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Abstract

I present a personal account of the origin, development and future of a concept that appeared in this journal in 1984. The title
was The Structure of Images. It became known as “scale space.”

Keywords Scale space - Image structure

Reason why The editor invited me to comment on a paper
from the early 1980s (Koenderink 1984a). I checked Google
Scholar ! today (February 10, 2021): it had 3 618 cita-
tions since 1984. Current rate is 50 /annum. The paper was
hardly cited before the 1990s. Citations peak about 2010. 2
I’ll sketch why I think that is. I freely quote from my own
past, because these references sketch the intellectual context.

1 Prehistory

What sparked me off? It was due to my interests in human
awareness, neurophysiology, geometry, philosophy of mind
and the visual arts. I've always been struck by the scale
invariance of Leibniz Monads Leibniz (1991). As for the sci-
ences, the well-known “Powers of Ten” movie (Eames and
Eames 1977) fired my imagination and a remark by Friedrich

! The numbers are volatile. T checked February 10, 2021. If you want
to check yourself, try “koenderink scholar” on Google search and make
sure you find Jan. Femius and Gijsje are my children.

2 I’'m well known for contributions that blossom late. A “Koenderink
Prize” is awarded annually at the European Conference on Computer
Vision for “a paper published ten years ago at that conference which
has withstood the test of time.”

Communicated by Benjamin Lindner.

To highlight the scientific impact of our Journal over the last decades,
we asked authors of highly influential papers to reflect on the history
of their study, the long-term effect it had, and future perspectives of
their research. We trust the reader will enjoy these first-person
accounts of the history of big ideas in Biological Cybernetics.
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Nietzsche alerted me to Boscovich (1762). The problem of
the continuum (through Franz Brentano (Brentano 1988;
Koenderink et al. 2017a) 3) kept me awake. I saw similarities
between the neurophysiology of Lotze’s (1884) local sign
(Koenderink 1984b,c) (via a genial remark 4 by Helmbholtz
(1884)) and Cech cohomology (Cech 1932). In the visual
arts I was fascinated by John Ruskin’s “mystery” of distant
details. He drew the first “scale space” I’ve ever seen (Ruskin
1857).

The academic problems from psychophysics required
novel neurophysiological models. Such needs also arose in
computer (image) science. At some point this sparked me off.

Note the serendipity. We only see the rivolets but are blind

to the stream (science!).
Mpysterious data During the 1970s and 1980s I worked
on extensive perimetric studies of visual abilities such as
spatiotemporal contrast luminance and hue detection, move-
ment, efc. (Koenderink et al. 1978; van de Grind et al. 1983;
van Esch et al. 1984). In retrospect this huge corpus was
mostly ignored. My main satisfaction is that there are many
“facts” in recent textbooks that I know to be mistaken. > At
least I know.

3 In comparing dates, please note that novel concepts brew for consid-
erable periods (weeks to decades) before they appear in publications.

4 “Ferner ist sehr merkwiirdig, dass bei Zahnschmerzen von Beinhau-
tentziindung eines Zahns die Patienten im Anfang gewohnlich unsicher
sind, ob von einen Paar iibereinander stehender Zihne der obere oder
der untere leidet. ...Soll dies nicht davon herriihren, dass ...immer
beide Zihne jedes Paars gleichzeitig starken Druck erleiden?” This
keen observation led to immediate enlightenment! I instantly saw how
receptive field overlaps would embody a Cech cohomology. Perhaps
unfortunately, I was unable to “sell” that to neurophysiologists.

> I sometimes wonder whether science invariably “progresses.” having
seen so many (from my perspective) retrograde movements.
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These data were scale independent (Koenderink and van

Doorn 1978; Bijl et al. 1989). It was not predicted by physi-
ological models. This led to self-similar models of the visual
system that accounted for the bulk of the data (Koenderink
and van Doorn 1982a). Although ignored, they survive in the
scale space paradigm.
Images as geometric data structures In the early 1980s I
was in the physics department of Utrecht University, the
Netherlands. Forced to find funds elsewhere, I ended up
doing odd-jobs for the American Bureau of Standards and
the American Air Force.

The Air Force asked me to report on various laboratories
all over the US. At Azriel Rosenfeld’s lab (University of
Maryland) I got a feeling of how important image science
potentially was. That’s when I started to think about image
structure as an algorithmic problem.

In the years soon after my funds came from European
ESPRIT projects. My academic interest rendered me a Fremd-
korper in the computer science community. They deployed
powerful Sun workstations, whereas I ran an Atari 1000
toy. However, I had Marty Veltman’s (at my department)
SCHOONSCHIP (Veltman and Williams 1993), 6 50 I had some
formal muscle.

About that time I—having met René Thom (1972) and

following tutorials by Michael Berry (1992)—acquired an
interest in catastrophe theory. I worked on singularities
of optical projections (Koenderink and van Doorn 1979b,
1982b; Koenderink 1990a). This turned out to be crucial in
the development of scale space theory.
The 1984 paper Sufficient motivation soon yields ideas. I
was aware of the “pyramid” data structures (Burt and Adelson
1983; Crowley and Sanderson 1987) through Rosenfeld’s lab
and I fully understood the problem of “spurious resolution”
Strasburger (2018) from my interest in photography and the
visual arts. ’

Hardly surprising that I hit upon the Gaussian kernel as
special. Many others did too, like Andy Witkin (1983) whom
I visited at Palo Alto in 1982. From my perspective, they had
irrelevant reasons.

They failed to grasp the key concept. It is the diffusion
equation A® = &;, where @ (x, y, ) is image intensity,
{x, v} are Cartesian coordinates in the image plane, and ¢ a
scale parameter. 8

6 Veltman picked the Dutch word because he was sure no one (except
a Dutchman) would be able to pronounce it. SCHOONSCHIP was the
forerunner of Mathematica and Maple. It yields algebraic and logical
“muscle.”

7 Nowadays “spurious resolution” is known as “bokeh” (Nasse 2010).
The photographic notion is complicated by the fact that one integrates
over perspectives, not just images. This is only recorded in the literature
around the 1900’s.

8 Much later (end of the 1990s) I was told (Weickert 1999) that I had
done nothing novel, since Taizo lijima apparently did it all in 1959. But
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I’'m often asked why I “buried” the 1984 paper in this

journal. T knew its founder, professor Werner Reichardt
(1924-1992), quite well and my interests fitted his journal
more naturally than the “expected” computer science jour-
nals. But no doubt the bulk of the citations are from the latter
field.
The aftermath The theory became known as “scale space
theory.” ? It is a standard tool. In medical image processing
it is an indispensable part of diagnostic methods. This was
important to me, as I was a professor in both physics and the
medical faculty during the transition period from silver-based
X-ray emulsions to electronic sensors and data storage.

Applications range from the microscopic scale (Midoh
et al. 2007) to the cosmic (Schmalzing 1997).

Scale space became one of my “potboilers.” Apart from
minor pulp science, there sprouted various diverging threads
of academic pursuits (Sect. 3).

2 Formalization of the concept

For a classical physicist it is entirely obvious that diffusion
cannot generate, but only destroy spatial articulations. It is
easy enough to prove that from the diffusion equation (Sect.
D).

I proceeded to capture the essential concepts as a set of
simple axioms from which the diffusion equation follows.
This is desirable because the axioms can readily be applied
in phenomenological models of psychogenesis, as well as
models of neural receptive field structures. These topics were
of greater interest to me than computer image processing.

The diffusion equation serves to connect scale levels. One
may define a vector field whose streamlines capture such
connections. Itis like the pointers in discrete image pyramids.
The streamlines let one track details over finite scale ranges.

The catastrophe notion is crucial. It lets one handle bifur-
cations of the streamlines. This captures the global causal
structure. '° It enables a discrete (topological) description of
“deep” image structure (Koenderink and van Doorn 1986,
1987) and thus symbolical filtering.

Another crucial aspect is that the diffusion equation is a
linear PDE. So scale space applies to arbitrary partial deriva-
tives (Koenderink and van Doorn 1988). This suggested a
principled taxonomy of receptive fields.

then, I did not read Japanese, so I can hardly be accused of plagiarism.
In fact, nobody in the Western world was aware. Most people still aren’t.
Who cares today?

9 A “scale space” Google search yields 1370000 000 hits.

10 For about a decade there were endless discussions over whether the
Gaussian Kernel is unique in establishing a causal structure, or even
whether it does at all. From my perspective nothing has changed on this
topic since the 1984 paper.
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One may follow the evolution of differential invariants
over scale (Koenderink and Richards 1988; Koenderink
1993). Images are trivial fiber bundles (Koenderink and van
Doorn 2012). The important differential invariants are like
geographical objects such as ruts, ridges, peaks, pits and
passes (Koenderink and van Doorn 1979a, 1992, 1994). This
yields topological, symbolical description. It suggested how
cortical circuits might embody differential geometry and cal-
culus. !

Most of this is discussed in the 1984 paper. In the remain-
der of the 1980s and most of the ‘90’s these structures were
studied in detail and were generalized in various directions.
Some way beyond my horizon.

Certain developments went “too far” from my perspective.
If one prunes the development tree accordingly, “scale space
theory” proper already reached its mature form in the ‘90s.

Not that developments beyond scale space proper are not
interesting. Some (like Perona and Malik 1990) are elegant
and useful. But in retrospect one now has a fairly complete
overview of the lay of the land.

3 Diverging paths

Various people formulated more refined and mathematically
elegant accounts than I managed in 1984 (Florack 1997; Grif-
fin 2019). Others wrote text books (Lindeberg 1994; Haar
Romeny 2003) that have been instrumental in the acceptance
of scale space methods.

This is not areview. I am an outsider today. Nobody should
feel offended when I ignore a favorite.

An alternative route to scale space is by way of the Hermite
transform. This leads to a valuable extension of the formalism
(Martens 20006).

Of course, the theory has been applied to various finite
dimensions. Non-trivial are extensions to the temporal
domain, because of its causal structure (Koenderink 1988;
Lindeberg 2013).

An obvious extension is to consider local histograms
instead of mere image intensities. The histograms can be
taken over regions with a diameter given by the scale. One
has a local disarray instead of blurring (Koenderink and
van Doorn 1999, 2000; Koenderink et al. 2012). This opens
up novel perspectives. One application is the perturbation
of images for vision research (Koenderink et al. 2017b) and
artistic purposes.

There are endless ways to tune or generalize the axioms,
to think of special cases that would imply different families
of kernels, to consider various ways to complicate the simple

11 Why are all cortices so similar? I speculate that it might be for the
same reason that all physics texts look the same to colleagues from the
humanities. Neurophysiologists disagree.

diffusion equation, to apply the formalism to other domains,
and so forth. All this—if possible more!—has been done.
Perhaps it will be remembered as a cottage industry in theo-
retical image science for about three decades.

More relevant are implementations of scale space in dis-
crete image processing algorithms. Not a simple matter,
but crucial in applications (Lindeberg 1994; Haar Romeny
2003).

The brunt of the task has been completed.

4 The future

Scale space ' is a tool, like the carpenter’s hammer and nails.
It is hidden in software packages. Conceptual developments
will be breakthroughs, because unexpected. But who knows?

I am interested in psychogenesis, Gestalt creation (Koen-
derink 2011, 2015; Koenderink et al. 2017¢) and models of
computational brain structures (Koenderink and van Doorn
1990; Koenderink 1990b; Koenderink et al. 2016, 2017a;
Koenderink and van Doorn 2018). That was my main drive
in ‘84.

A humbling fact that progress has been less than spectac-
ular.
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