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Abstract In weakly coupled neural oscillator networks de-
scribing brain dynamics the coupling delay is often distributed.
We present a theoretical framework to calculate the phase re-
sponse curve of distributed-delay induced limit cycles with
infinite-dimensional phase space. Extending previous works,
in which non-delayed or discrete-delay systems were in-
vestigated, we develop analytical results for phase response
curves of oscillatory systems with distributed delay using
Gaussian and log-normal delay distributions.

We determine the scalar product and normalization con-
dition for the linearized adjoint of the system required for the
calculation of the phase response curve. As a paradigmatic
example, we apply our technique to the Wilson-Cowan os-
cillator model of excitatory and inhibitory neuronal popu-
lations under the two delay distributions. We calculate and
compare the phase response curves for the Gaussian and log-
normal delay distributions. The phase response curves ob-
tained from our adjoint calculations match those compiled
by the direct perturbation method, thereby proving that the
theory of weakly coupled oscillators can be applied success-
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fully for distributed-delay induced limit cycles. We further
use the obtained phase response curves to derive phase in-
teraction functions and determine the possible phase locked
states of multiple inter-coupled populations to illuminate dif-
ferent synchronization scenarios. In numerical simulations
we show that the coupling delay distribution can impact the
stability of the synchronization between inter-coupled gamma-
oscillatory networks.

Keywords coupled oscillators · distributed delay · phase
response curve ·Wilson-Cowan model

1 Introduction

Brain rhythms described by oscillating dynamical systems
are ubiquitous phenomena which form a basis for multiple
cognitive functions [1]. Coherent oscillations in the brain
have been reported across many species to be associated
with a variety of cognitive tasks [2]. Our understanding and
therapies of various brain pathologies and deficiencies, such
as Parkinson’s disease and epilepsy, rely heavily on the anal-
ysis of synchronization of oscillating neuronal signals [3].
There are numerous types of rhythms in the brain ranging
from very slow oscillations with periods of tens of seconds
to very fast oscillations with frequencies exceeding 1000 Hz [4].
Gamma oscillations, within the frequency band of 30−150 Hz,
are an intensively studied rhythmic brain activity pattern [5].
Data suggest that the gamma cycle results from emergent
dynamics of cortical networks, as a natural consequence of
the interplay between interconnected pyramidal cells and
subnetworks of interneurons [6, 7].

Although these gamma rhythms emerge locally [7], they
can interact coherently across the cerebral cortex [8, 9] and
show multiple phase relationships that are persistent across
time [10].
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We note that the brain functional connectome can be
modulated by macroscopic rhythms, without the need to al-
ter underlying structural anatomical connectivity [10]. In fact,
the functional connectivity depends on the relative phase re-
lationships between the communicating sub-networks. The
relative phase relationship does not have to be zero, but de-
pends on the properties of the working neuronal groups and
the distance between them [11, 12].

Hence, by understanding and controlling the oscillatory
dynamics one can control dynamically the flow of informa-
tion without changing the structural connectivity. In the past
years, the role of gamma patterns and gamma interactions
have attracted much attention. However, the issue how to
characterize functional connectivities associated with vari-
ous phase locked states when complex coupling delays are
present remains an open question.

Here, we approach this question by studying synchro-
nization of oscillations under synaptic and conduction de-
lays in neural circuits, where such delays may be distributed
as opposed to a single discrete delay.

When an oscillator is perturbed by a transient external
stimulus, the trajectory is displaced from its limit cycle, po-
tentially resulting in a phase shift of the oscillation. Phase
shifts due to the perturbations of the oscillator, that come
at different phases within the limit cycle, are described by
the so-called phase response curves (PRC) [13–19]. Phase
response curves can be computed directly for any rhythm
by applying short pulses at different phases of the cycle and
measuring the phase shift. They can be used to study weakly
perturbed nonlinear oscillators and predict synchronization
properties in neuronal networks [20–22]. They can be mea-
sured for random disturbances both experimentally and nu-
merically. It is important that enough time elapses after a
disturbance, that the perturbations are infinitesimally small
and that the disturbed trajectory can relax back to the limit
cycle. For perturbations that are infinitesimally small in du-
ration and in amplitude, one obtains the infinitesimal phase
response curve (iPRC) [23]. The adjoint method allows one
to reduce the dynamics of each neuron, which may be of
very high dimension, to a single differential equation – the
adjoint equation – describing the phase of the neuron [24].

When analyzing neural dynamics, it is important to take
into account that time delays in the interconnections can
substantially influence emergent dynamics. These delays arise
naturally in many neuronal but also optical, electronic, or
technological systems due to finite signal transmission and
processing times [25–30]. Delays can be assumed to be ei-
ther discrete or distributed. In general, we may assume that
connectivity delays, stemming from synaptic as well as ax-
onal conduction delays, have a bell-shaped distribution such
as Gaussian instead of being discrete. However, at physi-
ological and anatomical levels in the brain many parame-
ters, such as synaptic weights, the firing rates of individual

neurons, or the discharge of neuronal populations, has been
shown to have skewed distributions with a heavy tail [31].
Therefore, it is reasonable to consider a log-normal distri-
bution as well, in addition to a Gaussian distribution. In this
paper we go beyond previous works, in which undelayed
or discrete-delay systems were investigated [17], by devel-
oping analytical results for phase response curves of dis-
tributed delay systems for Gaussian and log-normal delay
distributions.

According to the recently advanced Communication through
Coherence hypothesis, neuronal interaction and information
transmission is dynamically shaped by the phase relation-
ship between the neural oscillations [8, 32]. These relation-
ships have been shown to be diverse and can arise due to
a diversity of connection delays [33]. Applying the adjoint
theory to brain dynamics is a useful tool, since it allows for
reduction of the dynamics to a single equation for the phase.
Thus, weakly perturbed oscillators can be studied more ef-
ficiently for the corresponding control parameters, and syn-
chronization properties in neural networks can be investi-
gated on a broad spectrum of different settings.

We apply our methodology to the pyramidal-interneuronal
network gamma (PING) rhythm [33]. The underlying dy-
namics for the considered PING model are the Wilson-Cowan
equations which include one equation for the excitatory cells
and one equation for the inhibitory cells. The Wilson-Cowan
dynamics describe the time evolution of the activity of pop-
ulations of neurons, using a nonlinear sigmoidal function to
represent the interactions between the populations, resulting
in a stable limit cycle solution. The Wilson-Cowan model
has been the starting point for many extensions; it represents
one of paradigmatic models in theoretical neuroscience.

In this work we use the Wilson-Cowan (PING) model,
and introduce a theoretical framework to calculate the phase
response function. To this purpose, we determine the scalar
product required in the mathematical formalism and the nor-
malization condition for the linearized adjoint equations of
the system. We show that the adjoint theory can be extended
to distributed delays by matching the phase response curves
obtained by the direct and adjoint methods. We apply our
theory to discrete, Gaussian, and log-normal delay distri-
butions and use the interaction function that determines the
possible phase locked states to illuminate different synchro-
nization scenarios. In Sect. 2 we introduce the method in-
cluding the Wilson-Cowan model, the distributed delay, the
adjoint theory, and the interaction function. In Sect. 3 we
present the results, which are discussed in Sect. 4. Finally,
in Sect. 5 we conclude.
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2 Method

2.1 Wilson-Cowan Dynamics

The Wilson-Cowan model [34], also known as the Pyrami-
dal Interneuron Network Gamma (PING) model, describes
the behaviour of a synaptically coupled neuronal network
of excitatory and inhibitory neurons. The model has a sta-
ble limit cycle solution, which we consider in the following.
The system is not a detailed biophysical model, but a coarse-
grained description of the overall activity of a large-scale
neuronal network, based upon two differential equations for
the populations of excitatory and inhibitory neurons, E(t)
and I(t), respectively [35]:

d
dt

E(t)=−E(t)+wee · f
[
E(t)

]
−wei · f

[
I(t)
]
+ie

d
dt

I(t) =−I(t)+wie · f
[
E(t)

]
−wii · f

[
I(t)
]
+ii (1)

with the non-linear sigmoid function modelling the synaptic
input:

f (s) =
1

1+ e−s

Important parameters in the model are the coefficients wee,
wii, wei, wie which are called synaptic weights and denote the
strength of connectivity within the excitatory and inhibitory,
and between the excitatory and inhibitory populations, re-
spectively. The parameters ie and ii denote the external in-
puts to the excitatory and inhibitory neurons. The variables
E and I are associated with the mean action potential (volt-
age) of the excitatory and inhibitory neuronal populations,
respectively. After a transient the system reaches a limit cy-
cle oscillation.

2.2 Distributed Delay

Delayed processes are ubiquitous in physical, chemical and
especially biological systems [36–40]. Typically time delays
reflect a combination of transmission and processing times
or the time it takes to react to a stimulus. Examples of trans-
mission times are the propagation time and the conduction
time along an axon which can range from the order of 1ms
along unmyelinated axons for example in the grey matter to
more than 100ms along myelinated axons [41]. Examples
of processing time are the time it takes to synthesize red
blood cells in the bone marrow (≈ 5− 7days) [42], or the
time it takes animals to mature to reproductive age (weeks
to months) [39], or the time it takes a chemical synapse to
process an incoming action potential in the presynaptic ter-
minal to a potential change in the postsynaptic cell. Systems
with time delays are often characterized by delay differen-
tial equations (DDEs). Time delay can substantially influ-
ence emergent dynamics. For instance, delays can either in-
duce instabilities and bifurcations of dynamical systems or

stabilize unstable states such as in chaos control by time de-
layed feedback [43], and suppress or enhance synchroniza-
tion [44]. Delay may be introduced artificially by external
feedback loops, and it may also arise naturally in many neu-
ronal, optical, electronic, or technological systems due to fi-
nite signal transmission and processing times.

In typical processes in nature, for example in complex
networks [44–48] and in particular in biological systems [49–
51], it is reasonable to assume that the delay times are not
fixed at a single value τ but are distributed. For example,
along unmyelinated axons in the grey matter the diameters
of the axons obey a distribution, which implies that the ax-
onal conduction velocities are also distributed. Then the de-
lay can be expressed as a convolution integral with a delay
kernel:

X(t− τ)→
∫ +∞

0
ds ∆i(s)X(t− s), (2)

where ∆i(s) is an integral kernel that describes the distribu-
tion of delays.

In many cases a Gaussian distribution gives a good ap-
proximation for the normalized delay kernel

∆G(s) =
1√

2π ·σ
e−

(s−τ)2

2σ2 , (3)

with the standard deviation σ and mean delay time τ . In the
neural context, however, often the distributions of various
parameters are asymmetric with a heavy tail [31]. Then the
log-normal distribution provides more realistic results for
the simulation of biological processes:

∆L(s) =
1√

2π ·σs
e−

(ln(s)−τ)2

2σ2 , (4)

with the standard deviation σ and mean delay time τ .
Fig. 1 shows schematically different types of delay ker-

nels for a sinusoidal solution X(t) of a delay differential
equation (black curve). The value X(t−τ) is convolved (weighted)
with the Gaussian delay kernel (purple curve) or with the
asymmetric log-normal delay kernel (green).

Fig. 1 shows schematically a sinusoidal solution of a de-
lay differential equation (black curve) which depends on the
past in a way that the discrete value, with difference τ at time
t is chosen as mean µ , and all function values left and right
of the mean are weighted Gaussian-like (purple/dark-grey
curve) with the standard deviation σ .

In conclusion, we obtain the following system of equa-
tions for the Wilson-Cowan model with distributed delay in
the coupling:

d
dt

E(t) =−E(t)+wee f
[
∆

E
i (t)

]
−wei f

[
∆

I
i (t)
]
+ ie

d
dt

I(t) =−I(t) +wie f
[
∆

E
i (t)

]
−wii f

[
∆

I
i (t)
]
+ ii, (5)
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Fig. 1 Schematic representation of distributed delay kernels. The
sinusoidal solution X(t) of a delay differential equation (black curve) is
shown. The distributed delay is given by X(t−τ) (black dot) weighted
with the Gaussian (purple curve) or the log-normal (green curve) delay
kernel in a convolution integral. Both integral kernels are normalized
to 1.

where ∆ E
i (t) and ∆ I

i (t) are the distributed delay kernels, see
Eq. (2), for the excitatory

∆
E
i (t) =

∫ +∞

0
ds ∆i(s)E(t− s)

and for the inhibitory population

∆
I
i (t) =

∫ +∞

0
ds ∆i(s)I(t− s),

respectively, and the subscripts i=G (Eq. 3) and i=L (Eq. 4)
denote the Gaussian or log-normal distributions, respectively.

2.3 Applying the Adjoint Theory

In this study, we develop an adjoint method [24] to compute
the phase response curve Z(θ) for limit cycles exhibited by
DDEs. A key ingredient is the introduction of a mathemat-
ically appropriate scalar product for differential equations
with distributed delay, which enables us to properly define
the phase θ and calculate Z(θ) for limit cycles in infinite-
dimensional phase space.
The first task is to derive a phase response curve Z(θ) for
perturbations of a DDE with fixed delay τ of the form

d
dt

X(t) = F
(
X(t),X(t− τ)

)
, (6)

where X(t) ∈ RN is a column vector of N real components
and τ is a nonnegative constant delay. We assume that this
DDE has a stable limit cycle solution X0(t). If a small pertur-
bation ε is applied to the limit cycle, the perturbed solution
can be written as X(t) = X0(t)+ εXp(t) with the perturbed
part Xp(t). From linearization around the unperturbed solu-
tion it follows that the perturbation obeys

d
dt

Xp(t) = DF1(t)Xp(t)+DF2(t)Xp(t− τ), (7)

where DF1 and DF2 refer to the Jacobian matrices of F with
respect to X(t) and X(t− τ), respectively, taken at X0(t),
X0(t− τ) [14, 17, 18].

The infinitesimal phase response curve Z(θ) quantifies
the linear response of the oscillator phase θ to the applied
perturbations. It is the solution of [17]:
d
dt
〈
Z(t),Xp(t)

〉 !
= 0. (8)

where the exclamation mark denotes the imposed condition.
Here, we need an appropriate scalar product to derive the
adjoint equation for Z(t). For distributed differential delay
equations this scalar product is appropriately defined by:

〈Ψ(t),Φ(t)〉= Ψ(t)Φ(t) (9)

+
∫ +∞

0
ds∆(s)

∫ t

t−s
dξ Ψ(ξ + s)DF2(ξ + s)Φ(ξ ),

where DF2(t) is defined in analogy with Eq. 7 as the coeffi-
cient of the perturbed linearized equation

d
dt

Xp(t) = DF1(t)Xp(t)+DF2(t)
∫ +∞

0
ds ∆(s)Xp(t− s).

A proof that this is the correct scalar product for distributed
differential delay equations is given in the appendix (A).

Applying Eq. (9) to Eq. (8) defines an adjoint equation:

− d
dt

Z(t) = DF1(t)TZ(t)+DF2(t+ τ)TZ(t+ τ), (10)

where superscript T denotes the transposed matrix. Using
the limit cycle solution solution X0(t) obtained numerically,
we generate the solution Z(t) of Eq. (10) by integrating back-
wards in time from arbitrary initial conditions. The limit cy-
cle is asymptotically stable, hence the backwards integration
damps out all components except the periodic one which is
the solution of the adjoint equation [15].

We further normalize the amplitude of Z(t) by setting

d
dt

〈
Z(t),

d
dt

X0(t)
〉

!
= 0. (11)

This gives us the possibility to compare our results obtained
via the adjoint method with results derived by the direct per-
turbation method. To calculate directly the phase response
curve, we apply a weak perturbation to all components of
the vector at a chosen phase of the oscillatory cycle, measure
the phase shift with respect to the non-perturbed system and
track the results for one period of oscillation. A weak pertur-
bation pulse must be considered in order to obtain accurate
results. Too strong perturbations will lead the dynamics far
away from the limit cycle. In this work we choose a rectan-
gular pulse with variable height and width.

Applying our newly derived adjoint method allows us
to calculate the phase response curve Z(θ) for a distributed-
delay induced limit cycle, given by a delay differential equa-
tion with distributed delay kernel of standard deviation σ .
This is the main result of this study. If we take the limit
σ → 0 our method reduces to the discrete delay model and
if we further take the limit DF2 → 0 or τ → 0 the conven-
tional adjoint method for ordinary differential equations is
retrieved.



Phase Response Approaches to Neural Activity Models with Distributed Delay 5

0 10

0

−10

E1/
2 (t

)[
m

V
]

A

890 900

0 10

0

4

I1/
2 (t

)[
m

V
]

Time [ms]
890 900

10

0

−15

B

890 900

10

0

4

Time [ms]
890 900

10

0

−15

C

890 900

10

0

4

Time [ms]
890 900

Fig. 2 Phase-locking of two weakly coupled Wilson-Cowan oscillators with A discrete, B Gaussian and C log-normal distributed delay. The
upper row in each panel shows the time trace of the two excitatory populations E1, E2 and the lower row shows the two inhibitory populations I1, I2

for A discrete, B Gaussian and C log-normal distributed delay. In each case the x-axis shows the beginning (no match) and the end of the simulation
(phase locking) where the part in between is skipped. Parameters: wee = 20,wei = 21,wie = 16,wii = 6, ie = 1.5, ii =−0.5,τ = 1,σ = 0.1,C = 0.01.

2.4 Phase Interaction Function H(φ)

While the phase response curve is a measure of the phase
shift after an infinitesimally small perturbation of the limit
cycle for one Wilson-Cowan oscillator, the phase interac-
tion function Hi(φ) describes the influence of the interac-
tion of two weakly coupled identical Wilson-Cowan oscilla-
tors with phases θ1 and θ2 in terms of the difference of their
phases φ = θ2− θ1 upon their phase dynamics. The inter-
action function which depends only on the phase difference
is computed by the convolution of the phase response func-
tion Zi(t) with the unperturbed system dynamics X0,i(t) of
oscillator i = 1,2:

Hi(φ) =
C
T

∫ T

0
dt Zi(t)X0,i(t−φ), (12)

with the coupling strength C and the period of the oscillation
T . In the special case of symmetric coupling the interaction
function is identical for both oscillators i = 1,2, hence H1 =

H2 ≡H. Therefore, we can set up an equation for the phase-
difference:
dφ

dt
= (H(φ)−H(−φ))≡ G(φ) (13)

Then, G(φ) is the odd part of the interaction function H(φ).
It is periodic, and its zeros describe phase-locked states φ ∗;
those for which G(φ ∗) has a positive slope are stable, and
those for which G(φ ∗) has a negative slope are unstable.

The advantage of this reduced description of two cou-
pled oscillators is that it allows one to explore the parameter
space in terms of simple phase oscillators. For instance, it
has been applied to a ring of N nonlocally coupled FitzHugh-
Nagumo oscillators [52] to pinpoint a region in the parame-
ter space which favors the appearance of chimera states.

3 Results

3.1 Unperturbed System Dynamics

The calculation of the phase interaction function Hi(φ), as
derived in the previous section, requires the unperturbed sys-
tem dynamics X0,i(t) and the phase response function Zi(t),
i.e., these must be computed first for each Wilson-Cowan os-
cillator, before the convolution integral can be calculated for
the pairs of identical Wilson-Cowan oscillators. In order to
ensure that the considered system of weakly coupled oscilla-
tors is indeed synchronized, we have simulated the coupled
system for an appropriate set of parameters numerically for
a long time to verify the synchronization.

Fig. 2 shows three panels of time series for A discrete,
B Gaussian distributed and C log-normal distributed delay
for two coupled Wilson-Cowan oscillators. The upper row
in each panel shows the two weakly coupled excitatory pop-
ulations and the lower row shows the two weakly coupled
inhibitory populations. In each case the x-axis shows the
beginning (no synchronization) and the end of the simula-
tion (phase synchronization) where the part in between is
skipped.

3.2 Phase Response Curves

Fig. 3 shows three panels for a single Wilson-Cowan os-
cillator with A discrete, B Gaussian and C log-normal dis-
tributed delay. In each panel the top left shows the time se-
ries of excitatory E(t) (red) and inhibitory I(t) (blue) pop-
ulations. The top right shows the dynamics in phase space
E(t) vs I(t). The phase response curves in the bottom of
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Fig. 3 System dynamics, phase space and phase response curves. The three panels show the solutions of a single Wilson-Cowan model for A
discrete, B Gaussian and C log-normal distributed delay. In each panel the top left shows the time traces of the excitatory E(t) (red) and inhibitory
I(t) (blue) populations. The top right shows the dynamics in phase space E(t) vs. I(t). The bottom of each panel shows the phase response curves
obtained by the direct simulation (green circles) and the adjoint method (orange line; normalized). Parameters: τ = −1, σ = 0.1, perturbation
impulse height = 0.07, impulse width = 1, wee = 20, wei = 21, wie = 16, wii = 6, ie = 1.5, ii =−0.5.

each panel show that the extension from discrete to Gaussian
or log-normal distributed delay does not lead to significant
changes in the behavior of the system dynamics. Oscillation
period and amplitude remain similar. The small standard de-
viation of the delay distribution σ = 0.1 which results in a
very sharp Gaussian- or log-normal peak resembles a single
discrete value.

The bottom plot of each panel shows a comparison be-
tween the phase response curves obtained by direct simu-
lation of a perturbation (green circles) and by the adjoint
theory (orange line). The good agreement between the two
phase response curves proves that the adjoint theory is not
only applicable for non-delayed or discrete delay systems
but also for distributed-delay systems with B Gaussian and
C log-normal distributions.

3.3 Distributed Delay effects Phase-Locking

To study the phase dynamics and the effects of the delay
distribution characteristics on phase-locked states and syn-
chrony we calculate the function G(φ)(Eq. 13) for excitatory-
excitatory and inhibitory-inhibitory coupled pairs of iden-
tical Wilson-Cowan oscillators from the phase interaction
function H(φ) as introduced in section (2.4) for the Wilson-
Cowan model. Fig. 4 shows the interaction functions

HE(φ) =
C
T

∫ T

0
dt ZE(t)X0,E(t−φ)

and

HI(φ) =
C
T

∫ T

0
dt ZI(t)X0,I(t−φ)

for a pair of identical Wilson-Cowan oscillators. Since the
interaction functions for a pair of oscillators are identical
under the given conditions, we show the solution for one os-
cillator only. A displays the interaction function for the exci-
tatory populations and B for the inhibitory populations. The
black curve, the green curve, and the bright yellow curve
represent the discrete-delay model, the Gaussian distributed
delay model, and the log-normal distributed delay model,
respectively. A shows significantly different phase-locking
behavior for the Wilson-Cowan model with distributed de-
lay. The Gaussian- and log-normal distributed delay follow
qualitatively the same trajectory as the model does for dis-
crete delay but differ in shifts of their amplitude. Fig. 6 and
Fig. 7 in Appendix (B) prove that the Gaussian- and the log-
normal distributed delay solution, respectively, converge to
the discrete delay solution in the limit of vanishing standard
deviation σ , hence

lim
σ→0

H(φ)gauss = lim
σ→0

H(φ)log−normal = H(φ)discrete.

All curves have been normalized since only the intersections
with the horizontal zero line are of interest to compare the
effects of different delay types.

To understand how the distribution of the delay param-
eters impacts phase-locked behaviors, we constructed bifur-
cation diagrams for the phase-locked states of excitatory-
excitatory and inhibitory-inhibitory coupled pairs of identi-
cal Wilson-Cowan modules under distributed delays. While
Fig. 4 displays the phase interaction functions H(φ) for the
delay system for one single value of the standard deviation
of the delay distribution σ = 0.2, in Fig. 5 we focus on the
phase-locked states of each delay type with σ -values rang-
ing [0,1]. The zeros of H(φ) are phase-locked states φ ∗ of
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Fig. 4 Phase interaction functions for the excitatory and inhibitory
populations vs phase difference φ . A shows the the interaction func-
tions for the excitatory HE and B for the inhibitory HI populations. The
black curve, the green curve, and the bright yellow curve represent the
discrete-delay model, the Gaussian-distributed delay model, and the
log-normal distributed delay model, respectively. Same parameters as
in Fig. 3, except σ = 0.2 and C = 0.01.

the coupled system. The top panel A shows the phase dif-
ference of phase-locked states φ ∗E vs. the standard deviation
σ of the Gaussian delay distribution for the excitatory pop-
ulations. The middle panel B shows the phase difference
of phase-locked states φ ∗E vs. the standard deviation σ of
the log-normal delay distribution for the excitatory popula-
tions. The bottom panel C displays the same information
for inhibitory-intercoupling both for the Gaussian and log-
normal delay distributions. By convention, the solid lines in-
dicate stable solutions, the dashed lines unstable solutions.
The black filled circles at σ = 0 represent the stable phase-
locked states for discrete delay and the black open circles
mark the unstable phase-locked solutions, respectively.

We discover that for the Gaussian-delay distribution un-
der low delay standard deviation values stable synchronous
and anti-synchronous phase-locking occurs; these states are
separated by an unstable partial-phase-delay state (Fig. 5A).
Please note that diamonds show the calculated output of
φ ∗E gauss = 0 for σ = 0.04,0.08, ...,0.24, and the dashed line
which connects these data points has been generated by a
second order polynomial fit. We approximately find that the
stable branch at φ ∗E gauss = π exists up to a value of σ ≈ 0.28.
We also note that for the whole range σ = [0,1] the phase-
locked states for the Gaussian-delay distribution are stable
for the excitatory populations at φ ∗E gauss = 0 and 2π .

We observe similar behavior for the log-normal distributed
delay model (Fig. 5B) but with a stabilizing effect on the dy-
namics especially at φ ∗E log = π . With the help of the polyno-
mial fit we approximately find on the basis of the diamonds
at which φ ∗E log = 0 for σ = 0.04,0.08, ...,0.32 that the sta-
ble branch at φ ∗E log = π exists up to a value of σ ≈ 0.35.
Additionally, we see that for the whole range σ = [0,1] the

phase-locked states for the log-normal delay distribution are
stable for the excitatory populations at φ ∗E gauss = 0 and 2π .

The inhibitory populations show no difference in behav-
ior when we compare the Gaussian and log-normal delay
distribution. We obtain two stable phase-locked solutions
for φ ∗I = 0,2π and one unstable solution for φ ∗E/I = π for
all considered delay distributions.
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Fig. 5 Bifurcation diagram for two weakly coupled Wilson-Cowan
oscillators with discrete and distributed delay. The top panel A
shows in green the phase difference of phase-locked states φ ∗E gauss over
the standard deviation σ for the excitatory cells with the Gaussian-
delay distribution. The middle panel B shows in yellow the phase dif-
ference of phase-locked states φ ∗E log over the standard deviation σ for
the excitatory cells with the log-normal-delay distribution. The bottom
panel C displays in grey the phase difference of phase-locked states
φ ∗I gauss/log over the standard deviation σ for the inhibitory cells both
for the Gaussian- and log-normal-delay distribution. The solid lines
indicate the stable solutions. The dashed lines the unstable solutions.
The black filled dots at σ = 0 represent the stable phase-locked states
for discrete delay and the black circles the unstable phase-locked so-
lutions, respectively. The green/grey and yellow/bright-grey diamonds
show the calculated output of φ ∗E gauss/log = 0 for the corresponding σ -
values and the dashed lines which connect these data points have been
generated by a second order polynomial fit for each panel. Parameters:
τ =−1, wee = 20, wei = 21, wie = 16, wii = 6, ie = 1.5, ii =−0.5 and
C = 0.01.
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4 Discussion

Synchronization properties of inter-coupled neuronal circuits
have been a focus of interest to both experimental and theo-
retical neuroscience for quite some time. In particular, such
synchronization has been linked to both normal and patho-
logical activity in the brain [3]: e.g. epileptic seizure [53],
optimal coding under gamma oscillations [54] and directed
signal transfer under the communication through coherence
hypothesis [8, 32]. One of the aspects that has a significant
impact on the structure of the phase-locked states of inter-
coupled circuits is the delay in the synaptic coupling that
can lead to synchrony, asynchrony and/or symmetry-broken
states [33,55,56]. Interestingly, connection delays have been
argued to play a key role in structuring brain activity, and
delays that depend on spatial location of neural populations
are likely to play an important role in the variety of phase
locking modes seen in data [10].

Phase response curves [13–19] provide a fruitful tool to
study phase coupling regimes of spiking networks and have
been suggested as a causal measure of functional connectiv-
ity [33,57] and a way to assess the functional connectome of
the brain [10] resulting from directed information transfer in
symmetry-broken states [58].

We previously showed methodology to compute macro-
scopic phase response curves for emergent oscillations in
large scale networks described by exact reduced mean-field
equations [18]. In that work we considered discrete delays.
However, discrete delays are not likely to occur in brain cir-
cuits. Recent experimental literature [31] shows non-discrete
and distributed delays for non-myelinated connections in the
brain. In particular, the log-normal delay distributions with
large tails for long-delay values have been observed. Hence,
it has been an important question of study how random dis-
tributions of delays would affect synchronization and phase
locking of spiking circuits. For example, Petkoski et al. [59]
showed that depending on the structure of the heterogeneity
of the delays, the oscillators group in phase-shifted, anti-
phase, stationary or non-stationary clusters, which introduces
non-trivial spatiotemporal dynamics.

The contribution of this work is two-fold. First, we present
a theoretical framework to calculate the macroscopic phase
response curves of distributed-delay induced limit cycles us-
ing the adjoint method. More specifically, the mathematical
formalism of the adjoint method requires a nontrivial exten-
sion of the scalar product (Eq. 9) and the normalization con-
dition (Eq. 11) for distributed delay. We apply our technique
to the Wilson-Cowan model with Gaussian and log-normal
delay distributions. We find the adjoint equation and calcu-
late the phase response curves. As a check of validity we
compare the phase response curves with those obtained by
the direct method and obtain good agreement.

Second, we show how the distributed delays impact phase-
locking of inter-coupled circuits using oscillatory Wilson-
Cowan networks as a paradigmatic example. We apply this
theory to an inter-coupled pair of Wilson-Cowan oscillators
and calculate the phase interaction function for each de-
lay distribution for a given parameter set in the regime of
gamma oscillations in the brain. The differences between the
interaction functions for discrete, Gaussian and log-normal
distributed delay in Fig. 4 indicates that the phase-locking
behavior of oscillating neural systems depends on the choice
of the type of delay distribution as well as its parameters.

On the one hand we observe in general that distributed
delays preserve bistability between synchrony and anti-syn-
chrony for a varying range of standard deviation σ . On the
other hand, our analysis shows that synchrony becomes the
only stable state beyond a critical point if the delay variance
and the phase locking seen in the discrete case is conserved.
In the case of the skewed log-normal distributed delay, due
to the heavy tail of longer delay values, we obtain a larger
bistable region than for the discrete or Gaussian-distributed
case. As seen on the bifurcation diagram in Fig. 5 we show
the stable and unstable phase-locked states of the three in-
vestigated types of delay. The Gaussian delay distribution
shows further unstable phase-locked states for small σ /
0.28 and the log-normal delay distribution, however, shows
unstable phase-locked states for small σ / 0.35, which van-
ish for increasing σ . Large tail distributions of delays like
the log-normal distribution do not perturb synchrony but ex-
tend the region of bistability. Overall our analysis suggests
that phase locked states can persist under highly heteroge-
neous delays in the brain circuits.

In conclusion, distributed delay has a significant effect
upon the dynamics of networks of neural oscillators. We
have shown that the symmetry properties of the delay distri-
bution influence the dynamics, using the example of a sym-
metric Gaussian and an asymmetric log-normal distribution,
and further that paradoxically wide delay distributions favor
synchronous states.

Our study lays out a path to a number of promising re-
search directions. For one, further research should go be-
yond the Wilson-Cowan model with discrete, Gaussian and
log-normal delay distributions to other oscillatory systems
to which our theory of phase response curves can also be
applied. In this context, we could focus on the dynamics of
symmetry broken states in [33] and investigate the question
how such symmetry breaking maybe be modified by dis-
tributed delays. Since the nature of the delay is the focus
of this work, an interesting question for the future would be
how the dynamics would behave if the distribution of the de-
lays has sufficiently heavy tails such that the mean does not
exist, or distributions with non-monotonic behavior of the
tails arise (e.g., if the connections between neuronal popu-
lations are clustered as a function of the distance). A next
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step in a neuronal context would be to use a more detailed
model focussing, e.g., on the gamma oscillation range, and
to study in detail the impact of the statistical parameters of
the delay distributions specifically on the structure of this
gamma-activity. We suggest that our framework gives theo-
retical tools necessary for further studies of diverse patho-
logical states (e.g., demyelinating diseases) which change
the coupling delays and hence lead to changes in the dy-
namics of the brain.
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2. G. Buzsáki, N. Logothetis, S. W., Neuron 80(3), 751 (2013).
DOI https://doi.org/10.1016/j.neuron.2013.10.002. URL
http://www.sciencedirect.com/science/article/

pii/S0896627313009045

3. P.J. Uhlhaas, W. Singer, Neuron 52(1), 155 (2006). DOI doi:10.
1016/j.neuron.2006.09.020. URL https://doi.org/10.1016/

j.neuron.2006.09.020

4. T.H. Bullock, Proceedings of the National Academy of Sciences
94(1), 1 (1997). DOI 10.1073/pnas.94.1.1. URL https://www.

pnas.org/content/94/1/1
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Lett. 104, 113901 (2010). DOI 10.1103/PhysRevLett.104.113901.
URL https://link.aps.org/doi/10.1103/PhysRevLett.

104.113901
30. D.P. Rosin, K.E. Callan, D.J. Gauthier, E. Schöll, EPL (Euro-
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31. G. Buzsáki, K. Mizuseki, Nature Reviews Neuroscience 15(4),

264 (2014). DOI 10.1038/nrn3687. URL https://doi.org/

10.1038/nrn3687
32. T. Womelsdorf, J.M. Schoffelen, R. Oostenveld, W. Singer,

R. Desimone, A.K. Engel, P. Fries, Science 316(5831), 1609
(2007). DOI 10.1126/science.1139597. URL https://doi.

org/10.1126/science.1139597
33. G. Dumont, B. Gutkin, PLOS Computational Biology 15(5), 1

(2019). DOI 10.1371/journal.pcbi.1007019. URL https://doi.

org/10.1371/journal.pcbi.1007019

https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780195301069.001.0001/acprof-9780195301069
https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780195301069.001.0001/acprof-9780195301069
https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780195301069.001.0001/acprof-9780195301069
http://www.sciencedirect.com/science/article/pii/S0896627313009045
http://www.sciencedirect.com/science/article/pii/S0896627313009045
https://doi.org/10.1016/j.neuron.2006.09.020
https://doi.org/10.1016/j.neuron.2006.09.020
https://www.pnas.org/content/94/1/1
https://www.pnas.org/content/94/1/1
https://science.sciencemag.org/content/304/5679/1926
https://science.sciencemag.org/content/304/5679/1926
https://doi.org/10.1146/annurev-neuro-062111-150444
https://doi.org/10.1146/annurev-neuro-062111-150444
https://doi.org/10.1038/nrn2044
https://doi.org/10.1038/nrn2044
https://doi.org/10.1016/j.tics.2005.08.011
https://doi.org/10.1016/j.tics.2005.08.011
https://doi.org/10.1038/s41467-017-00936-3
https://doi.org/10.1146/annurev.neuro.051508.135603
https://doi.org/10.1146/annurev.neuro.051508.135603
https://doi.org/10.1016/j.tins.2016.01.001
https://doi.org/10.1016/j.tins.2016.01.001
https://doi.org/10.1016/j.tins.2015.12.004
https://doi.org/10.1016/j.tins.2015.12.004
https://doi.org/10.1007/978-1-4757-3484-3
http://dx.doi.org/10.1162/089976604322860668
http://dx.doi.org/10.1162/089976604322860668
https://doi.org/10.1007/978-0-387-87708-2
https://doi.org/10.1007/978-0-387-87708-2
https://doi.org/10.1007/978-1-4614-0739-3
https://doi.org/10.1007/978-1-4614-0739-3
https://link.aps.org/doi/10.1103/PhysRevLett.109.044101
https://link.aps.org/doi/10.1103/PhysRevLett.109.044101
https://link.aps.org/doi/10.1103/PhysRevE.96.042311
https://link.aps.org/doi/10.1103/PhysRevE.96.042311
https://doi.org/10.1007/s00422-018-0780-z
https://www.sciencedirect.com/science/article/pii/S0025556410000714
https://www.sciencedirect.com/science/article/pii/S0025556410000714
https://doi.org/10.1007/978-1-4612-1828-9
https://doi.org/10.1007/978-1-4612-1828-9
https://doi.org/10.1007/s00422-020-00850-w
https://doi.org/10.1162/neco.1996.8.5.979
https://doi.org/10.1162/neco.1996.8.5.979
https://doi.org/10.1007/978-1-4614-0739-3_1
https://doi.org/10.1007/978-1-4614-0739-3_1
https://doi.org/10.1364/OE.25.002401
https://doi.org/10.1364/OE.25.002401
https://www.sciencedirect.com/science/article/pii/0030401889904987
https://www.sciencedirect.com/science/article/pii/0030401889904987
https://link.aps.org/doi/10.1103/PhysRevLett.104.113901
https://link.aps.org/doi/10.1103/PhysRevLett.104.113901
https://link.aps.org/doi/10.1103/RevModPhys.85.421
https://link.aps.org/doi/10.1103/RevModPhys.85.421
https://link.aps.org/doi/10.1103/PhysRevLett.104.113901
https://link.aps.org/doi/10.1103/PhysRevLett.104.113901
https://doi.org/10.1209/0295-5075/96/34001
https://doi.org/10.1209/0295-5075/96/34001
https://doi.org/10.1038/nrn3687
https://doi.org/10.1038/nrn3687
https://doi.org/10.1126/science.1139597
https://doi.org/10.1126/science.1139597
https://doi.org/10.1371/journal.pcbi.1007019
https://doi.org/10.1371/journal.pcbi.1007019


10 Marius Winkler1,2 et al.

34. H.R. Wilson, J.D. Cowan, Biophysical Journal 12(1), 1 (1972).
DOI 10.1016/s0006-3495(72)86068-5. URL https://doi.

org/10.1016/s0006-3495(72)86068-5
35. F.C. Hoppensteadt, E.M. Izhikevich, Weakly Connected Neu-

ral Networks (Springer New York, 1997). DOI 10.1007/
978-1-4612-1828-9. URL https://doi.org/10.1007/

978-1-4612-1828-9
36. W. Just, A. Pelster, M. Schanz, E. Schöll, Philosophical Transac-
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Appendix A

Derivation of the Adjoint Equation

To derive the adjoint equation for dynamics with distributed delay with
the phase response curve Z(t) and the perturbed linearized variable
Xp(t), we must show that:

〈
Z(t),Xp(t)

〉 !
= const.

where Z(t) ∈ RN and Xp(t) ∈ RN are row vectors of N real compo-
nents.
We prove this by showing that:

d
dt
〈
Z(t),Xp(t)

〉 !
= 0 (14)

with the scalar product defined as

〈Ψ(t),Φ(t)〉=Ψ(t)Φ(t)+
∫ +∞

0
ds ∆(s)

∫ t

t−s
dξ Ψ(ξ +s) DF2(ξ +s) Φ(ξ )

(15)

where DF2(t) is the Jacobian with respect to the delayed term of the
perturbed linearized equation d

dt Xp(t)=DF1(t)Xp(t)+DF2(t)
∫ +∞

0 ds ∆(s)Xp(t−
s). We apply the scalar product to Eq. (14) and obtain:

⇔ d
dt

[
Z(t)Xp(t)+

∫ +∞

0
ds ∆(s)

∫ t

t−s
dξ Z(ξ + s) F2(ξ + s) P(ξ )

]
= 0

We obtain:

⇔
(

d
dt

Z(t)

)
Xp(t)

+Z(t)
d
dt

Xp(t)

+
d
dt

∫ +∞

0
ds ∆(s)

∫ t

t−s
dξ Z(ξ + s) DF2(ξ + s) Xp(ξ ) = 0

Taking the derivatives of the intgrals:

⇔
(

d
dt

Z(t)

)
Xp(t)

+Z(t)
d
dt

Xp(t)

+
∫ +∞

0
ds ∆(s) Z(t + s) DF2(t + s) Xp(t)

−
∫ +∞

0
ds ∆(s) Z(t) DF2(t) Xp(t− s) = 0

We apply d
dt Xp(t) = DF1(t)Xp(t)+DF2(t)

∫ +∞

0 ds ∆(s)Xp(t− s) and
simplify the integral:

⇔
(

d
dt

Z(t)

)
Xp(t)

+Z(t)

[
DF1(t)Xp(t)+DF2(t)

∫ +∞

0
ds ∆(s)P(t− s)

]

+
∫ +∞

0
ds ∆(s) Z(t + s) DF2(t + s) Xp(t)

− Z(t) DF2(t)
∫ +∞

0
ds ∆(s) Xp(t− s) = 0

We factorize the bracket and obtain:

⇔
(

d
dt

Z(t)

)
Xp(t)

+Z(t)F1(t)Xp(t)

+Z(t)F2(t)
∫ +∞

0
ds ∆(s)P(t− s)

+
∫ +∞

0
ds ∆(s) Z(t + s) F2(t + s) Xp(t)

− Z(t) F2(t)
∫ +∞

0
ds ∆(s) P(t− s) = 0

The 3rd and the 5th term cancel, and we obtain:

⇔
[

d
dt

Z(t)+Z(t)DF1(t)+
∫ +∞

0
ds ∆(s) Z(t + s) DF2(t + s)︸ ︷︷ ︸

!
=0

]
Xp(t) = 0

(16)

Since this condition holds for arbitrary solutions Xp(t), the bracket
vanishes and we obtain the adjoint equation for distributed delay dy-
namics:

⇒− d
dt

Z(t) = DFT
1 (t)Z(t)+

∫ +∞

0
ds ∆(s) DFT

2 (t + s) Z(t + s) (17)

where superscript T denotes the transposed matrix.
�

Appendix B

Gaussian Distributed Delay Convergence

Fig. 6 represents in the panels A and B phase response curves for ex-
citatory ZE(φ) and inhibitory ZI(φ) populations, respectively. Panels
C and D display the interaction functions for excitatory HE(φ) and
inhibitory HI(φ) populations. The black solid curve in each subplot
shows the discrete delay solution and from bright to dark color the
solutions for the Gaussian distributed model for decreasing standard
deviation values σ . This figure reveals that the Gaussian delay distri-
bution is approaching the discrete delay solution for vanishing values
of the standard deviation σ .
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Fig. 6 Wilson-Cowan oscillators with Gaussian distributed delay converge to discrete delay model. The panels A and B show the phase
response curves for excitatory ZE(φ) and inhibitory ZI(φ) populations, respectively. Panels C and D display the interaction functions for excitatory
HE(φ) and inhibitory HI(φ) populations. Each subplot shows as the black solid curve the discrete delay solution and from bright to dark color
solutions for the Gaussian distributed model for decreasing standard deviation values σ . Parameters: σ = 0.01,0.02,0.03, ...,0.4 from dark to light
shading ,τ =−1, wee = 20, wei = 21, wie = 16, wii = 6, ie = 1.5, ii =−0.5 and C = 0.01.
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Fig. 7 Wilson-Cowan oscillators with log-normal distributed delay converge to discrete delay model. The panels A and B show the phase
response curves for excitatory ZE(φ) and inhibitory ZI(φ) populations, respectively. Panels C and D display the interaction functions for excitatory
HE(φ) and inhibitory HI(φ) populations. Each subplot shows as the black solid curve the discrete delay solution and from bright to dark color
solutions for the log-normal distributed model for decreasing standard deviation values σ . Parameters: σ = 0.01,0.02,0.03, ...,0.4 from dark to
light shading ,τ =−1, wee = 20, wei = 21, wie = 16, wii = 6, ie = 1.5, ii =−0.5 and C = 0.01.
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