets have four parameters in common,

θ common  = EM, Em, Ralvl, Cal ,

which we will consider for optimization.

We used the Levenberg-Marquardt optimization method [21] to optimize the different 

subsets minimizing the least squares error, fixing all parameters not included in the subsets 

at their nominal values. Table 7 summarizes the optimization results: listing the number of 

estimated parameters, the least squares error, and the number of steps required by the 

optimization routine. Figure 8 shows the upper arterial pressure, simulated using the 

optimized parameter values for each parameter set and Table 8 shows the estimated 

parameter values. The optimization was run over the same time points used in the SA, and 

the plot shows a zoom over one cardiac cycle. From Fig. 8 it is clear that more than one 

parameter set can be used to obtain a reasonable fit. As expected, the estimated parameter 

values vary reflecting the bias associated with fixing certain parameters at specific values.

To determine the variability of the model output, we sampled 5,000 points from each subset 

parameter space and calculated the least squares error at each point. Figure 10 shows the 

least squares error distribution for each subset using Gaussian kernel density estimation [37], 

as well as for the full subset with all parameters included. It is evident that the OSM, SCM 

and global subsets align well with the nominal distribution. As the common subset aligned 

well, but slightly worse than the others, we investigated the distribution when reducing the 

subset even more. As the figure shows, the distribution is fairly similar when using the 

common subset and removing Em, however when removing EM the distribution deviates.
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4 Discussion

In this investigation, we presented methods and algorithms for quantifying model sensitivity 

to parameters and consistently identifiable parameter subsets. We used partial derivatives of 

the model output with respect to parameters [26, 28, 32, 34] to locally estimate the 

parameter influence, and Sobol Indices [41, 38] and Morris Measures [27, 38] for global 

sensitivity analysis.

Whereas the latter allowed us to determine which parameters were noninfluential, they do 

not specify if any parameters are functionally related or the model over-parameterized. To 

remedy this challenge we considered two identifiability analysis methods: The Structural 

Correlation Method (SCM) [28] and the Orthogonal Sensitivities Method (OSM) [22]. The 

SCM constructs subsets by initially fixing noninfluential parameters, and then subsequently 

fixing parameters one by one until no linear pairwise correlations are left [28].

The OSM ranks the parameters by first selecting the most influential parameters based on a 

principal component analysis (PCA) of the local sensitivities, subsequently adding one 

parameter at the time to the ranking. The parameter added is the most identifiable found 

from analysis of its influence and the linear independence of its sensitivities to the space 

spanned by the sensitivities of the already ranked parameters [22]. Other methods aiming at 

using linear independence in sensitivities include the orthogonal method by Yao et al. [26, 

48], SVD-QR [29, 12].

For the examples in Section 3.1 and 3.2, the global sensitivity analysis methods agreed, they 

both correctly specified parameters designated as noninfluential. While both OSM and SCM 

where able to determine structural and practical unidentifiability in these examples, the FIM 

is not invertible. If the FIM is not invertible it is necessary to first remove parameters for 

which local sensitivities are linearly dependent on others as described in the SCM algorithm. 

Moreover, in Section 3.1 we showed how non-dimensionalization may be used to 

reformulate the model and reduce the parameter space for structural unidentifiability. This 

method is not specific to the example presented here but can often help reduce complexity of 

any given model. The downside is that they may be more difficult to interpret directly as 

they need to be re-dimensionalized to have physical units.

A more complex and practically applied example was shown in Section 3.2.2 – a Voigt body 

is used to describe the viscoelastic properties of arterial wall. For this example, the SA 

methods showed that all parameters were influential, agreeing with the previous study by 

Mahdi, Meshkat and Sullivant [23], which showed that they are structural identifiable, yet 

both the OSM and the SCM suggested that given available input and output data, the model 

parameters are practically unidentifiable.

Finally, the analysis of the cardiovascular model in Section 3.3 showed that global 

sensitivity to parameters may be different from the local sensitivity, which is expected for a 

nonlinear model [32, 35]. Since OSM and SCM relies heavily on the two-norm of the local 

sensitivities, it is likely that subsets built using local sensitivities may be different for other 

model configurations. This may warrant an additional analysis after optimization to ensure 

that a better subset does not exist, and underlines the importance of good initial parameter 
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configuration for optimization. Moreover, we noticed that the local subsets predicted by 

SCM and OSM appeared to be more efficient than the global set, with SCM reaching an 

optimum in fewer optimization steps, while OSM reaches a slightly better fit. In this regard, 

it should be noted that Levenberg-Marquardt, the optimization routine used, is a gradient 

based method [21], and as such relies on linear independence of the sensitivities, and thereby 

favors methods that seek to optimize linear independence of the linearized system. The 

parameter sets with eight parameters did slightly better than the set of the four common 

parameters. In general none of the subsets generated by the individual methods did much 

better than the smaller common set. One may use model comparison methods such as the 

Akaike Information Criterion [1] to quantify the (dis)advantage of including additional 

parameters for a slightly better fit. In terms of maintained variability of model output, the 

suggested methods for subset selection all produced similar results. But we also saw that the 

parameter set could be reduced even more without losing the original variability. Moreover, 

as observed in Table 8 the estimated parameters vary dependent on the chosen subset, this is 

expected as here we fix noninfluential parameters biasing the prediction. Therefore, care 

must be taken if influential parameters are fixed and results should be interpreted relative to 

the physiological problem in question.

These tasks are by no means special to physiological modeling, but may be seen in many 

other areas of mathematical modeling. Other obvious applications involves Chemical 

reaction models, or any other area where ODE or PDE models are constructed to match 

experimental data.

It is important to be aware that this is not the only nor the typical application of SA, and that 

other aspects of the analysis might have greater importance in other applications. A good 

general introduction to many aspects of SA is given by Saltelli et al. [34]. We have used SA 

as a tool to reduce the number of parameters in what Saltelli et al. [35] calls factors’ fixing 

in hyper-parameterized models. Another use is Factors’ prioritization where SA is applied to 

pinpoint which parameter to measure to reduce the model output uncertainty the most [35], 

and is perhaps the most frequent application of SA.

Depending on the problem under consideration, different strategies for subset selection may 

be viable. Based on the optimization of the cardiovascular model considered here, the local 

methods appear to superior in terms of computational effort and model fit. This is, however, 

based on having a reasonable initial parameter configuration and using a gradient based 

optimization routine. For models where a good initial configuration is not available, or 

where the exploration of potential behavior is prioritized, the global methods might be a 

better choice. If computational efficiency is essential, Morris Elementary Effects yields 

similar results to Sobol Indices at a fraction of the computational cost. One may also 

consider methods such as FAST [36] for more efficient calculation of Sobol Indices, or 

moment independent SA methods [44, 7] that consider the model output probability density 

function rather than the variance. [18] provides a nice overview of global SA methods. In 

addition Markov Chain Monte Carlo (MCMC) methods such as DRAM [15] or DREAM 

[43] could be considered for estimating parameter uncertainties and correlations. However, 

these methods are typically applied after identifiable parameters have been isolated, and as 

such are beyond the scope of this study.
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In addition to considering which method(s) to apply, it is important to remember that fixing 

parameters and reducing parameter subsets may introduce a bias in the model in question. In 

practice this implies that a parameter value estimated using one subset, cannot be compared 

(or expected to be similar) to values obtained using other subsets, as the parameter has 

different possibilities to influence the model output through interactions with other 

parameters.
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Fig. 1. 
Relationship between influential, structural, and practical identifiable parameters. Note that 

an influential and structurally identifiable parameter may not necessarily be practically 

identifiable, whereas a practically identifiable parameter is both influential and structurally 

identifiable.
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Fig. 2. 
Sensitivities expressed in (15) for the linear input example given in (13–14).
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Fig. 3. 
Basis functions for the aliasing Example (3.2.1) evaluated at t = 0, 1 n, 2 n, …, n − 1 n, 1 (plotted 

with linear interpolation between the points) for the three measurement resolutions and full 

time series.
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Fig. 4. 
Basis functions for the expanded aliasing Example (3.2.1) evaluated at 

t = 0, 1 n, 2 n, …, n − 1 n, 1 (plotted with linear interpolation between the points) for n − 1 = 10 

and two other measurement resolutions and full resolution time series.
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Fig. 5. 
The Voigt body model used in the baroreceptor reflex model to describe viscoelastic strain 

of the baroreceptor neurons.
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Fig. 6. 
Sensitivities for the Voigt body model.
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Fig. 7. 
Overview of the cardiovascular model. All compartments represent a given volume and 

pressure, compartments are compliant modeled via a capacitor linked to ground, and flow 

between compartments are resistive. The heart compliance is time-varying representing 

pumping of the heart. Valves on both sides of the heart are modeled as diodes.
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Fig. 8. 
Zoom of experimental blood pressure data (red solid), and model output for nominal (blue 

long dashed) and optimized parameter values (green dash-dotted and black dotted, short 

dashed and dashed). The red dots show the time points used for SA and optimization and the 

vertical lines (gray) the start of each contraction cycle of the heart. The optimized curves are 

colored green for the combined method, and black for the individual SA methods. The 

Structural Correlation Method (SCM) and Orthogonal Sensitivities Method (OSM) solutions 

are virtually indistinguishable for large parts of the plot.
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Fig. 9. 
Logarithm of two-norms of local relative sensitivities, estimated using sensitivity equations 

and scaled by largest two-norm.
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Fig. 10. 
Least squares error distribution with random sampling for different parameter sets. Each 

curve represents the distribution of 5,000 sampled configurations smoothed using kernel 

density estimation (KDE).
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Table 1

(a) Ranking obtained using the Orthogonal Sensitivities Method (OSM). Columns are Importance (PCA) score 

(e), Orthogonality (d) and total Identifiability (I = ed). (b) Sobol first order (Si*) and total effect (STi* ), and 

Morris elementary effects mean and variance (μi* and σi*).

(a) OSM

Rank Parameter e d I

1 a 0.66

2 b 0.45 0.53 0.24

3 x0 0.18 0.97 0.17

4 c 0.39 0.00 0.00

(b) Global

Parameter Si* STi* μi* σi*

a 0.28 0.29 297.81 162.62

b 0.01 0.01 76.35 67.97

c 0.31 0.42 374.46 150.44

x0 0.24 0.32 322.08 120.32
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Table 4

Results for linear aliasing with interaction term with p = 4, n — 1 = 8. Left: Global measures. Right: OSM 

Ranking.

Global OSM

θ1 θ2 θ3 θ4 Rank Par e d I

Si* 0.61 0.09 0.09 0.08 1 θ1 0.53

STi* 0.73 0.13 0.13 0.20 2 θ2 0.22 1.00 0.22

μi* 19.95 11.85 11.06 4.00 3 θ3 0.22 1.00 0.22

σi* 298.03 87.54 93.07 18.81 4 θ4 0.18 0.00 0.00
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Table 5

Sensitivity and identifiability analysis results for the Voigt body model, (a) Sobol Indices (M = 50,000) and 

Morris elementary effects (r = 40) from Global analysis, (b) OSM ranking, (c) Initial correlations from SCM.

(a) Global

α1 α2 β1 β2

Si* 0.19 0.50 0.14 0.11

STi* 0.15 0.53 0.16 0.17

μ 0.05 0.09 0.05 0.05

σi 0.01 0.01 0.01 0.00

(b) OSM ranking

Rank Par e d I

1.00 β2 0.97

2.00 α2 0.18 0.42 0.08

3.00 α1 0.04 0.23 0.01

4.00 β1 0.05 0.17 0.01

(c) SCM correlations

α1 α2 β1 β2

α1 - −0.90 −0.56 −0.91

α2 −0.90 - 0.85 0.98

β1 −0.56 0.85 − 0.75

β2 −0.91 0.98 0.75 -
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Table 7

Optimization results for the different subsets.

Subset # Parameters LSE Steps

Unoptimized
* 15 67.8

Common 4 1.17 14

SCM 8 0.950 11

OSM 8 0.901 16

Global 8 1.14 27

*
Unoptimized parameters are fixed at their nominal values.

**
LSE = least squares error
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Table 8

Nominal and optimized parameter values for the cardiovascular model. Nominal values are calculated as 

described in the study by Williams et. al [46].

Optimized

Parameter Nominal Common SCM OSM Global

Cau 0.951 _ _ 0.784 0.290

Cal 1.04 0.015 0.849 0.492 0.043

Cvl 42.2 - 29.7 - 0.746

Cvu 32.8 - - 28.5 89.1

Raual 0.009 - 1.4e-13 - -

Rauvu 1.66 - - - 16.5

Ralvl 0.799 3.78 1.05 1.99 4.10

Rvlvu 0.003 - 1.3e-9 - -

Rvuh 0.001 - - - -

Rhau 0.001 - - - -

V0 10.0 - - 0.014 -

Em 0.023 0.034 0.023 0.027 0.045

EM 2.31 1.16 1.13 1.01 1.17

tM 0.200 - 0.176 0.165 -

tR 0.150 - - - -
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