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Abstract
Latency reduction in postsynaptic spikes is a well-known effect of spiking time-dependent plasticity. We expand this notion
for long postsynaptic spike trains on single neurons, showing that, for a fixed input spike train, STDP reduces the number
of postsynaptic spikes and concentrates the remaining ones. Then, we study the consequences of this phenomena in terms
of coding, finding that this mechanism improves the neural code by increasing the signal-to-noise ratio and lowering the
metabolic costs of frequent stimuli. Finally, we illustrate that the reduction in postsynaptic latencies can lead to the emergence
of predictions.
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1 Introduction

Living organisms need to make accurate predictions in order
to survive (Bubic et al. 2010; Hohwy 2013), posing the ques-
tion of how do brains learn to make those predictions. Early
generalmodels based on classical conditioning (Rescorla and
Wagner 1972; Miller et al. 1995), as well as mechanistic
models explaining the neural substrate for those predictions
(Schultz et al. 1997; Heeger 2017) assume that the pre-
diction errors, changes or future rewards feedback to the
predicting neural population, similar to supervised or rein-
forcement learning paradigms that are common in machine
learning. However, recent studies have found that sensory
neurons without feedback from higher brain areas encode
predictive information (Palmer et al. 2015), a finding that
has been supported by simulation studies (Sederberg et al.
2018). This implies that a bottom-up process without explicit
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feedback—similar to unsupervised learning—should also
generate predictions.

In this paper, we present such amechanism by focusing on
postsynaptic latency reduction. This is awell-known effect of
spiking time-dependent plasticity (STDP) first mentioned by
Song et al. (2000) for a single postsynaptic neuron driven by
a specific excitatory input pattern. This effect was explored
in detail in a simulation study by Guyonneau et al. (2005)
who showed that the latency reduction in the target neuron’s
firing time is robust to fluctuations in presyanptic input in
the form of jitter and Poissonian background noise. They
further analyze the STDP effect on a single neuron receiv-
ing fixed (among trials) Poissonian spike trains from each
presynaptic neuron and showed that by STDP weights of the
earliest afferents will be increased, regardless of the firing
rate and level of synchrony of the corresponding neurons.
Masquelier et al. (2008) showed how a single postsynaptic
neuronunder the effect of STDPwould learn a single frequent
excitatory pattern of spikes even in the presence of a strong
background noise and how the firing latency in response to
this frequent pattern would decrease over learning trials, a
finding that was later extended to rate-modulated Poissonian
spike trains (Gilson et al. 2011). In another articleMasquelier
(2018) quantified the performance of a multi-pattern detec-
tor neuron in terms of signal-to-noise ratio and showed that
STDP results in an optimal SNR in the response of the neuron
when some STDP parameters get tuned, see also (Masquelier
and Kheradpisheh 2018). Furthermore, Humble et al. (2012)
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investigated the effect of STDP on a population of neurons
with lateral connections and a global winner-take-all mecha-
nism subjected to a longer spatiotemporal input signal. They
showed learning leads to the formation of chains of neurons
that are responsive to different patterns in the long time input.
Similar results have been reported on learning spatiotemporal
patterns by variants of STDP rule in Hunzinger et al. (2012)
and Sun et al. (2016).

In this article, we revisit this phenomenon at the micro-
level with plastic inhibitory neurons added to the previous
setups and analyze the effect of latency reduction at the net-
work level, and finally give it meaning as a computational
operation as a mechanism for prediction, adding to the works
that show that STDP has important computational roles such
as formation of memory traces (Klampfl andMaass 2013) or
computing Expectation Maximization for probability distri-
butions (Nessler et al. 2013).

The gist of our argument is that latency reduction implies
that neurons fire as early as possible for a given input spike
train that is repeated very often; as neurons do not differen-
tiate between a specific stimulus and an early clue of such
a stimulus—both being part of seemingly the same input
spike train—the neurons can, by STDP, fire earlier than the
stimulus itself. Furthermore, we expand on the previous stud-
ies focused on excitatory neurons to include inhibition and
illustrate the parameter regime in which inhibitory plasticity
is compatible with latency reduction. However, the latency
reduction mechanism has other uses in terms of neural code.
First, as neurons fire as early as possible when a stimulus is
presented, their spikes will concentrate in a small time win-
dow, and thus they are easier to decode. Second, we show that
the latency reduction can also lead to a reduction in the num-
ber of spikes, which translates as a reduction in metabolic
costs for encoding frequent stimuli.

We develop our argument by studying simple models of
neurons subject to fixed input spike trains. We use a combi-
nation of simulations andmathematical analysis to derive our
results, starting from the evolution of a single postsynaptic
spike at very short timescales we expand to larger scales that
conclude in the emergence of predictions and efficient code
at the level of populations of neurons in large timescales.

The rest of this paper is organized as follows. First, we
present the models of neurons and STDP in Sect. 2. Second,
we study the effects of STDP in a single postsynaptic spike
in very small timescales∼ 10ms, focusing on latency reduc-
tion and the reduction of the number of postsynaptic spikes
in Sect. 3. In Sect. 4, we expand those results to long post-
synaptic spike trains , finding that STDP forces postsynaptic
neurons to fire only once at the onset of the presynaptic spike
train. Afterward, we provide an interpretation of this spike
concentration in terms of neural code performance, showing
that it leads to lower number of spikes and synchronization.

Wefinalize by illustrating that the samemechanismof latency
reduction leads to encoding predictions in Sect. 5.

2 Models

2.1 Leaky integrate-and-fire neuron

Neurons are considered to be the basic computational units
in the nervous system. Their main feature is the capacity
to receive information through electrical impulses, combine
this information and send impulses to other neurons. In this
paper, we model them as leaky integrate-and-fire neurons
with a refractory period (Lapique 1907). In this model, the
state of a neuron at a given time is described by its membrane
potential v(t), which evolves according to the equation

τm
dv(t)

dt
= −(v(t) − v0) + i(t), (1)

where τm = 10ms, v0 = −70mV. i(t) is the input to the
neuron at time t .When themembrane potential reaches a cer-
tain threshold vth = −50mV, the neuron “fires” or “spikes,”
meaning that it emits a pulse of current.After firing, themem-
brane potential is reset to its resting state v0 and kept frozen
at this value for a fixed period of time called the refractory
period tref = 1ms.

The firing of a neuron generates pulses of current that
arrive at other neurons, which in turn update their membrane
potentials. If neuron a receives the spikes of neuron bwewill
say that there is a synapse going from the second to the first.
The receiving neuron is called postsynaptic and the sending
neuron is the presynaptic one. This synapse is characterized
by a weight wab and a delay dab which correspond, respec-
tively, to the gain and the latency that the pulse of neuron a
goes through before arriving at b.

2.2 Input spike trains

Neurons communicate mainly through action potentials or
spikes, which are typically modeled as Dirac delta functions,
hence the input to a neuron can be described as

i(t) =
∑

n

wnδ(t − tn), (2)

wherewn is the weight of the spike, which corresponds to the
strength of the synapse fromwhich the spike comes, and tn is
the arrival time of the spike. The weights of the synapses can
be positive, if the presynaptic neuron is excitatory, or neg-
ative, if it is inhibitory. Through this paper we will assume
that every neuron gets an input that will be repeated, meaning
that a neuron will always get spikes from different synapses,
and although the weights of the synapses might change, the
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times tn of the spikes will remain the same in every input
repetition. Each synapse comes from a presynaptic excita-
tory neuron with probability 0.8 or an inhibitory one with
probability 0.2.

2.3 Spiking time-dependent plasticity

Networks of neurons learn by modifying the strength of the
connections between them. There is a rich literature on what
rules those weights follow in biological neurons and their
respective implications (Dayan and Abbott 2001). For the
purposes of this paper, the neurons will adapt their con-
nections according to the spiking time-dependent plasticity
(STDP) paradigm (Sjöström and Gerstner 2010; Gerstner
et al. 1996).

In STDP, theweight of a connection ismodified depending
on the time interval between pairs of pre- and postsynaptic
spikes. For every pair, the weight of the synapse is changing
according to the equations

�w(�t) =
⎧
⎨

⎩
A+(w)e− |�t |

τs if �t ≥ 0

−A−(w)e− |�t |
τs if �t < 0

(3)

where �t = tpost − tpre is the time difference between the
postsynaptic spike and the presynaptic one, τs = 20ms.
Based on previous works (Werner and van Hemmen 2000;
Van Rossum et al. 2000), we define A+ and A− as

A+(w) = η+(wmax − w),

A−(w) = η−(w − wmin)
(4)

where η− = 0.015, η+ = 0.01, we
max = 10mV and

wmin = 0. Inhibitory synapses follow the same rules as their
excitatory counterparts but with parameters η− = 0.045 ,
η+ = 0.03 and wi

min = −20mV. This inhibitory kernel
has been experimentally observed (Vogels et al. 2013) and
its symmetry with respect to its excitatory counterpart will
make our analysis simpler, although we shall explore other
kernels in “Appendix B”.

2.4 Model limitations and required features

We must note that the models used here are heavy simpli-
fications of real neurons. LIF neurons do not exhibit the
rich range of dynamics that real neurons possess(Izhikevich
2004), ion channel kinetics are more complicated than sim-
ple Dirac deltas (Chapeau-Blondeau and Chambet 1995) and
the STDP model used here cannot account for the evolu-
tion of synaptic weights when the frequency of postsynaptic
or presynaptic spikes are high (Pfister and Gerstner 2006).
However, those models contain the main biologically realis-
tic features that we need for the rest of this study. First, the

time constants of the neuron membrane potentials(Gerstner
et al. 2014) and the STDP interactions (Bi and Poo 1998)
are at least an order of magnitude smaller than the duration
of the input spike trains associated to biologically realistic
stimuli-evoked spatiotemporal patterns (Rolston et al. 2007;
Prut et al. 1998). Second, the neurons have a low firing
rate (Roxin et al. 2011). Third, the synapses whose spikes
presynaptic spikes arrive shortly before a postsynaptic spike
get reinforced, while those arriving afterward get depressed
(Sjöström et al. 2008; Pfister and Gerstner 2006). Finally,
the homeostatic consideration that firing rates of neurons
should not increase widely, which is a natural requirement on
metabolic grounds (Turrigiano and Nelson 2004) can easily
be incorporated by the depressive term A−. Thus, we will
keep these well-known models (Gerstner et al. 2014) on the
grounds that they are analytically tractable and qualitatively
plausible.

3 Evolution of a single postsynaptic spike

In this section, we show that STDP can change individ-
ual postsynaptic spikes by reducing their latencies and their
number. We will start by presenting simple scenarios with
excitatory inputs in which both effects are easy to illustrate,
then showhow inhibitory synapses canbe added to themodel,
and finally show that those effects can appear in random input
spike trains by presenting simulations. It is worth noticing
that the time windows in this section are on the order of τs
and the number of repetitions of each input pattern will be
small.

3.1 Latency reduction

If a fixed train of presynaptic spikes is repeated very often,
then the spikes that arrive before the postsynaptic spike get
reinforced. This implies that the postsynaptic spike might
then be triggered earlier (Song et al. 2000; Gerstner et al.
1996). When this happens, the refractory period of the post-
synaptic neuron would prevent a second spike on the original
spiking site. However, when the postsynaptic spike happens
earlier and earlier, it might lead to a proliferation of spikes
by having a new spike appear at the time of the original
postsynaptic spike. Following previous literature (Song et al.
2000; Abbott and Nelson 2000; Kempter et al. 2001), to pre-
vent this effect, we assume that long-term depression—the
weakening of synaptic weights—is stronger than long-term
potentiation—the strengthening of postsynaptic weights.

This is easy to understand in a simple scenario: Consid-
ering a very long, excitatory presynaptic spike train which
generates a single postsynaptic spike at some time t0. The
postsynaptic spike will advance through the spike train, and
after some repetitions it will be triggered one presynaptic
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spike earlier. After this advancement is repeated many times,
the postsynaptic spike is triggered at time t∞, very far (in
time) from the place where it was first triggered, so that

t∞ � t0. (5)

The membrane potential decays exponentially, meaning that
the effect of the postsynaptic spike at time t∞ on the

membrane potential is of order O(e− t0−t∞
τm ), which is neg-

ligible. Thus, the membrane potential at time t0 is now only
dependent on the presynaptic spikes that are close. If those
presynaptic spikes have been left as they where by the pas-
sage of the postsynaptic spike, then a new postsynaptic spike
will be generated at time t0. To avoid the appearance of this
postsynaptic spike it is therefore necessary that the passage
of the postsynaptic spike weakens the presynaptic ones. We
illustrate this point in Fig. 1 with the functions and parame-
ters that we will use in subsequent sessions.

Note that the argument that we give here is qualitative
in nature, in the sense that we simply state that LTD should
dominate LTP through the constant η, butwe have not studied
how to find that ratio. As this would depend on the exact
parameters of the regular spike train—and thus would not
be directly generalizable—we will simply assume that the
brain operates in a parameter regime in which spikes do not
proliferate.

3.2 Late spike disappearance through synaptic noise

If latencies might be reduced, then two postsynaptic spikes
that are triggered at distant points in time might become
closer in subsequent learning trials. We must then ask what
happens to a pair of postsynaptic spikes that occur very close
in time. In this section, we show that in the absence of synap-
tic noise the two spikes can coexist, but randommodifications
of the presynaptic weights—induced, for instance, by other
presynaptic inputs—can lead to the disappearance of the sec-
ond postsynaptic spike.

There are many possible scenarios that we might consider
when we have pairs of postsynaptic spikes in the same neu-
ron: We must consider the time between the two spikes, the
movements in time of both of them and the possibility of
synaptic noise. The case when two postsynaptic spikes hap-
pen originally very close in time is extremely rare—because
postsynaptic spikes are sparse. The case where the first post-
synaptic spike alsomoves is not interesting, because the spike
will move forward in time, increasing the distance between
the two postsynaptic spikes and thus reducing the LTD effect
on the second spike—note that the second spike would not
move as fast because the presynaptic spikes between them
would be depressed by the first. Therefore, we will consider
the case where there is an early postsynaptic spike at some

fixed time thatwill remain in place, and a second postsynaptic
spike that will initially be triggered very far in time.

The intuition here is that there is a time interval for the
second postsynaptic spike, in which the LTD of the first post-
synaptic spike would lead to a decrease in the membrane
potential of the postsynaptic neuron at the time of the sec-
ond postsynaptic spike, which could lead to the irreversible
disappearance of the second postsynaptic spike or its reces-
sion. Outside of this time interval, the second postsynaptic
spike will reduce its latency, approaching the early postsy-
naptic spike and the disappearance zone. In the remaining of
this section, we will show that this interval is never reached
in a deterministic system but that the addition of noise can
enforce this disappearance.

Consider a long presynaptic spike train with presynaptic
spikes arriving at t0, t1, . . . tN , which generates two postsy-
naptic spikes, one at time t0, which is fixed and will appear
at every presentation of the spike train, and another one that
is originally triggered at tN . For the second spike to dis-
appear, it can either do so at tN or first advance through
the spike train—that means, being triggered at tN−1, then at
tN−2 and so on—and eventually die. For now,we assume that
tN − t0 � τs , so that initially the spike at time tN evolves
independently of the spike at time t0, and it would not dis-
appear at tN . Consider now that the input has been repeated
long enough so that the second postsynaptic spike is now
triggered at ti , and the effects of the STDP generated by the
spike at t0 are not negligible to the presynaptic weight ti−1,
which is associated to the presynaptic spike at ti−1. If the
postsynaptic spike is originally triggered at ti , then it would
move to ti−1 only if, after repeating the same input many
times,

v(ti−1) =
i−1∑

k=1

wke
− tk−ti−1

τm ≥ vth . (6)

After v(ti−1) crosses the vth threshold, the postsynaptic spike
at ti moves to ti−1, and thus the time difference between
every presynaptic spike at t ≤ ti−1 and the postsynaptic spike
is reduced. This naturally implies that the synaptic weights
wk for all k ≤ i − 1 increase, thus the postsynaptic spike
cannot disappear because the membrane potential at v(ti−1)

cannot decrease unless the postsynaptic spike moves to ti−2.
Therefore, with a deterministic input the second postsynaptic
spike precedes and stops at an equilibrium distance from the
first one. This implies that the weights of the presynaptic
neurons arriving at each specific time point in the interval
would also reach their equilibrium values.

This argument assumes that presynaptic spike trains are
always repeated with fixed spike timings but with weights
that are affected by LTP and LTD. This is generally not true,
as there are many factors that can introduce stochasticity on
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Fig. 1 Latency reduction and spike proliferation: We plot the mem-
brane potential (left) and firing times (right) of a postsynaptic neuron
that receives a constant train of spikes with inter-spike interval of 3.5ms
and strength 5.5mV, from time t = 0ms to t = 150ms, and we add an
extra spike at t = 150ms with potential 2mV. The neuron generates a
single postsynaptic spike at the original input presentation (Repetition
0). The upper plots reflect the case η+ = η−, while for the lower ones
we picked 3

2η+ = η−. After an initialization period, the postsynaptic
spike moves forward in time at a constant rate. As this happens, a sin-

gle presynaptic spike will get reinforced proportionally to the η+ and
dampened proportionally to η−. If LTP is equal to LTD, after the postsy-
naptic spike happens much earlier than before, the membrane potential
of the postsynaptic neuron will reach the threshold again. This second
postsynaptic spike would move forward in time at the same speed as
the strengths of the spikes are left unchanged by the compensation of
LTD and LTP (upper plots). In the case where η+ < η−, the depression
compensates the potentiation, so there is no second postsynaptic spike

the evolution of the weights, such as jitter, the stochastic
nature of molecular dynamics on the synaptic cleft and on
the neuron membrane.

Ifwenowconsider the stability of both postsynaptic spikes
with respect to that noise, we easily realize that they are not
equal: While the presynaptic spikes that generate the first
postsynaptic spike are only subject to LTP and noise, the
presynaptic spikes that generate the second spike—which
happen necessarily between postsynaptic spikes—are sub-
ject to both LTP—from the late postsynaptic spike—and
LTD—from the earlier postsynaptic spike—on top of the
noise.

This difference implies that the noise can make a postsy-
naptic spike disappear or recede, either by directlyweakening

the associated presynaptic weights or strengthening them, so
that the postsynaptic spike moves into a region where LTD
dominates and it would be later erased or pushed back.

To explain this in the setting that we used before, consider
a neuron with a postsynaptic spike at time ti that would not
move to ti−1 in the previous deterministic system. However,
now the weights evolve by the combined effects of that spike,
an earlier postsynaptic spike at time t0 and some noise. The
membrane potential at time ti and after r repetitions of the
input spike train follows

v(ti ) =
i∑

k=1

wke
− tk−ti

τm + ξti , (7)
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where ξt is the contribution of the random evolution of the
weights to v(t) given by

ξti =
i∑

k=1

δwke
− tk−ti

τm (8)

where δwk is the deviation of weight wk from its determin-
istic evolution; in the case of Gaussian noise, for instance, it
would lead to an Ornstein–Uhlenbeck process for the evolu-
tion of v(ti , r) across the number of trial repetitions r . Note
that the noise is a variable reinitialized at every repetition,
but its effects on the weights remain across repetitions.

If this postsynaptic spike train is repeated very often, the
deterministic part of the weights goes to a fixed value, which
is small for k > i and thus v(tk) ∼ ξtk for all k > i . Thus,
under the assumption

ξti < vth −
i∑

k=1

wke
− tk−ti

τm (9)

in a specific trial the second spike will be absent. Subjected
to the ever present postsynaptic spike at t0, the weights wk

will decrease for all values of k after this trial makes the
neuron less likely tofire in the subsequent trials. This negative
drift will finally lead to the irreversible disappearance of the
postsynaptic spike at ti or its delay. This is illustrated in Fig. 2.

3.3 Generalization to inhibitory plasticity

Until nowwe have only considered excitatory neurons. How-
ever, in biological systems, inhibitory synapses are also
present and show plasticity (Vogels et al. 2013). Naturally,
this might compromise the effects described in the previous
section, as an inhibitory synapse that gets potentiated could
counteract the effects of excitatory STDP. For instance, it
might decrease the membrane potential and thus increase
the latency of the postsynaptic neuron (Effenberger et al.
2015). Our goal in this section is to find the parameter
regime in which the presence of inhibitory plasticity does
not compromise the latency decrease and, by extension, the
disappearance of postsynaptic spikes.

Intuitively, as long as the STDP in inhibitory synapses
is weaker than the STDP in excitatory ones, the latency of
postsynaptic spikes would still decrease. The question is then
to find a way of measuring “how much weaker” it has to be.
To address this issue, we must find a boundary parameter set
for inhibitory synapses that guarantees that latency would be
reduced, and thenwe can simply take any parameter set that is
between this boundary parameter set and the only excitatory
STDP.

To identify the parameter regime in which latency reduc-
tion for a single spike appears, we assume that the STDP

keeps the balance between excitation and inhibition, in the
sense that the average input to a single neuron is main-
tained constant (Brunel 2000). To maintain this balance, the
potentiation of excitatory synapses is compensated by the
potentiation of inhibitory synapses. Potentiating all synapses
but maintaining the average input leads to the increase in
fluctuations of the membrane potential, meaning that the
membrane potential preceding a postsynaptic spike would
change more around the average, and thus it can still lead to
an earlier postsynaptic spike.

Consider a single postsynaptic spike at time tpost. For t <

tpost,

v(t) =
∑

tk<t

wke
− t−tk

τm , (10)

and initially v(t) < vth . Nowwewonder what happens when
theweightswk change, in particularwhether the postsynaptic
spike will advance, recede or disappear. This depends on the
exact values ofwk and tk , so tomakemore generic statements
we are interested in the value

Er
[
�tpost

] = E

[
trpost − tpost

]

=
(
E

[
trpost

]
− tpost

)
Pr [∃s] (11)

where r accounts for the number of times that the spike train
has been repeated, and Pr [∃s] is the probability that a post-
synaptic spike still exists, and the expectations are taken
over the presynaptic spike trains—a list of tuples (wk, tk)
sampled from some predefined distribution—that generate
a postsynaptic spike at time tpost. In simpler words, we
are trying to calculate whether the postsynaptic spike is
expected to move forward (E

[
�tpost

]
(r) < 0) or backward

(E
[
�tpost

]
(r) > 0), ignoring the ones that disappeared, if

we only have some information about the distribution from
which the list of (wk, tk) was sampled.

We know that increasing the input excitatory weights can
only lead to an earlier postsynaptic spike, because v(t) can
only increase and thus it might reach vth earlier. We will
take this a step further and assume that this statement is
also true about the average weights, meaning that when the
expected input increases, the expected postsynaptic firing
time decreases. In more formal terms, we are assuming that
Er

[
�tpost

]
is a function that decreases monotonically with

E [�rv(t)] = E

[∫ t

−∞
�r i(t)e

− t−x
τm dx

]

=
∫ t

−∞
E [�r i(t)] e

− t−x
τm dx, (12)

for all t < tpost, meaning that if the expected value of �v(t)
averaged over all realizations of the input spike train pro-
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Fig. 2 Noise deletes a late spike in a regular presynaptic spike train:
We plot the membrane potential (left) and firing times (right) of a post-
synaptic neuron that receives a constant train of spikes with inter-spike
interval of 5ms and strength 7.5mV, from time t = 0ms to t = 150ms.
We add an extra spike at t = 0ms with potential 5mV , which forces a

postsynaptic spike at time 0.5ms. The top row is deterministic, while
the bottom row is stochastic as the weights are subject to Gaussian noise
with variance of 0.3. Note that, during its existence, the latency of the
postsynaptic spike subject to noise decreases faster than its noiseless
counterpart

ducing a spike at tpost is positive, then Er
[
�tpost

]
will be

negative.
This assumption, albeit natural, requires some careful con-

sideration. Specifically, we must clarify the distribution over
which the expectations are taken, which corresponds to all
possible presynaptic spike trains shortly preceding a postsy-
naptic spike. Those spike trains have fixed timings for every
postsynaptic spike under consideration, but are updated sys-
tematically because postsynaptic spikes evolvewith the input
repetitions and the noise. Thus, this distribution considers
samples in which a new spike has just appeared or samples
where a postsynaptic spike has recently been displaced by a
short time.

The subsequent step is to find the conditions that guarantee
that E [�rv(t)] increases. A sufficient condition for this to

happen is to have

E [�r i(t)] = �rE [ie(t)] − �rE [ii (t)] > 0, ∀t < tpost

(13)

where E [ie(t)] is the expected input to the neuron at time
t , and E [ii (t)], E [ii (t)] is simply its decomposition in
inhibitory and excitatory inputs, which gives us

E [ie(t)] = ρe

∫ ∞

0
μwe (w, t)dw

E [ii (t)] = ρi

∫ ∞

0
μwi (w, t)dw

(14)

where ρe, ρi are the rates of incoming spikes and μwe (w, t),
μwi (w, t) the probabilities of the weights associated to time
t .
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Thus, to maintain the condition from Eq. 13, we must
ensure that the parameters μwe , μwi , η

e+, ηi+, we
min, w

i
min are

such that

ρe

∫ ∞

0
�we(r)μwe(w, t)dw

> ρi

∫ ∞

0
�wi (r)μwi (w, t)dw, (15)

where �w(r) are given by the STDP Eq. 3 over many
repetitions—counted by r—of the input spike train. We will
now find a parameter regime in which this holds by finding
its boundary. In other words, we are interested in the param-
eter set in which the excitatory increase in weight exactly
matches the inhibitory increase in weight, which for the time
constants of inhibition being equal to that of excitation leads
us to the condition

ρe

∫ ∞

0
�we(r)μwe(w, t)dw

= ρi

∫ ∞

0
�wi (r)μwi (w, t)dw. (16)

Note that it is not enough to find two weight distributions
μwe , μwi where

ρe

∫ ∞

0
Ae+(we)μwe (w, t)dw

= ρi

∫ ∞

0
Ai+(wi )μwi (w, t)dw, (17)

because thiswould onlywork for the first input repetition.We
have to ensure that even after STDP changes the distribution,
the equality holds. Since there are typically fewer inhibitory
synapses than excitatory ones, we correct the input rates and
STDP parameters by the ratio

α = ρi

ρe
(18)

that is also intrinsic to the probability distributions

αμwi (αx, t) = μwe (x, t) ∀x, t, (19)

and the STDP parameters

αAi+(αx) = Ae+(x) ∀x . (20)

If these properties are satisfied,by a simple change of vari-
able, we can show that

ρe

∫ ∞

0
Ae+(x)μwe (x, t)dx

= 1

α
ρi

∫ ∞

0
αAi+(αx)αμwi (αx, t)

1

α
d(αx)

= ρi

∫ ∞

0
Ai+(y)μwi (y, t)dy.

(21)

Furthermore, if we take a pair of inhibitory and excitatory
weights such that we = αwi we have that after applying the
STDP rule,

αwi → α(wi + Ai+(wi )) = αwi + αAi+(αwe)

= we + Ae+(we) ← we, (22)

meaning that the weight probability changes in such a way
that

μ′
we

(
x + Ae+(x), t

) = μwe (x, t) = αμwi (αx, t)

= αμ′
wi

(
α

(
x + Ai+(x)

)
, t

)
, (23)

where μ′
we

and μ′
wi

are the weight distributions after STDP
has acted once. Thus, if Eq. 19 holds at some point, it will also
hold for all subsequent iterations of the input spike pattern.

Thus, we have found a set of conditions that satisfy Eq. 19
at r = 0 and for any subsequent r > 0 for the case where
the postsynaptic spike does not change during the r rep-
etitions. Notice that the self-consistency of this condition
does not make any assumptions about the learning con-
stant or the �t dependent term on STDP, or even its sign,
it only requires that the expected increase—or decrease—
in excitatory input is matched by the expected increase—or
decrease—in inhibitory input. In particular, this symmetry
does not change if the postsynaptic spike advances, because
the STDP kernel has the same ratio of potentiating inhibitory
and excitatory synapses. In other words, when a postsynaptic
spike changes places before the r th input repetitions, the vari-
ance of the input before the postsynaptic spike still increases
and, conversely, the variance after the postsynaptic spike
decreases.

Now, we have a large set of parameters in which latency
reduction is expected to happen. Any STDP parameters for
whichαAi+(αx) < Ae+(x) combinedwithEq. 19, or distribu-
tion of weights with αμwi (αx, t) < μwe (x, t) with Eq. 20,
or both cases combined.

It is worth noticing that in the case when all the equalities
Eqs. 19 and 20 are met, we would still expect the latency to
decrease. The reason is that even if

E [�rv(t)] = E [�r i(t)] = 0, (24)
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the variance of v(t) increases. More explicitly,

�rVar [v(t)] = �r

∫ t

−∞
Var [i(t)] dt

= �r

∫ t

−∞

(
E

[
i2(t)

]
− E [i(t)]2

)
dt

= �r

∫ t

−∞
E

[
i2(t)

]
dt =

∫ t

−∞
�rE

[
i2e (t)

]
dt

+
∫ t

−∞
�rE

[
i2i (t)

]
dt

(25)

where the termE [i(t)]2 = 0 by the symmetry of the weights
and it is maintained at zero by the symmetry of the STDP.
Sincewe are only concernedwith t < tpost, STDPpotentiates
both inhibitory and excitatory synapses, so

�rE

[
i2i (t)

]
,�rE

[
i2e (t)

]
> 0 (26)

and therefore the variance increases.Naturally, if the variance
of a certain distribution increases while keeping its mean
constant, then the probability of reaching a value higher than
some threshold—vth—also increases.

The approach outlined here can be also used for other
STDP kernels. While the symmetry in the excitatory and
inhibitory STDP kernels might not exist for some choices
of inhibitory and excitatory plasticity, the approach can, in
principle, still be used by making sure that the mean or the
variance of the inputs to a neuron would grow before each
postsynaptic spike

The nonproliferation of spikes can be derived by a similar
argument, although in this case the mean or the variance (or
both) of the presynaptic input to the postsynaptic neuron will
decrease due to the depressive nature of STDP for t > tpost.
In general, the idea of having the depression stronger than
the potentiation would still work, as long as the depression of
inhibitory synapses is weaker or equal than that of excitatory
synapses. As this calculation is essentially the same as the
one we just presented, we will skip it.

3.4 Numerical verification for random input spike
trains

The examples presented to illustrate the latency reduction and
the disappearance—or delay—of late postsynaptic spikes
were simple, so we must now extend them to a more general
case. To do so, we simulated spike trains where the times
of the presynaptic spikes are randomly sampled at the begin-
ning and then fixed for every subsequent repetition, including
only excitatory or excitatory and inhibitory STDP, noise and
the presence of an earlier postsynaptic spike. The results are

presented in Table 1 and agree with our previous conclu-
sions: A single postsynaptic spike tends to reduce its latency,
if there are multiple postsynaptic spikes in a short time win-
dow the later ones tends to disappear, and the presence of
noise increases those effects. Note that we have not included
jitter or probabilistic presynaptic spikes, choosing instead to
have noise directly on the weight evolutions. As both cases
have been addressed before (Guyonneau et al. 2005) with
similar conclusions, we shall not repeat them here.

So far we have only considered effects on small time
scales, meaning that there were only a few spikes on a time
interval of the order of 10ms, and the postsynaptic spike
train would evolve over a few repetitions, on the order of
20ms. This leads us to the conclusion that, with plausible
assumptions on the parameters of our model, an individual
postsynaptic neuron will fire a specific postsynaptic spike
earlier after many repetitions of the same presynaptic spike
train and that if two postsynaptic spikes are close in time,
then the later one could disappear.

4 Postsynaptic spike train

Now, we study the effects of the previously described phe-
nomena, which act on small temporal scales and affect only
one or two postsynaptic spikes, for a population of postsy-
naptic neurons, each one receiving many presynaptic spike
trains happening over time scales much larger than τm or
τs . Specifically, we will explore the latency reduction and
suppression or delaying of late postsynaptic spikes and the
change in the postsynaptic spike distribution.

Before studying those effects, we must validate some of
the assumptions that we made in the previous section. In
particular, we assume that all the input spikes came from dif-
ferent synapses, which allowed us to treat the weights of all
presynaptic spikes as independent. This is a valid assumption
when we are considering short time intervals, as the sparsity
of presynaptic firing and the existence of refractory periods
implies that a single synapse would typically not fire more
than once during a short presynaptic spike train. However,
when there is a long presynaptic spike train, a presynaptic
neuron might contribute to that spike train more than once,
thus our assumption might be invalid and the phenomena
described in the previous section might not appear. To ensure
that the phenomena of latency reduction and late spike dis-
appearance are still present in long spike trains, we use a
combinatorial argument and count the number of synapses
that might evolve in a non-trivial fashion, which we present
in “Appendix A”.

We can now consider the first time that an input presynap-
tic spike train is presented. Every neuron starts at v(0) = 0
and then its membrane potential will change depending on
its inputs. As the input spike train consists of independent
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spikes with independent weights, the times of the first spike
have a probability distribution f 10 (t) with support on t > 0,
which depends on the parameters of the input spike train.
After spiking, every neuron resets its membrane potential to
zero, and thus the distribution of inter-spike intervals f ISI0 (t)
follows

f ISI0 (t) = f 10 (t − tref). (27)

After the input has been repeated many times, the dis-
tribution of postsynaptic spikes changes to f 1∞ and f ISI∞ ,
respectively. Specifically, the first spikes reduce their latency
on average and thus move closer to t = 0, while the
inter-spike intervals increase, due to the depressive effect of
postsynaptic spikes that repels or eliminates late postsynaptic
spikes. Therefore,

F1∞(t) =
∫ t

0
f 1∞(x)dx ≥

∫ t

0
f 10 (x)dx = F1

0 (t)

F ISI∞ (t) =
∫ t

0
f ISI∞ (x)dx ≤

∫ t

0
f ISI0 (x)dx = F ISI

0 (t)

(28)

where F1∞, F ISI∞ , F ISI
0 and FF

0 are the cumulative probabil-
ity distributions of the inter-spike intervals and first spikes,
respectively. This is illustrated in Fig. 3 showing that indeed
the first spikes move forward through STDP and the later
spikes aremore separated,which is consistentwith the results
from previous sections.

It is worth noting that our results are only valid for the spe-
cific case where the plasticity rule potentiates the presynaptic
spike to a neuron before its postsynaptic spikes and depresses
those afterward. As there is a zoo of possible time-dependent
rules, we performed a short overview of the effects of those
rules in “Appendix B,” finding that in awide range of variants
our results still hold. Another important feature that we have
to consider is the addition of recurrent connections, which
we address in “Appendix C”.

For the next section, it will be convenient to look at the
instantaneous firing rate, which is obtained by accumulating
the times of all spikes.

s(t) = lim
�t→0

∞∑

k=1

Pr [tk ∈ [t, t + �t]]

�t
(29)

where tk is the time of the kth spike. Since the time of the
kth spike is the sum of the inter-spike intervals of the first
k − 1 spikes and the first spike, and the probability of a sum
is given by the convolution of the probability distributions,
we can rewrite the previous function as

s(t) =
(
f 1 + f 1 ∗ f ISI + f 1 ∗ f ISI ∗ f ISI + · · ·

)
(t)

=
(
f 1 ∗

∞∑

k=0

(
f ISI

)∗k
)

(30)

where ∗ is the convolution operator, ∗k is the convolution
power. Note that f 1 and f ISI depend on how many times the
input has been repeated. We will refer to the subindex 0 and
∞ to refer, respectively, to the cases where the presynaptic
spike train is presented for the first time or when it has been
presented many times.

The postsynaptic spike trains generated by neural popu-
lations are instantiate codes that transmit information about
presynaptic spikes to other neurons. As STDP is a learning
mechanism that modifies the postsynaptic spike train, we
expect that it should improve this encoding. Each input stim-
ulus triggers spikes in a certain neural population, and every
neuron in that population has a certain performance asso-
ciated to it, the two most common performance measures
being energy consumption and resistance to noise (Rappa-
port 1996).

If we take the number of postsynaptic spikes generated by
the neural population as a proxy for the metabolic costs of
encoding a stimulus, then we would expect that number to
decrease as the stimulus is presented more often, so that the
encoding of common stimuli incurs less metabolic costs.

To evaluate how the number of spikes evolves, we con-
sider the evolution of the first spike and inter-spike-interval
cumulative probability distributions from Fig. 3. On one
hand, the fact that the first spike moves forward implies that
there will be more spikes concentrated on a small region
at the beginning, so if we consider a very short time inter-
val the concentration of spikes will increase. However, as
we increase the length of the stimulus, the average distance
between spikes will start to depend mostly on the inter-spike
interval, implying that the spike densitywill be lower. Inmore
formal terms, the number of spikes is given by the integral

S =
∫ T

0
s(t)dt =

∫ T

0
f 1(t)dt

+
∫ T

0
f 1 ∗

∞∑

k=1

(
f ISI

)∗k
dt, (31)

which is dominated by the first term when T is small and by
the second term when T is large. This can be quantified by
the ratio in the decrease in spikes

S∞ − S0
S0

, (32)

where S0 is the number of spikes before STDP and S∞ is the
number afterward. Naturally, there are many parameters that
affect the change in the number of spikes, in particular the
length of the stimuli and the input rate or how often the input
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Fig. 3 Evolution of the spike train: We plot cumulative probability dis-
tribution of the time of the first spike, the inter-spike interval when a
presynaptic spike train is presented for the first time (left) and aftermany
repetitions (center) and the number of spikes per bins of 4ms on the first
50ms of a spike train (left). We simulate 2000 neurons each receiving a
presynaptic spike train lasting 600mswith 200 presynaptic spikes, both
inhibitory and excitatory, and whose arrival time is uniformly sampled.
Every synapse evolves through STDP and being subject to both the fixed
spike train with probability 0.33 and a random pair of pre- and postsy-
naptic spikes with tpost − tpre ∈ [−20 ms, 20ms] with probability 0.66.

We plot the time of the first spike (blue) and the inter-spike interval for
second, third and fourth spikes, but subtracting the refractory period to
have a pertinent comparison with the first spiking time. We can see that
initially the first spike time is the same as the inter-spike interval for
all the spikes, but after STDP is applied the average time of the first
spike reduces, implying that the blue line moves to the left with respect
to the time before learning (in the black dotted line) while the average
inter-spike intervals increase, thus moving the curves to the right. This
changes the distribution of spikes to have more of them concentrated in
the beginning of the spike train (color figure online)

Table 2 Synchrony evolution: We simulated spike trains with different
values of the presynaptic input rate (IR) and the probability that the
stimulus is presented compared to random pair of spikes per synapse
(SP), and then measured the change in φ taking a time window of
100ms and using 1000 neurons. As we can see, the synchronization
always increases

SP=0.33 SP=1

IR=0.33 IR=1 IR=0.33 IR=1

L = 2 2.1 → 2.7 2.8 → 3.9 2.3 → 3.4 2.9 → 4.9

L = 5 1.8 → 2.4 2.4 → 3.0 2.0 → 3.0 2.5 → 3.6

L = 10 1.7 → 2.0 1.9 → 2.1 1.9 → 2.6 1.9 → 2.3

is presented with respect to other stimuli, which are shown
in Fig. 4. In general, in short time intervals at most one spike
would be present, thus the disappearance of second spikes
induced by the depressive side of STDP does not play a role;
at the same time, the spikes that would appear by the fluctua-
tions in input weight, and which would simply disappear by
the same process if STDP was not present, remain. Hence,
in that case the number of spikes increases, while for long
spike intervals the number of spikes decreases.

It is worth noticing that the reduction in the number of
spikes that we observe in Fig. 4 does not correspond to the
reduction in spike count that STDP induces in Poissonian
spike trains. We tested this by checking how a Poissonian
spike train with the same STDP parameters and the same
weight distribution and input rate as in Fig. 3 changed, and
we found that this leads to an increase of 10% in the num-
ber of postsynaptic spikes because excitatory presynaptic
spikes tend to induce postsynaptic spikes, thus the excita-
tory weights systematically increase.

Fig. 4 Spike count evolution: We simulated spike trains of various
lengths for different parameters of the input rate (IR) and the probability
that the stimulus is presented (SP), and when it is not we induce a
random pair of pre-postsynaptic spikes in every synapse with a tpost −
tpre ∈ [−20ms, 20ms]. In either case we investigate the change in the
number of spikes. As we can see, for long spike trains the inter-spike-
intervals increase and thus the number of spikes decreases. For short
spike trains, on the other hand, there is at most one spike that can fit, so
the inter-spike intervals are irrelevant. Furthermore, the spikes in such
short intervals are self-maintained when STDP is present: If a spike
appears and disappears when the presynaptic weights evolve randomly,
the presence of a postsynaptic spikewill potentiate thoseweights, hence
the spike will be maintained, implying that STDP increases the number
of spikes in short time intervals

Besides the number of spikes, it is also interesting to
note how the distribution of those spikes change. Specifi-
cally, as the first spikes move forward, the spike train will
become more synchronous as the distribution of spiking
times becomes sharper, as we can see in Fig. 3, where the
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postsynaptic spike train has a peak of spikes that grows after
STDP is applied. We quantify this by counting the highest
concentration of spikes in a small timewindow of size L with
respect to the total number of spikes, which can be written
as

φ = maxt
∫ t+L
t s(t)dt

S

T

L
, (33)

where T is the time interval for the full stimulus such that S
T

is the average spike rate and
maxt

∫ t+L
t s(t)dt
L is the highest rate

in a time window of length L . For a random spike train, the
highest rate of spikes in a time window of length L would be
similar to the average firing rate, corresponding to a φ ≈ 1.
However, if many spikes concentrate in a small timewindow,
the spike trains are synchronized and we obtain a high value
of φ. The results of simulations for various parameters are
presented in Table 2, where the increase in φ can be easily
seen.

5 The emergence of predictions

When a group of neurons encodes a stimulus we mean that
those neurons fire when the stimulus is presented. However,
the neurons themselves are not aware agents and do not know
anything about that stimulus; they simply receive a spike
train that is strong enough to trigger their spiking. From the
point of view of an encoding neurons, there is no difference
between the stimulus-induced presynaptic spike train and any
other input spike train that always precedes the stimulus.

Combining this observation with the results from previ-
ous sections showing that neurons will fire at the onset of a
frequent input spike train, we can conclude that a neuron that
“encodes” a stimulus can start firing before the stimulus is
presented if another stimulus appears before it. As an illustra-
tive example, imagine listening to amelody.Different parts of
the melody trigger the activity of different groups of neurons
in the same area of the brain. If the melody is repeated very
often, the neurons P1 that react to an early part of themelody
will systematically fire before the neurons P2 that react to
a later part. As the melody is repeated, neurons in P2 will
always fire after receiving spikes fromneurons in P1 and thus
the synapses from P1 to P2 will be reinforced. Eventually,
the reinforced synapses might trigger spikes in P2 before
the late part of the melody sounds. This can be extended to
more populations encoding more stimuli, and thus the whole
melody is encoded through simultaneous activity of all the
neurons which originally encode only separate notes. This is
illustrated and simulated in Fig. 5.

It is important to notice here that the predictions that we
mention here are restricted to stimuli sequences that can

be identified from the first input, meaning that we are not
addressing the case of two sequences of stimuli which start
activating the same neural population and then go on to acti-
vate different populations. If we have two possible stimuli
sequences which start equally, STDP would force some neu-
rons associated to both possible sequences fire at the onset
of the stimuli, meaning that the system would learn that both
sequences might follow. However, the differentiation of the
two sequences can only be done when the two diverge, so the
system must learn to maintain memory traces of the stimuli,
a process that can also be implemented by STDP with lateral
inhibition (Klampfl and Maass 2013).

6 Discussion

In this paper, we start by analyzing and expanding previous
findings on latency reduction (Song et al. 2000; Guyon-
neau et al. 2005). Then, we extend them to trains of spikes
and show that those mechanisms lead to encoding the more
common inputs with less spikes while concentrating the
remaining spikes in smaller time windows. This leads us
to the conclusion that STDP reduces the amount of spikes
used to encode frequent stimuli, in line with the idea that
metabolic efficiency is one of the guiding principles of the
brain (Hasenstaub et al. 2010; Laughlin 2001). The same
phenomena also synchronize spikes by concentrating them
in small time windows. Following the idea that synchroniza-
tion improves communication between neuronal assemblies
(Singer 2011; Fries 2005; Von Der Malsburg 1994), the fact
that synchronization is induced by STDP indicates that its
effects can be interpreted in communication terms. Finally,
we show that the latency reduction can explain how the ner-
vous system learns to forecast even without any feedback.

This study is another example of how simple, well-known
plasticity rules that are present at synaptic level lead to
modifications that are advantageous at the organism level.
Furthermore, the fact that the same mechanism improves the
neural code and creates predictions might explain how the
ability of the brain to make predictions—which is one of the
core problems in cognitive science—could have emerged as
a consequence of evolutionary pressures on metabolic cost
and information transmission.

Naturally, our work is also interesting for researchers in
machine learning, as it shows that Hebbian learning rules,
which are classically used to infer or reinforce correlations
(Dayan and Abbott 2001), can be used to find predictions
by adding a temporal asymmetry in the synaptic plasticity
kernel. Furthermore, the fact that the same mechanism gives
rise to predictions and coding efficiency is another example
of the intimate relationship between machine learning and
coding (MacKay et al. 2003), thus it might be interesting for
information theorists.
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Fig. 5 Encoding predictions: schema for the emergence of predictions
(left) and firing latencies of neurons in encoding population (right):
An external event creates three stimulus that trigger all the neurons
in corresponding distinct neural populations P1, P2, P3 with the
stimuli inducing spikes during the intervals [0ms, 500ms] for P1,
[500ms, 1000ms] for P2 and [1000ms, 1500ms] for P3, respectively.
The three populations, with N = 50 neurons each, also have synapses

between themwith delays sampled from a uniform distribution between
dPi P j ∈ [1ms, 5ms]. Originally, almost all neurons in each population
fire only after receiving inputs from their respective stimuli, but after
the external event is repeated very often, the inter-population connec-
tions become strong enough to trigger some spikes before the stimulus
is received (color figure online)

The results exposed here also open new questions. The
effects of latency reduction in networks of neurons—in par-
ticular recurrent ones—or the potential use of this prediction
capabilities of STDP for machine learning require further
study but could be useful extensions. However, the most
immediate question is whether this unsupervised process is
used in the nervous system. An experimental study should
identify the neurons that encode two temporally correlated
stimuli and follow the evolution of latencies as the stimuli
are repeated, while simultaneously ensuring that this pro-
cess was due to STDP alone without interference of reward
systems that have been previously proposed.

Acknowledgements Open access funding provided by Max Planck
Society. We would like to thank the Max Planck School of Cognition
for funding the position of Pau Vilimelis Aceituno.

Code availability: The code used in this work is available for down-
load through github under the following link:https://github.com/pvili/
SpikingTimeDependentPlasticity

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix A: Postsynaptic spikes evolve
independently

The problem with having multiple spikes per presynaptic
neuron is that all of the presynaptic spikes coming from the
same synapse have the same weight, and therefore when a
postsynaptic spike is close to one of those presynaptic spikes,
all of the presynaptic spikes that come from that synapse
will undergo the same weight modifications. There are two
scenarios when this would be a problem:

1. A single synapse undergoes STDP from two or more
different spikes: If there are two postsynaptic spikes,
affected by their respective presynaptic spikes, but some
of those presynaptic spikes come from the same synapse,
the resulting weight change from STDP would be a com-
bination of the effects of both postsynaptic spikes. This
is undesirable as the effects could be opposite: one post-
synaptic spike could induce depression while the other
potentiation, and thus the evolution of one of the presy-
naptic spikeswould not evolve as our STDP rule predicts.

2. A new postsynaptic spike appears spontaneously from
STDP: Typically, STDP applies only when there exists a
postsynaptic spike. However, if some synapses are very
strong due to STDP, and those synapses have spikes that
are close together, they could generate a newpostsynaptic
spike. This would automatically generate pairs of presy-
naptic spikes that are affected by two postsynaptic spikes
simultaneously (thus we would be in the previous case).
Furthermore, the spontaneous generation of new postsy-
naptic spikes is itself problematic.
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Consider M presynaptic neurons which fire with a rate
λ, and a postsynaptic neuron that receives them with a rate
ρ = Mλ during a time interval of length T , generating spost
postsynaptic spikes. Furthermore, each one of those post-
synaptic spikes imposes STDP that affects the presynaptic
spikes that are close to it. For simplicity, we will assume that
the noticeable effect on the presynaptic spikes is restricted to
a time window of size lτS where l is a small integer number.

We start by studying case (1). If we have spost postsynaptic
spikes, then the effects of STDP are noticeable for

ta = lτSspost (34)

milliseconds in which all presynaptic spikes should come
from different synapses. Given that the arrival times of each
spike are uniform on the whole interval, the expected number
of presynaptic neurons that fire in that intervalmore than once
is given by

N
∞∑

k=2

(λta)ke−λta

k! = N
(
1 − e−λta − λtae

−λta
)
, (35)

and by a Taylor expansion to order two,

E [#1] ≈ N

(
1 − λta + λ2t2a

2
+ λta − λ2t2a

)

= N
λ2t2a
2

. (36)

To get an intuition of the magnitude of these numbers,
consider, for instance, an input spike train lasting 1s with
presynaptic spike rate of 0.5Hz which generates two post-
synaptic spikes and we pick the relevant time window to be
twice τS , so l = 2 and spost = 3. Then, the expected number
of events of type (1) would be

E [#1] ≈ M

400
. (37)

Furthermore, not all of those events would actually be prob-
lematic; if all of them are potentiating or depressing, then
this does not change our analysis.

For case (2) we argue that in order to spontaneously gener-
ate new spikes, the synapses affected by STDP must be very
strong and excitatory, and a few of those strong excitatory
synapses must coincide within a small time window of order
τm .

The synapses that can be very strong are those in the ta
time, meaning that we expect

na = ρta = ρlτSspost, (38)

independent synapses to be close to wmax. Each one of those
synapses can fire within the remaining T − ta time at a rate
λ, so we would expect to have a presynaptic rate of STDP-
affected spikes of

λa = naλ. (39)

Now, we must compute the probability that enough of them
coincide to generate a postsynaptic spike.

We denote this number by k andwewill compute the num-
ber of spontaneous postsynaptic spikes that would appear for
every k. We start by considering k = 2 of those presynaptic
spikes (although for some choices ofwmax we have to start at
k > 2), and note that in order to have the postsynaptic spike,
we must have

wmax + wmaxe
− �tk=2

τm + σv > vth (40)

where σv is a term that accounts for the presence of other
spikes that could be driving the membrane potential higher,
and �tk=2 is the time interval between the two spikes. By
rearranging,

�tk=2 < i2 = τm ln (ϑ − 1) , (41)

where ϑ = vth−σv

wmax
. Since the spikes follow a Poisson distri-

bution, the probability of a time interval between spikes is
given by an exponential distribution, so

Pr [#2|k = 2] = Pr [�tk=2 < i2] = 1 − e−λai2 , (42)

and the number of those intervals tends to λaT for large T ,
so

E [#2]k=2 = λaT
(
1 − e−λai2

)
, (43)

For k > 2, the estimation can be done by applying the fact
that two contiguous spikes are independent, and therefore, the
inter-spike intervals are also independent, so we canmultiply
their probabilities. Furthermore, we should not have any two
spikes at a distance closer than i2, so

Pr [#2|k = 3] <

∫ ∞

i2
λae

−λa x
∫ ∞

i2
λae

−λa y


[
1 + e− x

τm + e− y
τm − ϑ

]
dydx, (44)

where the inequality comes because we let the interval
time go to infinity, while T is finite. We can ignore the



[
1 + e− x

τm + e− y
τm − ϑ

]
term and we obtain

Pr [#2|k = 3] <
(
1 − e−λai2

)2
. (45)
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And here the number of pairs of contiguous time intervals is
also lower than Tλa , which gives us

E [#2]k=3 ≤ Tλa

(
1 − e−λai2

)2
. (46)

Naturally, the same upper bound can be computed for any k,
so

E [#2]∀k =
∞∑

j=2

E [#2]k= j ≤ Tλa

∞∑

j=2

(
1 − e−λai2

) j−1

= Tλae
λai2 = Tλa (ϑ − 1)λa .

(47)

Which will be low as long as λa is low. If we have, for
instance, M = 50, l = 2, spost = 3 and λ = 0.5Hz, we
obtainλa = 6·10−3. Then, ifwe takeσv = wmax/2,ϑ = 1.5,

E [#2]∀k ≈ 3T

1000
, (48)

with T being in milliseconds, this means that for an input
spike train lasting half a second, generating 3 postsynaptic
spikes, there would be one expected spontaneous postsynap-
tic spike.

The estimates from Eqs. 37 and 48 give a relatively
low number of coupled postsynaptic spikes or spontaneous
spikes. We will therefore assume, from now on, that the
effects described in Sect. 3 are valid and happen in every post-
synaptic spike on every neuron independently of the presence
of other postsynaptic spikes.

Appendix B: Spike trains subject to
alternative plasticity rules

Here,we simulate the effects of other learning rules on a spike
train to compare it with the rule that we proposed. Although
we will keep similar parameters for the initialization, input
rate, fraction of neurons and probability of a random input,
we will vary some of the STDP parameters.

Another family of variants comes from the review by
(Vogels et al. 2013) mentioned earlier, where different
inhibitory rules are discussed. We will not comment on the
rules that require firing bursts or subthreshold induction pro-
tocols, as those are outside of the scope of this paper, and
we will also not comment on the kernels that only dampen
inhibition, because those require some other mechanism to
prevent inhibition from being effectively depressed. Finally,
we will also ignore the inhibition kernels that have long time
constants τ is ≈ 100ms because those are already on the scale
of the stimulus length.

Explicitly we will address the following variants:

1. Altering the STDP time constant τ es to be twice as large
for the inhibitory weight τ is than for the excitatory one.
This makes inhibition grow faster than excitation, break-
ing the symmetry between the excitatory and inhibitory
weight distributions and hence giving us a much lower
firing rate, although the advance of the first spikes is still
visible.

2. To make a fair comparison we take again the same rule
with the parameters of the inhibition to be the same as
for excitation, so that Ai+ = Ae+ and we

max = wi
max.

This leads to the CDF of the first spike dominating being
larger than the CDF of the subsequent spikes for most
of the time interval, thus pushing the first spike forward,
although the difference in instantaneous rates is difficult
to see.

3. As many studies now have found that pairs of excita-
tory spikes are not enough to characterize the change
in weights, we also study triplet rules. Given our low
rate assumption—see “Appendix A”—we do not need
to worry about pairs of presynaptic spikes, so we will
take one of the most well-known versions of it that con-
siders two postsynaptic spikes where the weight change
in the second is modulated by the distance to the first
(Gjorgjieva et al. 2011). We find that our results are
mostly unchanged, as the first postsynaptic spike remains
unchanged and the others would at most reduce their
probability.

4. Another common variation of excitatory plasticity is to
add a homeostatic term that penalizes large weights pro-
portionally with the output firing rate of a neuron. This
ensures that any neuron keeps a moderated rate, and thus
reduces the strength of the excitatory part balancing the
potentiation of the STDP. However, we found again that
our results remain similar, as the global weight reduc-
tion does not change the fact that the first spike moves
forward.

5. Regarding inhibitory plasticity, the first kernel that we
try is to reverse the STDP, so that synapses whose
presynaptic spikes arrive after the postsynaptic spike are
potentiating and those that arrive before are depressed.
As this rule goes into the same direction as excitatory
STDP, it promotes the same effect that purely excitatory
STDP or the balanced case would, only more.

6. Finally, the last variation that we will try is to use a mex-
ican hat kernel for inhibitory plasticity. What we do find
is that the results agree with our previous result.

We present the simulation results in Fig. 6. We can easily
observe that most of the rules exposed here do support our
conclusions, even if an analytical approach is not straightfor-
ward.
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Fig. 6 Effects of alternative learning rules: We tested different timing-
based learning rules with the same setup as in Fig. 3: 2000 neurons, 200
presynaptic spikes in 600ms, and the input is presented with probability
0.33, with a random pre-postsynaptic pair being presented otherwise.
We plot the cumulative probability distribution of the time of the first

spike, the inter-spike interval when a presynaptic spike train is pre-
sented for the first time (left) and after many repetitions (center) and the
number of spikes per bins of 4ms on the first 100ms of a spike train
(left)
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Fig. 7 Evolution of the spike train with strong recurrent connections:
We plot cumulative probability distribution of the time of the first spike,
the inter-spike interval when a presynaptic spike train is presented for
the first time (left) and after many repetitions (center) and the number
of spikes per bins of 4ms on the first 200ms of a spike train (left). We
simulate 2000 neurons each receiving a presynaptic spike train lasting
400ms with 150 presynaptic spikes, both inhibitory and excitatory, and

whose arrival time is uniformly sampled, and 15 recurrent ones. Every
synapse evolves through STDP and being subject to both fixed spike
train with probability 0.33 or a random pair of pre- and postsynaptic
spikes with probability 0.66. We plot the time of the first spike (blue)
and the inter-spike interval for second, third and fourth spikes, but sub-
tracting the refractory period to have a pertinent comparison with the
first spiking time (color figure online)

Appendix C: Recurrent connections

Although in this work we have assumed that every neuron
gets a fixed spike train, the existence of connections between
neurons implies that when one neuron changes its postsynap-
tic spike train the presynaptic input of its neighbors might
change. Hence, as opposed to the random but uniformly
distributed input that we used, neurons might receive a non-
uniform input. While we will not address this case in detail,
we will assess by simulations whether our results should
remain valid.

An important assumption when dealing with recurrent
connections is that the network must remain stable. This is
necessary inmany contexts to prevent runaway behavior, and
in our case will help us assess the final results.

The first result that differs from our previous discussion
is that the inter-spike intervals are shorter than the delay to
the first spike, even before the STDP appears. This comes
from the fact that neurons can trigger each other’s activity,
hence a subset of neurons will fire much more often than the
equivalent population with no recurrent connections, hence
shortening the inter-spike-intervals (Fig. 7).

The effect of the STDP on the first spike is similar to the
one we described, as it pushes the first spike forward in time.
However, for secondary spikes they also get pushed forward,
probably because the recurrent connections get severely rein-
forced by triggering spikes: if a pair—or a cycle of any
length—of neurons excite each other, they continue to be
active and reinforce their spikes to their maximum. This also
implies that the number of spikes grows, as the inter-spike
intervals grow shorter.

Naturally, the effects that differ from our previous results
such as changes in the number of spikes depend on the
strength of the recurrent connections; there is a continuum
of possible values, from fully feed-forward architectures to

strongly recurrent ones as we have simulated here, and the
increase or decrease in the number of spikes depends on
which effect dominates—either the decrease in purely feed-
forward or the increase in strongly recurrent.
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