Skip to main content
Log in

The roles of ascending sensory signals and top-down central control in the entrainment of a locomotor CPG

  • Original Article
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Previous authors have proposed two basic hypotheses about the factors that form the basis of locomotor rhythms in walking insects: sensory feedback only or sensory feedback together with rhythmic activity of small neural circuits called central pattern generators (CPGs). Here we focus on the latter. Following this concept, to generate functional outputs, locomotor control must feature both rhythm generation by CPGs at the level of individual joints and coordination of their rhythmic activities, so that all muscles are activated in an appropriate pattern. This work provides an in-depth analysis of an aspect of this coordination process based on an existing network model of stick insect locomotion. Specifically, we consider how the control system for a single joint in the stick insect leg may produce rhythmic output when subjected to ascending sensory signals from other joints in the leg. In this work, the core rhythm generating CPG component of the joint under study is represented by a classical half-center oscillator constrained by a basic set of experimental observations. While the dynamical features of this CPG, including phase transitions by escape and release, are well understood, we provide novel insights about how these transition mechanisms yield entrainment to the incoming sensory signal, how entrainment can be lost under variation of signal strength and period or other perturbations, how entrainment can be restored by modulation of tonic top-down drive levels, and how these factors impact the duty cycle of the motor output.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Katz PS, Hooper SL (2007) Invertebrate central pattern generators. In: Norrth G, Greenspan RJ (eds) Invertebrate neurobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  2. Marder E, Bucher D (2001) Central pattern generators and the control of rhythmic movements. Curr Biol 11:R986–R996

    CAS  PubMed  Google Scholar 

  3. Marder E, Calabrese RL (1996) Principles of rhythmic motor pattern generation. Physiol Rev 76:687–717

    CAS  PubMed  Google Scholar 

  4. Smith JC, Abdala APL, Borgmann A, Rybak IA, Paton JFR (2013) Brainstem respiratory networks: building blocks and microcircuits. Trends Neurosci 36:152–162

    CAS  PubMed  Google Scholar 

  5. Orlovsky GN, Deliagina TG, Grillner S (1999) Neuronal control of locomotion. Oxford University Press, Oxford

    Google Scholar 

  6. Mantziaris C, Bockemühl T, Büschges A (2020) Central pattern generating networks in insect locomotion. Dev Neurobiol 80(1–2):16–30

    PubMed  Google Scholar 

  7. Büschges A (2020) Connecting the micro with the macro level in motor control: unravelling general sensory influences on leg stepping. J Physiol 597(12):2971–2972

    Google Scholar 

  8. Bidaye SS, Bockemühl T, Büschges A (2018) Six-legged walking in insects: how CPGs, peripheral feedback, and descending signals generate coordinated and adaptive motor rhythms. J Neurophysiol 119:459–475

    PubMed  Google Scholar 

  9. Bender JA, Simpson EM, Tietz BR, Daltorio KA, Quinn RD, Ritzmann RE (2011) Kinematic and behavioral evidence for a distinction between trotting and ambling gaits in the cockroach Blaberus discoidalis. J Exp Biol 214:2057–2064

    PubMed  PubMed Central  Google Scholar 

  10. Cruse H (1990) What mechanisms coordinate leg movement in walking arthropods. TINS 13:15–21

    CAS  PubMed  Google Scholar 

  11. Grabowska M, Godlewska E, Schmidt J, Daun-Gruhn S (2012) Quadrupedal gaits in hexapod animals-inter-leg coordination in free-walking adult stick insects. J Exp Biol 215:4255–4266

    PubMed  Google Scholar 

  12. Mendes CS, Bartos I, Akay T, Márka S, Mann RS (2013) Quantification of gait parameters in freely walking wild type and sensory deprived Drosophila melanogaster. Elife 2:e00231

    PubMed  PubMed Central  Google Scholar 

  13. Wendler G (1966) The co-ordination of walking movements in arthropods. Symp Soc Exp Biol 20:229–249

    CAS  PubMed  Google Scholar 

  14. Wosnitza A, Bockemühl T, Dübbert M, Scholz H, Büschges A (2013) Inter-leg coordination in the control of walking speed in Drosophila. J Exp Biol 216:480–491

    PubMed  Google Scholar 

  15. Schilling M, Cruse H (2020) Decentralized control of insect walking: a simple neural network explains a wide range of behavioral and neurophysiological results. PLoS Comput Biol 16(4):e1007804

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Graham D (1985) Influence of coxa-thorax joint receptors on retractor motor output during walking in Carausius morosus. J Exp Biol 114:131–139

    Google Scholar 

  17. Hughes GM (1952) The co-ordination of insect movements. J Exp Biol 29:267–285

    Google Scholar 

  18. Biewener AA (2003) Animal locomotion. Oxford University Press, Oxford

    Google Scholar 

  19. Hooper SL, Guschlbauer Ch, Blümel M, Rosenbaum P, Gruhn M, Akay T, Büschges A (2009) Neural control of unloaded leg posture and leg swing in stick insect, cockroach, and mouse differs from that in larger animals. J Neurosci 29:4109–4119

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Büschges A (2005) Sensory control and organization of neural networks mediating coordination of multisegmental organs for locomotion. J Neurophysiol 93:1127–1135

    PubMed  Google Scholar 

  21. Toth TI, Daun-Gruhn S (2011) A putative neuronal network controlling the activity of the leg motoneurons of the stick insect. NeuroReport 22(18):943–946

    PubMed  Google Scholar 

  22. Toth TI, Knops S, Daun-Gruhn S (2012) A neuro-mechanical model explaining forward and backward stepping in the stick insect. J Neurophysiol 107(12):3267–80

    CAS  PubMed  Google Scholar 

  23. Toth TI, Grabowska M, Schmidt J, Büschges A, Daun-Gruhn S (2013) A neuro-mechanical model explaining the physiological role of fast and slow muscle fibres at stop and start of stepping of an insect leg. PLoS ONE 8(11):e78246

    PubMed  PubMed Central  Google Scholar 

  24. Knops S, Toth TI, Guschlbauer C, Gruhn M, Daun-Gruhn S (2013) A neuromechanical model for curve walking in the stick insect. J Neurophysiol 109(3):679–691

    CAS  PubMed  Google Scholar 

  25. Toth TI, Daun S (2019) A kinematic model of stick insect walking. Physiol Rep 7(8):e14080

    PubMed  PubMed Central  Google Scholar 

  26. Graham D (1972) An analysis of walking in the first instar and adult stick insect Carausius morosus. J Comput Physiol 81:23–52

    Google Scholar 

  27. Prochazka A (1996) Proprioceptive feedback and movement regulation. In: Rowell L, Sheperd JT (eds) Handbook of physiology. American Physiological Society, New York, pp 89–127

    Google Scholar 

  28. Daun-Gruhn S, Büschges A (2011) From neuron to behavior: dynamic equation-based prediction of biological processes in motor control. Biological Cybernetics 105(1):71–88

    PubMed  Google Scholar 

  29. Ayali A, Borgmann A, Büschges A, Couzin-Fuchs E, Daun-Gruhn S, Holmes P (2015) The comparative investigation of the stick insect and cockroach models in the study of insect locomotion. Curr Opin Insect Sci 12:1–10

    Google Scholar 

  30. Tóth TI, Grabowska M, Rosjat N, Hellekes K, Borgmann A, Daun-Gruhn S (2015) Investigating inter-segmental connections between thoracic ganglia in the stick insect by means of experimental and simulated phase response curves. Biol Cybern 109(3):349–362

    PubMed  Google Scholar 

  31. Borgmann A, Toth TI, Gruhn M, Daun-Gruhn S*, Büschges A* (2011) Dominance of local load signals over inter-segmental effects in a motor system. I. Experiments. Biol Cybern 105(5–6): 399—411. *shared senior authorship

  32. Daun-Gruhn S, Toth TI, Borgmann A (2011) Dominance of local load signals over inter-segmental effects in a motor system. II. Simulation studies. Biol Cybern 105(5–6):413–426

    PubMed  Google Scholar 

  33. Borgmann A, Scharstein H, Büschges A (2007) Intersegmental coordination: influence of a single walking leg on the neighboring segments in the stick insect walking system. J Neurophysiol 98:1685–1696

    PubMed  Google Scholar 

  34. Borgmann A, Hooper SL, Büschges A (2009) Sensory feedback induced by front-leg stepping entrains the activity of central pattern generators in caudal segments of the stick insect walking system. J Neurosci 29:2972–2983

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Daun-Gruhn S (2011) A mathematical modeling study of inter-segmental coordination during stick insect walking. J Comput Neurosci 30(2):255–278

    PubMed  Google Scholar 

  36. Büschges A (1995) Role of local nonspiking interneurons in the generation of rhythmic motor activity in the stick insect. J Neurobiol 27:488–512

    PubMed  Google Scholar 

  37. Büschges A, Gruhn M (2008) Mechanosensory feedback in walking: from joint control to locomotory patterns. Adv Insect Physiol 34:194–234

    Google Scholar 

  38. Wang X, Rinzel J (1992) Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Comput 4:84–97

    Google Scholar 

  39. Skinner F, Kopell N, Marder E (1994) Mechanisms for oscillation and frequency control in reciprocally inhibitory model neural networks. J Comput Neurosci 1:69–87

    CAS  PubMed  Google Scholar 

  40. Daun S, Rubin J, Rybak I (2009) Control of oscillation periods and phase durations in half-center central pattern generators: a comparative mechanistic analysis. J Comput Neurosci 27(1):3–36

    PubMed  PubMed Central  Google Scholar 

  41. Rosenbaum P, Schmitz J, Schmidt J, Büschges A (2015) Task-dependent modification of leg motor neuron synaptic input underlying changes in walking direction and walking speed. J Neurophysiol 114:1090–1101

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mentel T, Weiler V, Büschges A, Pflüger H-J (2008) Activity of neuromodulatory neurones during stepping of a single insect leg. J Insect Physiol 54(1):51–61

    CAS  PubMed  Google Scholar 

  43. Stolz T, Diesner M, Neupert S, Hess ME, Delgado-Betancourt E, Pflüger H-J, Schmidt J (2019) Descending octopaminergic neurons modulate sensory evoked activity of thoracic motor neurons in stick insects. J Neurophysiol 122:2388–2413

    CAS  PubMed  Google Scholar 

  44. Hooper SL, Büschges A (2017) Neurobiology of motor contro—fundamental concepts and new directions. In: SL Hooper, ABüschges (eds) Wiley Blackwell

  45. Danner SM, Shevtsova NA, Frigon A, Rybak IA (2017) Computational modeling of spinal circuits controlling limb coordination and gaits in quadrupeds. eLife 6:e31050

    PubMed  PubMed Central  Google Scholar 

  46. Ekeberg Ö, Pearson KG (2005) Computer simulation of stepping in the hind legs of the cat: an examination of the mechanisms regulating the stance-to-swing transition. J Neurophysiol 94:4256–4268

    PubMed  Google Scholar 

  47. Yeldesbay A, Toth TI, Daun S (2018) The role of phase shifts of sensory inputs in walking revealed by means of phase reduction. J Comput Neurosci 44(1):313–339

    PubMed  Google Scholar 

  48. Holmes PJ, Full RJ, Koditschek D, Guckenheimer J (2006) The dynamics of legged locomtion: models, analysis, and challenges. SIAM Rev 48(2):207–304

    Google Scholar 

  49. Sponberg S, Full RJ (2008) Neuromechanical response of muscoskeletal structures in cockroaches during rapid running on rough terrain. J Exp Biol 211:446

    Google Scholar 

  50. Fuchs E, Holmes P, David I, Ayali A (2012) Proprioceptive feedback reinforces centrally generated stepping patterns in the cockroach. J Exp Biol 215:1884–1891

    PubMed  Google Scholar 

  51. Gruhn M, Zehl L, Büschges A (2009) Straight walking and turning on the slippery surface. J Exp Biol 212:194–209

    PubMed  Google Scholar 

  52. Bidaye SS, Machacek C, Wu Y, Dickson BJ (2014) Neuronal control of Drosophila walking direction. Science 344:97–101

    CAS  PubMed  Google Scholar 

  53. Somers D, Kopell N (1993) Rapid synchronization through fast threshold modulation. Biol Cybern 68:393–407

    CAS  PubMed  Google Scholar 

  54. Rubin J, Terman D (2002) Geometric singular perturbation analysis of neuronal dynamics. In: Fiedler B (ed) Handbook of dynamical systems, vol 2. Elsevier, Amsterdam, pp 93–146

    Google Scholar 

  55. Ghigliazza R, Holmes P (2004) A minimal model of a central pattern generator and motoneurons for insect locomotion. SIAM J Appl Dyn Syst 3:671–700

    Google Scholar 

  56. Zhang C, Lewis T (2013) Phase response properties of half-center oscillators. J Comput Neurosci 35:55–74

    CAS  PubMed  Google Scholar 

  57. Aminzare Z, Holmes Srivastava V (2018) Gait transitions in a phase oscillator model of an insect central pattern generator. SIAM J Appl Dyn Syst 1:626–671

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by NSF DMS awards 1612913 and 1951095 (JR). SD gratefully acknowledges support from the German Research Foundation (DA1953/5-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan E. Rubin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Benjamin Lindner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Codianni, M.G., Daun, S. & Rubin, J.E. The roles of ascending sensory signals and top-down central control in the entrainment of a locomotor CPG. Biol Cybern 114, 533–555 (2020). https://doi.org/10.1007/s00422-020-00852-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-020-00852-8

Keywords

Navigation