Skip to main content
Log in

Auxiliary controller design and performance comparative analysis in closed-loop brain–machine interface system

  • Original Article
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Brain–machine interface (BMI) can realize information interaction between the brain and external devices, and yet the control accuracy is limited by the change of electroencephalogram signals. The introduction of auxiliary controller can overcome the above problems, but the performance of different auxiliary controllers is quite different. Hence, in this paper, we comprehensively compare and analyze the performance of different auxiliary controllers to provide a theoretical basis for designing BMI system. The main work includes: (1) designing four kinds of auxiliary controllers based on simultaneous perturbation stochastic approximation-function approximator (SPSA-FA), iterative feedback tuning-PID (IFT-PID), model predictive control (MPC) and model-free control (MFC); (2) based on the model of improved single-joint information transmission, constructing the closed-loop BMI systems with the decoder-based Wiener filter; and (3) comparing their performance in the constructed closed-loop BMI systems for dynamic motion restoration. The results show that the order of tracking accuracy is MPC, IFT-PID, SPSA-FA, MFC, and the order of time consumed is opposite. A good control effectiveness is achieved at the expense of time, so a suitable auxiliary controller should be selected according to the actual requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agashe H, Paek A, Contreras-Vidal J (2016) Multisession, noninvasive closed-loop neuroprosthetic control of grasping by upper limb amputees. Prog Brain Res 228:107–129

    Article  CAS  Google Scholar 

  • An HD, Wang PT, King CE et al (2013) Brain–computer interface controlled robotic gait orthosis. J Neuroeng Rehabil 10(1):1–9

    Article  Google Scholar 

  • Bendevis P, Karam A, Laleg-Kirati T (2020) Optimal model-free control of solar thermal membrane distillation system. Comput Chem Eng 133(2):106622.1-106622.7

    Google Scholar 

  • Bullock D, Cisek P, Grossberg S (1998) Cortical networks for control of voluntary arm movements under variable force conditions. Cereb Cortex 2(8):48–62

    Article  Google Scholar 

  • Dadarlat M, O’Doherty J, Sabes P (2014) A learning-based approach to artificial sensory feedback leads to optimal integration. Nat Neurosci 18(1):138–144

    Article  Google Scholar 

  • Dangi S, Gowda S, Heliot R et al (2011) Adaptive Kalman filtering for closed-loop brain–machine interface systems. In: 2011 5th International IEEE/EMBS conference on neural engineering (NER), pp 609–612

  • Filimon F (2010) Human cortical control of hand movements: parietofrontal networks for reaching, grasping, and pointing. Neuroscientist 16(4):388–407

    Article  Google Scholar 

  • Fleming J, Cannon M (2018) Stochastic MPC for additive and multiplicative uncertainty using sample approximations. IEEE Trans Autom Control 64(9):3883–3888

    Article  Google Scholar 

  • García-Córdova F (2007) A cortical network for control of voluntary movements in a robot finger. Neurocomputing 71(1):374–391

    Article  Google Scholar 

  • He F, Bi L, Yun L et al (2017) Model predictive control for a brain-controlled mobile robot. In: 2017 IEEE International conference on systems, man and cybernetics (SMC), pp 3184–3188

  • He Y, Eguren D, Azorín JM et al (2018) Brain–machine interfaces for controlling lower-limb powered robotic systems. J Neural Eng 15(2):021004.1-021004.15

    Article  Google Scholar 

  • Heertjes M, Bart V, Oomen T (2016) Constrained iterative feedback tuning for robust control of a wafer stage system. IEEE Trans Control Syst Technol 24(1):56–66

    Article  Google Scholar 

  • Héliot R, Ganguly K, Jimenez J et al (2010) Learning in closed-loop brain–machine interfaces: modeling and experimental validation. IEEE Trans Syst Man Cybern Part B Cybern 40(5):1387–1397

    Article  Google Scholar 

  • Hettiarachchi I, Babaei T, Nguyen T et al (2018) A fresh look at functional link neural network for motor imagery-based brain–computer interface. J Neurosci Methods 305:28–35

    Article  Google Scholar 

  • Hong YY, Chang HL, Chiu C (2010) Hour-ahead wind power and speed forecasting using simultaneous perturbation stochastic approximation (SPSA) algorithm and neural network with fuzzy inputs. Energy 35(9):3870–3876

    Article  Google Scholar 

  • Kamrunnahar M, Dias NS, Schiff SJ (2011) Toward a model-based predictive controller design in brain–computer interfaces. Ann Biomed Eng 39(5):1482–1492

    Article  CAS  Google Scholar 

  • Kim S, Sanchez J, Rao Y et al (2006) A comparison of optimal MIMO linear and nonlinear models for brain–machine interfaces. J Neural Eng 3(2):145–161

    Article  Google Scholar 

  • Lebedev M, Nicolelis M (2006) Brain–machine interfaces: past, present and future. Trends Neurosci 29(9):536–546

    Article  CAS  Google Scholar 

  • Li M, Zhu Y, Yang KM et al (2019a) Convergence rate oriented iterative feedback tuning with application to an ultraprecision wafer stage. IEEE Trans Industr Electron 66(3):1993–2003

  • Li Z, Li J, Zhao S et al (2019b) Adaptive neural control of a kinematically redundant exoskeleton robot using brain–machine interfaces. IEEE Trans Neural Netw Learn Syst 30(12):3558–3571

  • Liu X, Zhang M, Richardson AG et al (2017) Design of a closed-loop, bidirectional brain–machine interface system with energy efficient neural feature extraction and PID control. IEEE Trans Biomed Circuits Syst 11(4):729–742

    Article  Google Scholar 

  • London BM, Jordan LR, Jackson CR et al (2008) Electrical stimulation of the proprioceptive cortex (area 3a) used to instruct a behaving monkey. IEEE Trans Neural Syst Rehabil Eng 16(1):32–36

    Article  Google Scholar 

  • Lu WJ, Zhu PP, Ferrari S (2016) A hybrid-adaptive dynamic programming approach for the model-free control of nonlinear switched systems. IEEE Trans Autom Control 61(10):3203–3208

    Article  Google Scholar 

  • Lu Y, Bi L (2021) Human behavior model-based predictive control of longitudinal brain-controlled driving. IEEE Trans Intell Transp Syst 22(3):1361–1374

    Article  Google Scholar 

  • Lu Y, Bi L, Li H (2020) Model predictive-based shared control for brain-controlled driving. IEEE Trans Intell Transp Syst 21(2):630–640

    Article  Google Scholar 

  • Moorman HG, Gowda S, Carmena JM (2016) Control of redundant kinematic degrees of freedom in a closed-loop brain–machine interface. IEEE Trans Neural Syst Rehabil Eng 25(6):750–760

    Article  Google Scholar 

  • Mrachaczkersting N, Ning J, Stevenson AJT et al (2016) Efficient neuroplasticity induction in chronic stroke patients by an associative brain–computer interface. J Neurophysiol 115(3):1410–1421

    Article  Google Scholar 

  • Orsborn A (2013) Closed-loop design of brain–machine interface systems. PhD thesis, UC Berkeley

  • Pan H, Mi W, Lei X et al (2020a) A closed-loop brain–machine interface framework design for motor rehabilitation. Biomed Signal Process Control 58:101877.1-101877.9

  • Pan H, Mi W, Wen F et al (2020b) An adaptive decoder design based on the receding horizon optimization in BMI system. Cogn Neurodyn 14(3):281–290

  • Pan HG, Mi WY, Lei XY et al (2020c) A closed-loop BMI system design based on the improved SJIT model and the network of Izhikevich neurons. Neurocomputing 401(3):271–280

  • Pashaie R, Baumgartner R, Richner TJ et al (2015) Closed-loop optogenetic brain interface. IEEE Trans Biomed Eng 62(10):2327–2337

    Article  Google Scholar 

  • Precup RE, Preitl S, Rudas IJ et al (2008) Design and experiments for a class of fuzzy controlled servo systems. IEEE Trans Mechatron 13(1):22–35

    Article  Google Scholar 

  • Qiu SY, Li ZJ, He W et al (2016) Teleoperation control of an exoskeleton robot using brain–machine interface and visual compressive sensing. IEEE Trans Fuzzy Syst 25(1):58–69

    Article  Google Scholar 

  • Qiu S, Li Z, Wei H et al (2017) Brain–machine interface and visual compressive sensing-based teleoperation control of an exoskeleton robot. IEEE Trans Fuzzy Syst 25(1):58–69

    Article  Google Scholar 

  • Quick KM, Weiss JM, Clemente F et al (2020) Intracortical microstimulation feedback improves grasp force accuracy in a human using a brain–computer interface. In: 2020 42nd Annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 3355–3358

  • Shanechi MM (2017) Brain–machine interface control algorithms. IEEE Trans Neural Syst Rehabil Eng 25(10):1725–1734

    Article  Google Scholar 

  • Shanechi M, Orsborn A, Moorman H et al (2014) High-performance brain–machine interface enabled by an adaptive optimal feedback-controlled point process decoder. In: Engineering in medicine and biology society

  • Son D, Choi H (2019) Iterative feedback tuning of the proportional–integral–differential control of flow over a circular cylinder. IEEE Trans Control Syst Technol 27(4):1385–1396

    Article  Google Scholar 

  • Spall JC (2002) Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Trans Autom Control 37(3):332–341

    Article  Google Scholar 

  • Sussillo D, Nuyujukian P, Fan J et al (2012) A recurrent neural network for closed-loop intracortical brain–machine interface decoders. J Neural Eng 9(2):026027.1-026027.10

    Article  Google Scholar 

  • Tang W, Daoutidis P (2021) Dissipativity learning control (DLC): theoretical foundations of input–output data-driven model-free control. Syst Control Lett 147:104831.1-104831.9

    Article  Google Scholar 

  • Vidaurre C, Klauer C, Schauer T et al (2016) EEG-based BCI for the linear control of an upper-limb neuroprosthesis. Med Eng Phys 38(11):1195–1204

    Article  Google Scholar 

  • Wagh S, Kamath A (2012) Model predictive control. J Control Sci Eng 8:5

    Google Scholar 

  • Witkowski M, Cortese M, Cempini M et al (2014) Enhancing brain–machine interface (bmi) control of a hand exoskeleton using electrooculography (EOG). J Neuroeng Rehabil 11(1):165–171

    Article  Google Scholar 

  • Yang Y, Qiao S, Sani OG et al (2021) Modelling and prediction of the dynamic responses of large-scale brain networks during direct electrical stimulation. Nat Biomed Eng 5:324–345

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongguang Pan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Benjamin Lindner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 181 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, H., Song, H., Zhang, Q. et al. Auxiliary controller design and performance comparative analysis in closed-loop brain–machine interface system. Biol Cybern 116, 23–32 (2022). https://doi.org/10.1007/s00422-021-00897-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-021-00897-3

Keywords

Navigation