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Abstract 
 
The ability to estimate and produce appropriately timed responses is central to many behaviors 
including speaking, dancing, and playing a musical instrument. A classical framework for estimating or 
producing a time interval is the pacemaker-accumulator model in which pulses of a pacemaker are 
counted and compared to a stored representation. However, the neural mechanisms for how these 
pulses are counted remains an open question. The presence of noise and stochasticity further 
complicate the picture. We present a biophysical model of how to keep count of a pacemaker in the 
presence of various forms of stochasticity using a system of bistable Wilson-Cowan units 
asymmetrically connected in a one-dimensional array; all units receive the same input pulses from a 
central clock but only one unit is active at any point in time. With each pulse from the clock, the position 
of the activated unit changes thereby encoding the total number of pulses emitted by the clock. This 
neural architecture maps the counting problem into the spatial domain, which in turn translates count to 
a time estimate. We further extend the model to a hierarchical structure to be able to robustly achieve 
higher counts. 
 
Introduction 
 
 
Much of our behavior as humans is organized on the basis of time. For example, circadian rhythms 
regulate processes within our bodies over the time scales of 24 hours. At the other end of the spectrum, 
neuronal activity can occur over millisecond timescales. These examples might be viewed as 
processes that regulate our normal functions. Different from the above are learned representations of 
time: for instance, how long does one expect to wait at a red light or how long is the interbeat interval in 
a piece of music. These latter examples operate on an intermediate timescale, that of hundreds of 
milliseconds up to several seconds. They also nicely exemplify two different types of time estimation: 
interval timing, in which a single duration is to be estimated or produced, and rhythmic timing, in which 
the same duration is to be successively estimated or produced. 
 
One of the most intuitive and earliest models for interval timing is based on counting the pulses of a 
pacemaker or clock (Creelman 1962; Treisman 1963; Killeen and Fetterman 1988; Gibbon 1992). 
Within this framework, the pulse count provides a linear measure of time, and judgments about duration 
rely on comparing the current pulse count to that of a reference count. This model, called the 
pacemaker-accumulator (PA) model, while successful at explaining experimental observations for 
single interval timing over timescales of seconds has yet to be described at the level of a neuronal 
instantiation. Our goal in this paper is to provide a framework for how counting can occur using 
biophysical elements. In earlier work, in the context of musical beat keeping, we developed a 
mechanistic framework that required counting pulses of a fast clock (Bose et al. 2019). We, therefore, 
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have a particular interest in the counting process being applicable to faster timescales, that of 0.5-8 Hz, 
associated with speech, dance and music, all of which are examples that utilize rhythmic timing. Given 
that there are many ubiquitous brain rhythms that operate at higher beta or gamma frequencies, we 
posit that such a faster rhythm may serve as a neural pacemaker for a PA model.  
 
Noise is present at many levels in the brain: fluctuations in transmitter release (Bennett et al. 1997), 
fluctuations in times and numbers of action potentials (Shadlen and Newsome 1994), and background 
variations present in sensory input. Despite this ever-present variability, humans can execute precisely 
timed behaviors as demonstrated by our ability to synchronize motor output within tens of milliseconds 
of a stimulus tone (Aschersleben 2002). A biophysical mechanism for keeping count of pacemaker 
pulses must therefore encode information in a way that’s robust to the presence of stochasticity in 
neural systems. Furthermore, a robust counting mechanism should also be capable of tracking pulses 
that may be arriving at unequal and, importantly, unpredictable intervals. The count at any given 
moment in time therefore must be able to persist until the next event: to either be incremented in the 
event of the arrival of another pulse of the pacemaker or to be read out by downstream mechanisms.  
 
Motivated by the need for robustness of the count in the presence of stochasticity, we construct a one-
dimensional linear array of bistable Wilson-Cowan units that describe the firing rates of populations of 
excitatory and inhibitory neurons.  Each unit in the array receives input from a fast pacemaker and the 
network is tasked with encoding the total number of pacemaker pulses by the position of the unit with 
the highest firing rate. Units in the array are coupled asymmetrically with feedforward excitation and 
backward inhibition. The asymmetry in the system ensures that the pulses are only counted in the 
forward direction and that only a single unit is in a high firing rate state at any moment in time. We 
investigate how Orentstein-Uhlenbeck noise internal to each Wilson-Cowan unit and variability in the 
interpulse arrival rate (chosen from a Gaussian or Poisson distribution) affect the ability to accurately 
count. We characterize circumstances that lead to over or undercounting and how this affects time 
estimation or production, in part, by investigating how the mean and standard deviation of the count 
varies with parameters. Finally, we extend the model to a hierarchical ring architecture which allows the 
network to robustly achieve substantially higher counts, but at the expense of greater variance. 
 
The neural instantiation of a pacemaker pulse counting mechanism can equivalently be viewed as one 
that integrates events over time. Integration of evidence over time in domains like decision making 
often use ramping models which store the amount of accumulated evidence in their firing rates (Gold 
and Shadlen 2007; Wang 2012). Such models have faced criticism over neural plausibility since they 
require finely tuned synaptic weights (Seung et al. 2000). We take an alternate approach by translating 
the counting problem into the spatial domain by encoding current count in the position along a spatial 
network. This ensures that the count remains stable over long timescales and thus guarantees the 
mechanism for a wide range of pacemaker rates. Furthermore, by encoding the count of pacemaker 
pulses, our mechanism creates an equivalence between counts and elapsed time.  
 
This paper is organized as follows. After introducing the Wilson-Cowan model on a coupled linear 
array, we first describe how the network performs counting in a deterministic framework. We then 
consider the effects of internal Ornstein-Uhlenbeck noise and an irregular pacemaker on the counting 
process. Finally, we introduce a hierarchical ring architecture for higher counts. We conclude with a 
Discussion section in which we compare our findings to previous interval and rhythmic timing models.   
 
Methods 
 
Single Unit Bistability 
 
We model the firing rates of a population of excitatory (E) and inhibitory (I) neurons using the standard 
Wilson-Cowan equations (Wilson and Cowan 1972). These equations exhibit bistability of low and high 
firing rate solutions under certain parameter regimes:  
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where 𝑓(⋅) is taken to be a sigmoid non-linearity. The variables re and ri represent the firing rates of E 
and I neurons scaled relative to their respective maximum so they are dimensionless variables, taking 
values in [0,1].  The re nullcline is “cubic-shaped”, while the ri nullcline is sigmoidal. We choose 
parameters (Table 1) such that these nullclines intersect at three fixed points: two stable and one 
unstable. 𝜏! , 𝜏" are the time constants of the E and I populations respectively and are set to be 𝜏! = 𝜏" =
3 ms unless otherwise stated. The two stable fixed points of the system are easily discerned by 
differences in their firing rates in both E and I populations: one stable fixed point occurs when both 
populations have very low firing rates and the other, when both have high firing rates. Although this 
system corresponds to a population of excitatory and inhibitory neurons modeled by their firing rates, 
we will refer to each E/I population pair as a unit for the remainder of the paper.    
 
Network Architecture 
 
Units are organized in an array-like architecture such that a unit excites the unit immediately in front of 
it and inhibits the unit immediately behind it; there are no other interactions between units apart from 
this local connectivity (Fig. 1a). The input from the pacemaker that needs to be counted is modeled as 
a transient pulse that is delivered to all units uniformly for a fixed duration. The modified Wilson-Cowan 
equations with the architecture specific input as well as the pacemaker inputs are given by: 
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(2) 

Where unit j receives excitatory input from the excitatory population of unit j-1 and inhibitory input from 
the inhibitory population of unit j+1. 𝑃#(𝑡) represents the input from the pacemaker with period T and 
amplitude 𝑤$. During each cycle, 𝑃#(𝑡) takes a value of 1 for 5 ms and is 0 otherwise. 𝐻(⋅) is the 
Heaviside function with threshold 𝜃. 𝑤%,%'(, 𝑤%,%)( are the strengths of the synaptic connections from 
neighbors of j. The subscript j, identifying the particular unit, is omitted from the remaining model 
parameters since they are assumed to be the same for all units. Finally, 𝜉!% , 𝜉"% represent Ornstein-
Uhlenbeck (OU) noise which is independent for each unit and evolves according to the following 
stochastic differential equation: 

 
 

𝑑𝜉!/" =	−
𝜉!/"
𝜏,-

𝑑𝑡 + 𝜎7
2
𝜏,-

𝑑𝑊 

 

(3) 

where 𝑊	~	𝒩(0,1), 𝜏*+	is the time constant of the noise and 𝜎 is the standard deviation of the noise.  
 
Simulations 
 
All simulations are carried out in python using Euler’s method with a timestep of 0.05ms. Halving or 
doubling the timestep led to no noticeable differences in our simulation results. Noise variables are 
independent for each E and I population and are drawn from a Gaussian distribution with mean zero 
and standard deviation specified by σ. Equation 3 is implemented using the Euler-Maruyama (Higham 
2001) method which gives the following finite difference approximation: 
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Since one of the main motivations for counting is in the context of keeping time, we are interested in the 
relationship between count and elapsed time. For each simulation, elapsed time is computed as the 
minimum time in milliseconds the E population of a given unit takes to reach a firing rate of at least 0.9 
(or 0.5 in the event that the unit is skipped in the counting process). For the calculation of heatmaps, x 
and y variables are incremented at a step size of 0.05 and the results are smoothed using a gaussian 
filter. The unit that has the highest E firing is taken to be the unit in the firing state at the end of the 
timed interval. When computing heatmaps, we also consider the parameter ranges where the system 
exhibits failure. Since we encode count in the position of the firing state in our network, we define failure 
of the system to occur when decoding becomes ambiguous: when either no units have entered the 
firing state or multiple units are in the firing state at the same time (for the hierarchical model, we mean 
multiple units in the same layer). Unless otherwise specified, statistics are computed over 1000 
simulations.  
 
Results 
 
As a first step, we describe the dynamics of counting and count representation in the neuronal network 
when the incoming pulses are periodic and individual E-I units are not subject to noise. We developed 
the one-dimensional E-I architecture so that units have three distinct operational states: off, ready and 
firing. All units begin in the off state except for unit 1, which begins in the ready state. During the first 
pacemaker pulse, unit 1 transitions to the firing state, and remains in the “upper stable state” until the 
next pulse occurs. This steady firing of unit 1 modestly drives unit 2 thereby transitioning unit 2 to the 
ready state. At the arrival of the next pacemaker pulse, these dynamics repeat: unit 2 now transitions 
from the ready state to the firing state thereby exciting unit 3 to the ready state and inhibiting unit 1. 
This process continues sequentially down the array with the arrival of each new pacemaker pulse 
thereby encoding the total count of pacemaker pulses via the position of the firing unit along the 1D 
array (Fig. 1b,c). The size and duration of the pacemaker pulse is chosen so that it is large and long 
enough to drive a unit from the ready state to the firing state but not large enough to drive a unit from 
the off state into the firing state.  
 
The use of three distinct operational states in this network ensures that, in the noise-free case, 
coincident excitation from the upstream neighbor and the pacemaker pulse is needed for a unit to 
transition from the ready to the firing state. This ensures that units far along the array architecture do 
not transition prematurely. Backward inhibition forces units that were in the firing state to return to the 
off state once a new unit enters the firing state. Thus, only one unit is in the firing state at any point in 
time. We note that silencing units in the wake through backward inhibition is not essential for successful 
readout of total count. Instead, it minimizes the number of units that need to be firing at any moment in 
time to accurately measure the count. 
 
The dynamics of this circuit for our default parameter settings can be understood through phase plane 
analysis. We assume that all units begin at a low firing fixed point for both E and I populations (Fig. 1d, 
lower black circle). The three operational states are distinguished by their nullclines: the ready state 
differs from the off state only in that its nullcline is raised (Fig. 1d, compare red and orange curves). 
Units in the off or ready state neither excite nor inhibit other units in the chain. The firing state 
corresponds to a nullcline that is raised such that it has only one (high firing) fixed point (Fig. 1d, green 
curve). A unit in the firing state exhibits high firing rates in both the E and I populations and therefore 
provides forward excitation to the next downstream unit of the array as well as backward inhibition to 
the previous member of the array. For a unit in the ready state, the forward excitation it receives from 
its neighbor only minimally affects its firing rate, but the excitation significantly lowers the threshold that 
the unit needs to cross to enter the firing state (Fig 1d, compare filled square to open square). 
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We can now describe the dynamics of the counting model using these nullclines. The arrival of the 
pacemaker pulse causes the re nullcline to raise up since this is an excitatory input. For a unit in the 
ready state, this raise causes the low firing fixed point to disappear and corresponds to the transition to 
the firing state. Although the pacemaker pulse is only a transient input, and therefore a transient raising 
of this nullcline, the duration of the pulse is chosen to be long enough for the unit to reach the basin of 
attraction for the high fixed point - this is where the bistability of the E/I unit is used. When the nullcline 
falls back down, the unit remains at the high fixed point with high firing rates for both E/I populations. 
For a unit in the off state, the transient shift of the nullcline only raises the nullcline as far as the ready 
state. Since the ready state nullcline still retains the low firing rate fixed point, the unit remains at the 
low fixed point. This ensures that the mechanism operates sequentially as units that are not being 
excited by their neighbor do not transition to the firing state with the arrival of a pacemaker pulse since 
the size of the pacemaker pulse is too small to kick units from the off state above threshold. When units 
transition from the ready to the firing state, the backward inhibition is strong enough to force the 
previously firing unit to move from the high stable fixed point to the low stable fixed point. Throughout, 
we have assumed that unit dynamics are sufficiently faster than the arrival of the pacemaker pulses so 
that the ready state is well established before the arrival of the next pacemaker pulse.  
 
These dynamics account for estimating a single time interval. However, as previously mentioned, many 
timing behaviors are rhythmic and require measuring time intervals repetitively. This can be achieved in 
the context of this model by using a simple reset at the start of each new interval. For example, at the 
onset of the next interval, a uniform pulse of inhibition to all units followed by an excitatory input to unit 
1 would allow the first unit to be the only one in the ready state, ready to begin the counting process 
again.  
 
 
Counting Under Noise 
 
We next evaluate how the counting mechanism behaves in the presence of either internal or external 
noise. We consider internal noise to be that which is specific to a unit and external noise to be reflected 
in the variability of the pacemaker pulse times.  
 
To model internal noise, we add independent mean zero Ornstein-Uhlenbeck (OU) noise as an additive 
input to the E and I firing rate equations of each unit (Eq. 2). If the standard deviation is small enough 
and timescale of this noise is sufficiently fast, the model maintains the ability to count. However, for 
sufficiently large and slow noise, we observe two types of errors: an extra count or a missed count. An 
extra count can occur if an adequate positive fluctuation induces an acceleration of a unit in the ready 
state towards the firing state. This can drive the next downstream unit to the ready state before the 
transient excitation from the pacemaker disappears (Fig. 2a). Since the next downstream unit would 
then be receiving coincident input from the pacemaker pulse and the upstream unit, it also can 
transition to firing. An extra count can also occur, although this is more rare and requires sufficiently 
large noise, if a ready unit receives a strong positive fluctuation during an inter-pulse interval that 
induces a transition to the firing state on its own. In either case, the location of the firing unit would 
advance by two positions instead of one for a single pacemaker pulse.  
 
The missed count error occurs when the arrival of a pacemaker pulse fails to advance the position of 
the firing unit (Fig. 2b). This type of error occurs when the noise to a unit in the ready state puts it 
temporarily below the noise-free ready state. In this case, the transient excitation from the pacemaker 
fails to excite a ready unit above threshold.  
 
We can consider the effects of extra and missed counts on time estimation in the context of either 
interval production or estimation. In interval production, assume that a mapping between interval 
duration and count exists such that we know a priori the count that needs to be reached for a given 
interval duration. In other words, we time an interval by waiting until the particular unit associated with 
the specific interval enters the firing state. In this context, an extra count (overcounting) means that the 
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particular unit enters the firing state in less time compared to the case of no errors (Fig. 2c, compare 
teal to black). An extra count error therefore leads to a produced interval that is shorter than it should 
be. A missed count (undercounting), on the other hand, means that a longer wait is needed until the 
specified count is reached due to a failure to count some pacemaker pulses (Fig. 2c, compare blue to 
black). This would cause the produced interval to be longer than it should be. The standard deviations 
increase with count since the farther we count, the higher chance that an error occurs as the probability 
of error is the same for each unit (compare spread of distributions in teal along the right border of Fig. 
2c).      
 
In interval estimation, the ground truth duration of the interval is known, and the counting system is 
being asked to estimate this time. Assuming that the pacemaker rate is fixed, we estimate the interval 
by multiplying the count by the pacemaker period. In the case of an extra count error (overcounting), 
the estimate would be longer than the ground truth duration since more pacemaker pulses are counted 
than occurred. In the case of a missed count (undercounting), the estimate of the duration is estimated 
to be shorter than it should be since fewer pacemaker pulses are counted than occurred.  
 
The overall tendency for either error type is dependent on the noise parameters (Fig. 2d). The yellow 
dashed curve corresponds to parameters that lead to a total count of 10, the count we would observe in 
the absence of noise. For the bottom portion of this curve, corresponding to small values of 𝜎, no errors 
in counting are observed.  Parameter choices to the left of the curve, corresponding to large values of 𝜎 
and fast 𝜏*+ (e.g. point a), lead to more extra count errors although both types of errors are observed. 
Larger values of 𝜎 lead, on average, to an extra count because the ready unit can be excited into the 
firing state fast enough such that the next downstream unit also gets to the ready state while the input 
from the pacemaker pulse is still ongoing. Parameter choices to the right of the curve, corresponding to 
larger values of 𝜏*+ and intermediate values of 𝜎 (e.g. point b), show a higher prevalence of missed 
count errors and therefore lead to undercounting. Missed counts require larger values of  𝜏*+  because 
negative noise needs to lower the firing rate of units in the ready state for long enough so that the input 
from pacemaker can’t bring the unit re above threshold. For large enough values of 𝜎 and 𝜏*+ , we 
begin to observe instances of failure: units begin transitioning from the off state directly into the firing 
state leading to multiple units in the firing state (success rate decreases above white line indicating 
90% success rate Fig. 2d).    
 
The relationship between count and elapsed time can also be understood in terms of which input is 
dominant: input from the upstream neighbor (𝑤&,&()) or input from the pacemaker (𝑤$). For the standard 
parameters settings and noiseless units, there is a critical input value such that the input from the 
pacemaker and upstream neighbor must exceed this value for the low firing rate fixed point (see Fig. 
1d) to disappear and thus allow for the possibility of the unit to transition to the firing state (Fig. 3, white 
dashed line). If the 𝑤&,&()value is large but less than the net minimum input for transition, then the ready 
state sits close to threshold and a small sized input from the pacemaker is needed to drive the unit into 
the firing state. In this case, noise driven transitions can sometimes be observed: sufficiently large 
fluctuations can kick a unit from the ready state into the firing state in the absence of pacemaker input 
(Fig. 3, magenta dot in sub-panel). We can interpret this overcounting behavior as a subject being 
impatient or impulsive since this would lead a subject to underproduce and overestimate time intervals. 
When the ready state is far from threshold (low values of 𝑤&,&()), then a larger sized input from the 
pacemaker is needed. We can interpret this behavior as a subject being overly conservative or cautious 
since there is no chance of being kicked into firing before a pacemaker pulse and noise can cause the 
mechanism to miss a pulse (undercount); this also causes the subject to underestimate or overproduce 
time intervals (Fig. 3, red dot in sub-panel). The yellow dashed curve again shows where the count is 
10 for the given noise settings; note that the chosen noise parameters lead to overcounting under our 
default parameters (Fig. 3, white star is above yellow dashed line). 
 
If the size of the input is too extreme, the mechanism can fail. White level curves depict the probability 
of successful trials and radiate outward from the center with decreasing rates of success (Fig. 3). When 
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the size of the pacemaker pulse is close enough to the critical value, a unit in the off state can, by 
chance, get kicked into the firing state, surpassing the ready state altogether (Fig. 3, see label H on 
right side of figure). This can cause the serial dependence of the counting mechanism to break down 
since any unit along the chain can potentially go up. This hypersensitivity increases as 𝑤$ increases 
and therefore the chance of success falls off to the right of the figure. The region below the level curves 
corresponds to an area where the combined input from the pacemaker and upstream neighbor are too 
small and, in most trials, the first unit fails to ever advance from the ready state. The observed count 
increases as 𝑤$ and 𝑤%,%'(  both increase because increasingly more extra count errors are observed 
at each pacemaker pulse, i.e. the firing position advances by multiple units down the chain with each 
pacemaker pulse.  In the region to the upper right of the level curves, where 𝑤$ and 𝑤%,%'(  are both 
sufficiently large, failure occurs because multiple extra count errors effectively shorten the duration of 
inhibition and as a result, some units fail to be suppressed back to the low firing fixed point (see Fig. 
1d).  
 
Counting Irregular Pulses 
 
Variability in the pacemaker is an additional source of noise that is independent of the units. If, for 
instance, we used a neural system to serve as the pacemaker, the pacemaker itself may not be a 
perfect oscillator with a regular period. In general, the mechanism should count reliably in the case of 
events arriving at equal or unequal intervals of time and hence not be tied to the rate of the pacemaker. 
Our counting mechanism can indeed operate in both regimes as long as the pacemaker pulses arrive 
at intervals longer than the duration of the transition dynamics between units (Fig. 4) – if the pacemaker 
period is shorter than the dynamics, pulses that arrive before the ready state is established will not be 
counted. We allowed the inter-pulse interval of the pacemaker to be chosen from a Gaussian (mean 
period = 40ms, var = 40 ms) (Fig. 4a) or a Poisson distribution (mean period=40ms) (Fig. 4b) such that 
no inter-pulse interval fell below 5ms. In the absence of any internal noise to the individual E/I units and 
as long as the inter-pulse interval is sufficiently long, the counting array performs error free.  
 
Although the ability to count pulses is unaffected by an irregular rate of a pacemaker so long as the 
inter-pulse-interval is not too short, the relationship between count and time may no longer be 
preserved. Choosing a distribution with small variance, however, allows the pacemaker to vary its inter-
pulse-interval but still retain the ability to estimate elapsed duration from the count. In particular, we see 
that although the elapsed time to count varies in any one trial, the mean elapsed time to count across 
trials is given by the mean count across trials times the rate of the pacemaker (Fig. 4c, blue and green 
lines). Under noiseless units, since the counting mechanism works sequentially, the relationship 
between count and elapsed time is given by the distribution of arrival times of the pacemaker pulse 
distribution. This means we can use our mechanism for interval production and estimation under a 
variable pacemaker if we just know the mean period of the pacemaker.  
 
If, in addition to variability in the pacemaker, OU noise is added to the units then the standard 
deviations further increase since there are now two sources of independent noise and the mean time 
estimate is affected by the counting accuracy set by the noise parameters. For instance, if the noise 
parameters tend to favor overcounting, then the mean elapsed time to count will be shorter than it 
would be for the same irregular pacemaker and noise-free units (Fig. 4c, compare pink and red to blue 
and green lines). If the noise parameters are such that the mean count is not too different from the 
noise free count, then the coefficient of variation (CV) increases under both sources of noise compared 
to only having variability in the pacemaker. This change in the CV is due to the significant increase in 
standard deviations arising from the presence of extra count and missed count errors (Fig. 4c, see plot 
of CV in lower right corner).  
 
A common finding in literature on interval timing, called scalar timing, is the observation that the 
standard deviation scales linearly with the mean of the timed duration leading to a constant CV (Gibbon 
1977; Buhusi and Meck 2005). The linear architecture array, on its own, does not give rise to scalar 
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timing as the CV tends to decrease with count under a variable pacemaker as well as under a variable 
pacemaker combined with noisy units (Fig. 4c, see plot of CV in lower right corner). 
 
Hierarchical Counting 
 
With the current one-dimensional array architecture, each unit is in the firing state at most once during 
an interval estimation/production task. Thus, producing large counts requires many units. As an 
alternative, we consider a hierarchical architecture based on rings of bistable units. In this case, units 
can be reused, and the total count can be represented using a base representation.  
 
Before introducing the hierarchical architecture, we describe counting on a ring. Taking the original one-
dimensional linear array, we connect the first and last unit such that the Nth unit forward excites unit 1 
and unit 1 backward inhibits unit N. We assume that all the inputs and dynamics are the same as 
before. In this arrangement, pacemaker pulses are counted just as before up to the Nth one; after 
which, the counting continues to unit 1. Note that after the activity has propagated once around the ring, 
the overall count can no longer be read out from the position of the firing unit. This motivates the 
hierarchical structure.  
 
Now consider stacking or coupling this “layer 1” ring of N units to a “layer 2” ring of M units.  Each layer 
2 unit now receives transient excitation from unit N in layer 1 instead of input from the pacemaker (Fig. 
5a). The equations for layer 1 are identical to those before (Eq. 2), but layer 2 unit equations are now 
slightly modified to reflect the input from unit N in layer 1: 

 
 

 
𝜏!
𝑑𝑟!%,!
𝑑𝑡 = 	−𝑟!%,! + 𝑓 /𝑤!!𝑟!%,! −𝑤!"𝑟"%,! + 𝐼! +𝑤$𝑃<𝑡, 𝑟!#,'= + 𝑤&,&()𝐻 /𝑟!%,!"# , 𝜃4 − 𝑤&,&*)𝐻/𝑟"%,!$# , 𝜃4	4	

τ# 	
𝑑𝑟"%,!
𝑑𝑡 	= 	−𝑟"%,! + 𝑓 /𝑤"!𝑟!%,! −𝑤""𝑟"%,! + 𝐼"4 

(5) 

 
where 𝑟!!,# represents the firing rate of the E population of unit j in layer k. 𝑃8𝑡, 𝑟!$,%9 now takes a value 
of 1 for 5 ms every time unit N in layer 1 enters the firing state and is zero otherwise.  
 
The transition from the off to the ready state in layer 2 requires excitation from an upstream neighbor in 
layer 2 as well as unit N in layer 1. The position of the firing state in layer 2 will, therefore, advance 
every time a cycle of layer 1 has been completed, i.e. every N pacemaker pulses. The same principle, 
requiring each unit in a higher layer to receive coincident activation from a neighbor as well as the last 
unit of the previous layer to advance, could extend the hierarchy for many layers although we only 
consider two here. 
 
The position of the firing state in both layers must be known to evaluate the current count: activity in 
layer 1 represents unitary counts while activity in layer 2 represents counts in multiples of base N (Fig. 
5b). Layer 2 will therefore have no units in the firing state until a cycle of layer 1 has been completed. 
Furthermore, as in the case of the single linear array architecture for counting, this hierarchical 
architecture preserves the bijective relationship between mean elapsed time and count in the case of 
both regular and irregular pacemakers (Fig. 5c, compare black to blue). 
 
When internal noise is added to each of the E/I units, the same types of extra and missed count errors 
occur as in the linear array. However, the hierarchical architecture produces wider time distributions 
under the same noise parameter variations (compare teal distributions in right sub-panel of Fig. 4c to 
the same in Fig. 2c). In particular, the standard deviations of the elapsed time distributions grow 
substantially once the count exceeds the size of layer 1. This occurs because a missed count or an 
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extra count error in layer 2 corresponds to an error of magnitude N in the total estimated count; notice 
the sharp discontinuities in the size of the standard deviation every complete cycle of layer 1 (Fig. 5c).   
 
An increase in standard deviation is a feature that could contribute to scalar timing. However, as 
illustrated in Fig. 5c, the growth of the standard deviation jumps at every Nth count but doesn’t change 
much in between suggesting a CV that would decrease with count, as in the linear array case, for 
counts between multiples of N. Thus, the hierarchical structure may not be sufficient to alone account 
for scalar timing.  
 
As in the case of the linear array architecture, the tendency for missed or extra-counts is dependent on 
the choice of noise parameters. In general, the trends between parameter regimes and behaviors are 
the same as in the linear array case: there are no errors for small values of 𝜎 and fast 𝜏*+; there is a 
tendency toward extra count errors under large values of 𝜎 and fast 𝜏*+; and there is a higher 
prevalence of missed count errors under large values of 𝜏*+ and intermediate values of 𝜎 (Fig 5d). The 
region of parameter ranges corresponding to a tendency to undercount suggests that the hierarchical 
model tends to undercount by more than the linear array architecture (region of undercount in Fig 5d is 
darker than in Fig. 2d). This makes sense given that layer 2 errors have a larger impact while in the 
linear array architecture, all positions along the chain have the same magnitude of error. The shape of 
the yellow dashed line, corresponding to the count being equal to 10, remains largely the same, 
although this curve re-emerges along the upper portion of the panel.  For large 𝜎 and slow 𝜏*+, we also 
again have an increased tendency of the mechanism to fail since units can now be kicked from the off 
to the firing state directly. Finally, conditional on having the same counting limit, there is a reduced 
chance of failing in the hierarchical architecture compared to the linear array architecture (compare the 
90% success white curves in Fig. 2d and Fig. 5d). This is because units in layer 1 are the only ones to 
receive pacemaker input and therefore, the fewer units in that layer, the smaller the chance that noise 
will cause one of them to jump from the off state directly into the firing state during a pacemaker input. 
Of course, as the size of layer 1 approaches the length of the linear array, the rates of failure become 
equal.  
 
Discussion 
 
The neural basis for timing abilities remains unresolved. Although there is a diversity of models, 
including models based on oscillators (Matell and Meck 2004; Large et al. 2010), ramping neurons 
(Hanes and Schall 1996; Ivry and Richardson 2002; Wang et al. 2018; Egger et al. 2020), synfire 
chains (Haß et al. 2008; Long et al. 2010), stochastic processes (Almeida and Ledberg 2010; Simen et 
al. 2011; Cao et al. 2014), cell adaptation processes (Wallach et al. 2018) and state-dependent 
networks (Karmarkar and Buonomano 2007; Hardy et al. 2018; Paton and Buonomano 2018), the idea 
of counting the pulses of a clock remains one of the most intuitive approaches. Here, we demonstrate a 
neural mechanism for counting the pulses of a pacemaker and therefore advance a neural instantiation 
of this popular model. 
The neural counting mechanism presented here encodes the count in the spatial position of the 
currently active unit. Using bistable units as the basic building block of our architecture provides a way 
to encode count that is robust to both internal and external noise. We have shown how to extend the 
linear array architecture into a hierarchical structure of layered rings that allows us to reduce the size of 
our circuit but still retain the ability to accurately encode and decode count. Furthermore, we 
demonstrate an equivalence between count and elapsed time allowing our mechanism to be applicable 
in estimating and producing single interval durations. Finally, by adding a resetting mechanism such as 
a global inhibitory pulse to the network followed by a targeted excitatory pulse to the first unit, this 
mechanism can also be employed over repeated intervals, as in the case of rhythmic timing.   
 
We have focused on the counting of events, specifically pacemaker cycles, to aid in time interval 
estimation and production. Converging evidence from the behavioral to single cell level, however, 
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suggests that counting is a basic computation performed by the brain. For example, a limited visual 
number sense has been documented in multiple species (Nieder 2005, 2016; Nieder and Dehaene 
2009) and a neural model for counting static visual objects has been proposed by Dahaene and 
Changeux (Dehaene and Changeux 1993). That proposed model is composed of a network of layers: 
one to detect features over the visual scene, one to sum the number of features and a final layer which 
signals total count using numerosity detectors. Although their proposed counting model includes some 
computations that are not needed in the case of counting over time such as normalizing for feature 
size, our model is comparable to the last layer of this network since the position along our spatial 
architecture signals numerosity.   
 
Counting events over time is also necessary for other functions not directly related to time estimation. 
For example, Anurans (frogs and toads) are known to discern the number of sequential calls made by 
their competitor during acoustic competition over a mate. This numerical ability has been shown to be 
tied to the responses of counting neurons, which are “tuned” to particular pulse rates and respond only 
after at least a threshold number of pulses have occurred (Rose 2018). A proposed biophysical model 
of this phenomenon relies on slow-conductance excitatory synapses to accumulate pulses and total 
count is stored in the membrane potential response of an “interval-counting neuron” (Naud et al. 2015). 
A Hopfield type model for counting stimuli or for simulating a progression of cognitive states was 
previously suggested (Amit 1988); like our model, this network also uses a set of attractors which are 
visited sequentially despite temporally identical input into the network. At the level of individual cells, 
giant mossy fiber terminals in the hippocampus of rats have also demonstrated the ability to count: the 
number but not the frequency of action potentials at the mossy fiber terminals trigger target CA3 
pyramidal cell firing (Chamberland et al. 2018). Unlike our spatial counting mechanism, the counting 
performed at the mossy fiber terminals leads to gradual accumulation in calcium concentration.  
 
The case of rhythmic timing arises, for example, in dancing or listening to music. One aspect of 
“keeping the beat” is learning the period of the beat, exemplified by the tones of a metronome. Learning 
therefore entails estimating the period as a time interval and then successively improving on this 
estimate over subsequent presentations of that same time interval. In our earlier work, we utilized 
counting to teach the value of N to a time-continuous neuronal oscillator whose dynamics represent the 
internal representation of the beat (Bose et al. 2019). In that work, however, we didn’t propose a 
neuronal mechanism to actually compute the count. Instead, we used the difference in relevant counts 
to make adjustments to parameters that control the frequency of the neuronal oscillator. With the linear 
array for counting presented here, one can, alternatively, imagine an error correction scheme (Mates 
1994) where the spatial location along the array, N for example, encodes the appropriate beat period. If 
the metronome (beat note) sounds before the time of the current N-choice, we could reset the counting 
array and decrement the value of N, effectively shortening the time interval. Conversely, if the 
metronome has not sounded before the count reaches N, we could increase the value of N upon reset, 
effectively elongating the duration until the next beat. Ideally, one might choose an incremental 
adjustment that depends on the difference of the current and target values for N, requiring additional 
neuronal computation. While it may seem natural to use our ring counting architecture for rhythmic 
counting, since it will loop back to the first unit after making a complete cycle without needing a reset 
mechanism, learning a particular inter-beat-interval would require the active changing of the ring length 
in between repetitions of the same interval. 
 
Our results show that under minor assumptions on internal noise and variability of the pacemaker, there 
is a bijective relationship between count and elapsed time. As a consequence, we can use the 
proposed mechanism to both estimate and produce time intervals. Assuming we know the mean clock 
period, estimating the elapsed time from a count is straightforward. Producing an interval of a given 
duration, however, requires some additional machinery in order to know on which count to stop. Adding 
a downstream memory module such as a categorical bump attractor network (Martí and Rinzel 2013) 
would allow the system to learn and store the mapping from count to duration. For instance, to learn a 
specific interval duration, the count from every instance that the interval is well estimated can be used 
as accumulating evidence to form a bump attractor for that interval.  Furthermore, under noise, each 
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bump attractor could represent a distribution over counts. During interval production, then, the spread 
of this distribution could be interpreted to represent uncertainty over the produced duration.  
 
The variances introduced in mean elapsed time may at first glance seem large or lead to high 
uncertainty in time estimation, however these should be viewed as an upper bound. The statistics we 
provide are computed under the assumption that individual units in the network fail to respond 
appropriately to a pacemaker pulse. It is worth remembering that units correspond to populations of E 
and I neurons, meaning that failure in any single neuron does not imply that an entire unit will fail. In 
fact, if the population firing rate responds appropriately, then any number of individual neurons can 
show aberrant behavior without upsetting the overall mechanism.  
 
The central idea of our counting mechanism is robust to specific design choices. The architecture of the 
mechanism is defined by the topology of the connections between units and therefore does not need to 
be literally spatial.  A principal feature of our model is the idea of encoding count using spatial position 
along an architecture of bistable units. We chose to model these bistable units as populations of E and I 
cells and the W-C dynamics are purposefully chosen for ease of demonstration. The units, however, 
could also be replaced with single variable bistable units (assuming backward inhibition is sufficiently 
fast to treat it as responding instantaneously to the E-firing rate). Alternatively, one could also 
implement bistability using an E-I balanced framework (Tsodyks et al. 1997; Ahmadian et al. 2013).  
 
Our central focus is keeping count for estimating time. Brain areas involved in interval timing and 
rhythmic timing tasks likely include the supplementary motor area (Macar et al. 2002; Grahn and Brett 
2007; Chen et al. 2008; Bengtsson et al. 2009), basal ganglia (Harrington 1998; Malapani et al. 1998), 
posterior parietal cortex (Leon and Shadlen 2003), prefrontal cortex (Brody et al. 2003) and cerebellum 
(Ivry and Keele 1989; Ivry 1996; Teki et al. 2011). Future work could focus on identifying aspects of our 
counting mechanism for keeping time in these brain regions. Since our counting mechanism is based 
on components that are ubiquitous across the brain, it is therefore possible that versions of this model 
could be copied wherever counting of inputs over time is a necessary computation.  
 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2021. ; https://doi.org/10.1101/2021.09.30.462633doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.30.462633
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 12 

References  
 

Ahmadian Y, Rubin DB, Miller KD (2013) Analysis of the stabilized supralinear network. Neural Comput 
25:1994–2037. https://doi.org/10.1162/NECO 

Almeida R, Ledberg A (2010) A biologically plausible model of time-scale invariant interval timing. J 
Comput Neurosci 28:155–175. https://doi.org/10.1007/s10827-009-0197-8 

Amit DJ (1988) Neural Networks Counting Chimes Author ( s ): Daniel J . Amit Source : Proceedings of 
the National Academy of Sciences of the United States of Published by : National Academy of 
Sciences Stable URL : https://www.jstor.org/stable/31085 REFERENCES Linked re. 85:2141–
2145 

Aschersleben G (2002) Temporal control of movements in sensorimotor synchronization. Brain Cogn 
48:66–79. https://doi.org/10.1006/brcg.2001.1304 

Bengtsson SL, Ullén F, Henrik Ehrsson H, et al (2009) Listening to rhythms activates motor and 
premotor cortices. Cortex 45:62–71. https://doi.org/10.1016/j.cortex.2008.07.002 

Bennett MR, Gibson WG, Robinson J (1997) Probabilistic secretion of quanta and the 
synaptosecretosome hypothesis: Evoked release at active zones of varicosities, boutons, and 
endplates. Biophys J 73:1815–1829. https://doi.org/10.1016/S0006-3495(97)78212-2 

Bose A, Byrne Á, Rinzel J (2019) A neuromechanistic model for rhythmic beat generation. PLOS 
Comput Biol 15:e1006450. https://doi.org/10.1371/journal.pcbi.1006450 

Brody CD, Hernández A, Zainos A, Romo R (2003) Timing and Neural Encoding of Somatosensory 
Parametric Working Memory in Macaque Prefrontal Cortex. Cereb Cortex 13:1196–1207. 
https://doi.org/10.1093/CERCOR/BHG100 

Buhusi C V., Meck WH (2005) What makes us tick? Functional and neural mechanisms of interval 
timing. Nat. Rev. Neurosci. 6:755–765 

Cao R, Braun J, Mattia M (2014) Stochastic accumulation by cortical columns may explain the scalar 
property of multistable perception. Phys Rev Lett 113:1–5. 
https://doi.org/10.1103/PhysRevLett.113.098103 

Chamberland S, Timofeeva Y, Evstratova A, et al (2018) Action potential counting at giant mossy fiber 
terminals gates information transfer in the hippocampus. Proc Natl Acad Sci U S A 115:7434–
7439. https://doi.org/10.1073/pnas.1720659115 

Chen JL, Penhune VB, Zatorre RJ (2008) Listening to musical rhythms recruits motor regions of the 
brain. Cereb Cortex 18:2844–2854. https://doi.org/10.1093/cercor/bhn042 

Creelman CD (1962) Human Discrimination of Auditory Duration. J Acoust Soc Am 34:582–593. 
https://doi.org/10.1121/1.1918172 

Dehaene S, Changeux JP (1993) Development of elementary numerical abilities: A neuronal model. J 
Cogn Neurosci 5:390–407. https://doi.org/10.1162/jocn.1993.5.4.390 

Egger SW, Le NM, Jazayeri M (2020) A neural circuit model for human sensorimotor timing. Nat 
Commun 11:1–14. https://doi.org/10.1038/s41467-020-16999-8 

Gibbon J (1992) Ubiquity of scalar timing with a Poisson clock. J Math Psychol 36:283–293. 
https://doi.org/10.1016/0022-2496(92)90041-5 

Gibbon J (1977) Scalar expectancy theory and Weber’s law in animal timing. Psychol Rev 84:279–325. 
https://doi.org/10.1037/0033-295X.84.3.279 

Gold JI, Shadlen MN (2007) The neural basis of decision making. Annu Rev Neurosci 30:535–574. 
https://doi.org/10.1146/annurev.neuro.29.051605.113038 

Grahn JA, Brett M (2007) Rhythm and beat perception in motor areas of the brain. J Cogn Neurosci 
19:893–906. https://doi.org/10.1162/jocn.2007.19.5.893 

Hanes DP, Schall JD (1996) Neural control of voluntary movement initiation. Science (80- ) 274:427–
430. https://doi.org/10.1126/science.274.5286.427 

Hardy NF, Goudar V, Romero-Sosa JL, Buonomano D V. (2018) A model of temporal scaling correctly 
predicts that motor timing improves with speed. Nat Commun 9:1–14. 
https://doi.org/10.1038/s41467-018-07161-6 

Harrington DL (1998) Temporal processing in the basal ganglia. Neuropsychology 12:3. 
https://doi.org/10.1037/0894-4105.12.1.3 

Haß J, Blaschke S, Rammsayer T, Herrmann JM (2008) A neurocomputational model for optimal 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2021. ; https://doi.org/10.1101/2021.09.30.462633doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.30.462633
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 13 

temporal processing. J Comput Neurosci 25:449–464. https://doi.org/10.1007/s10827-008-0088-4 
Higham DJ (2001) An algorithmic introduction to numerical simulation of stochastic differential 

equations. SIAM Rev 43:525–546. https://doi.org/10.1137/S0036144500378302 
Ivry RB (1996) The representation of temporal information in perception and motor control. Curr Opin 

Neurobiol 6:851–857. https://doi.org/10.1016/S0959-4388(96)80037-7 
Ivry RB, Keele SW (1989) Timing functions of the cerebellum. J Cogn Neurosci 1:136–152. 

https://doi.org/10.1162/JOCN.1989.1.2.136 
Ivry RB, Richardson TC (2002) Temporal control and coordination: The multiple timer model. Brain 

Cogn 48:117–132. https://doi.org/10.1006/brcg.2001.1308 
Karmarkar UR, Buonomano D V. (2007) Timing in the Absence of Clocks: Encoding Time in Neural 

Network States. Neuron 53:427–438. https://doi.org/10.1016/j.neuron.2007.01.006 
Killeen PR, Fetterman JG (1988) A Behavioral Theory of Timing. Psychol Rev 95:274–295. 

https://doi.org/10.1037/0033-295X.95.2.274 
Large EW, Almonte F V, Velasco MJ (2010) Author’s personal copy A canonical model for gradient 

frequency neural networks. Phys D 239:905–911. https://doi.org/10.1016/j.physd.2009.11.015 
Leon MI, Shadlen MN (2003) Representation of Time by Neurons in the Posterior Parietal Cortex of the 

Macaque. Neuron 38:317–327 
Long MA, Jin DZ, Fee MS (2010) Support for a synaptic chain model of neuronal sequence generation. 

Nature 468:394–399. https://doi.org/10.1038/nature09514 
Macar F, Lejeune H, Bonnet M, et al (2002) Activation of the supplementary motor area and of 

attentional networks during temporal processing. Exp brain Res 142:475–485. 
https://doi.org/10.1007/S00221-001-0953-0 

Malapani C, Rakitin B, Levy R, et al (1998) Coupled temporal memories in Parkinson’s disease: A 
dopamine-related dysfunction. J Cogn Neurosci 10:316–331. 
https://doi.org/10.1162/089892998562762 

Martí D, Rinzel J (2013) Dynamics of Feature Categorization. Neural Comput 25:1–45 
Matell MS, Meck WH (2004) Cortico-striatal circuits and interval timing: Coincidence detection of 

oscillatory processes. Cogn. Brain Res. 21:139–170 
Mates J (1994) A model of synchronization of motor acts to a stimulus sequence - I. Timing and error 

corrections. Biol Cybern 70:463–473. https://doi.org/10.1007/BF00203239 
Naud R, Houtman D, Rose GJ, Longtin A (2015) Counting on dis-inhibition: A circuit motif for interval 

counting and selectivity in the anuran auditory system. J Neurophysiol 114:2804–2815. 
https://doi.org/10.1152/jn.00138.2015 

Nieder A (2016) The neuronal code for number. Nat Rev Neurosci 17:366–382. 
https://doi.org/10.1038/nrn.2016.40 

Nieder A (2005) Counting on neurons: The neurobiology of numerical competence. Nat Rev Neurosci 
6:177–190. https://doi.org/10.1038/nrn1626 

Nieder A, Dehaene S (2009) Representation of Number in the Brain. Annu Rev Neurosci 32:185–208. 
https://doi.org/10.1146/annurev.neuro.051508.135550 

Paton JJ, Buonomano D V (2018) The Neural Basis of Timing: Distributed Mechanisms for Diverse 
Functions. https://doi.org/10.1016/j.neuron.2018.03.045 

Rose GJ (2018) The numerical abilities of anurans and their neural correlates: Insights from 
neuroethological studies of acoustic communication. Philos Trans R Soc B Biol Sci 373:. 
https://doi.org/10.1098/rstb.2016.0512 

Seung HS, Lee DD, Reis BY, Tank DW (2000) Stability of the memory of eye position in a recurrent 
network of conductance-based model neurons. Neuron 26:259–271. 
https://doi.org/10.1016/S0896-6273(00)81155-1 

Shadlen MN, Newsome WT (1994) Noise, neural codes and cortical organization. Curr Opin Neurobiol 
4:569–579. https://doi.org/10.1016/0959-4388(94)90059-0 

Simen P, Balci F, deSouza L, et al (2011) A model of interval timing by neural integration. J Neurosci 
31:9238–9253. https://doi.org/10.1523/JNEUROSCI.3121-10.2011 

Teki S, Grube M, Kumar S, Griffiths TD (2011) Distinct neural substrates of duration-based and beat-
based auditory timing. J Neurosci 31:3805–3812. https://doi.org/10.1523/JNEUROSCI.5561-
10.2011 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2021. ; https://doi.org/10.1101/2021.09.30.462633doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.30.462633
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 14 

Treisman M (1963) Temporal discrimination and the indifference interval. Psychol Monogr Gen Appl 
77:1–31 

Tsodyks M V, Skaggs WE, Sejnowski TJ, Mcnaughton BL (1997) Paradoxical Effects of External 
Modulation of Inhibitory Interneurons. J Neurosci 17:4382–4388 

Wallach A, Harvey-Girard E, Jun JJ, et al (2018) A time-stamp mechanism may provide temporal 
information necessary for egocentric to allocentric spatial transformations. Elife 7:1–23. 
https://doi.org/10.7554/eLife.36769 

Wang J, Narain D, Hosseini EA, Jazayeri M (2018) Flexible timing by temporal scaling of cortical 
responses. Nat Neurosci 21:102–112. https://doi.org/10.1038/s41593-017-0028-6 

Wang XJ (2012) Neural dynamics and circuit mechanisms of decision-making. Curr Opin Neurobiol 
22:1039–1046. https://doi.org/10.1016/J.CONB.2012.08.006 

Wilson HR, Cowan JD (1972) Excitatory and Inhibitory Interactions in Localized Populations of Model 
Neurons. Biophys J 12:1–24. https://doi.org/10.1016/S0006-3495(72)86068-5 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2021. ; https://doi.org/10.1101/2021.09.30.462633doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.30.462633
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 15 

 
Parameters  

𝑤!! 40 

𝑤!" 20 

𝑤"! 30 

𝑤"" 15 

𝐼!  -8 

𝐼"  -10 

𝜏! , 𝜏" 3 ms 
𝑤$  2.4  
Pulse Duration 5 ms  

𝑤%,%)( 12 
𝑤%,%'( 
𝜃 

 

2 
0.1 

 
Table 1: Default parameter values.   
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Figure 1: Counting Model Architecture and Dynamics. a. Wilson-Cowan (WC) E/I population pairs 
make up a unit; units are connected in a linear array. A unit excites the unit immediately in front and 
inhibits the unit immediately behind it. Excitatory connections are depicted in red and inhibitory 
connections are in blue. Pacemaker pulses that need to be counted are delivered to all units (grey). 
Weights within a unit: 𝑤!! = 40,𝑤!" = 20,𝑤"! = 30,𝑤"" = 15. b. Example time course of the counting 
model during a single run; the location of high firing activity transitions rightward down the array of units 
with the arrival of each pacemaker pulse. Lighter colors represent units further down the array. 
Pacemaker pulses are shown on the bottom in black. c. Heatmap shows the transition of states with the 
arrival of each pacemaker pulse. Each pulse causes a unit to transition to the firing state thereby causing 
the downstream unit to transition into the ready state and the upstream unit to be inhibited. Total count 
is given by the position of the unit in the firing state. d. Phase plane of a single WC unit. Black curve 
depicts the inhibitory nullcline and red, orange, green corresponds to 3 different states of the excitatory 
nullcline (Eq. 2).  Black filled square indicates threshold for ready state and black open square indicates 
the threshold for the off state. e. Time course of a WC excitatory population (light blue) transitioning from 
the ready state to the firing state. The 70ms window is from panel b (black bar in b); colors are changed 
to improve visibility. Horizontal lines (black with filled in square and grey with open square) indicate the 
firing thresholds for ready and off states, respectively, as in d. Inset shows the pacemaker pulse (black 
step function from time=80-85ms) causing the E population firing rate (re) to exceed threshold thereby 
transitioning the unit to the firing state.  
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Figure 2: Counting under internal noise. Ornstein-Uhlenbeck (OU) noise, added to each unit’s input, 
represents internal noise (Eq. 2). a. Example of an extra count error (underestimates interval duration 
during production; overestimates interval during estimation). Time course shows the firing rate (re) of the 
WC excitatory population with colors indicating different units. Black trace (bottom) indicates the time of 
pacemaker inputs. Inset shows a closeup of unit 3 failing to reach the firing state and unit 4 reaching the 
firing state instead. (Noise parameters: 𝜎 = 0.55, τ,- = 	0.3	ms). b. Example of a missed count error 
(overestimates interval during production; underestimates interval in interval estimation). Time course 
activity as in panel a, but now the arrival of an external pulse at 240ms fails to transition unit 8 to the firing 
state (Noise parameters: 𝜎 = 0.35, τ,- = 	1	ms). c. Elapsed time until a unit is in the firing state. Under 
periodic pacemaker pulses (every 40ms) and no noise, the elapsed time from the ready state to firing 
state is n*40 +10.5ms. Blue and teal lines show the mean ± std. dev. Right panel shows the distribution 
of times when unit 4, 8, and 18 are in the firing state under the noise parameters 𝜎 = 0.6, 𝜏*+ = 0.5	ms; 
scale bar = 53 percent. Corresponding mean ± std. dev. for counts 4,8, and 18 are given by: 167.18 
±	33.05, 318.63 ±	47.4, and 697.23 ±	73.24 ms, respectively. d. Heatmap of mean count after 400ms 
under varying noise parameters where 𝜎 is the amplitude of the noise and 𝜏*+ is the time constant of the 
noise. The expected count with no errors is 10 since a pacemaker pulse arrives every 40ms. Above the 
white line the success rate drops below 90% (10% failure rate); failure is defined as no units or multiple 
units in the firing state at any moment. Yellow dashed line indicates count of 10. Dots labeled a and b 
show the parameter settings for panels a and b, respectively.  
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Figure 3. Dependence of count (colorscale) on strength of upstream neighbor drive (𝑤%,%'() and 
pacemaker pulse (𝑤$) under noise (𝜎 = 0.6, 𝜏*+ = 0.5	𝑚𝑠) after 400ms. Yellow dashed line demarks count 
of 10, the expected count under no noise. Dashed white line indicates minimum input to reach threshold 
under noise-free units and solid white lines define regions corresponding to the percent of successful 
trials. Magenta sub-panel shows noise driven transition of units into the firing state, an example of 
“impulsive” behavior. Red sub-panel shows undercounting, an example of “conservative” behavior. 
Region on right hand side labeled “H” indicates hypersensitive region where mechanism is no longer 
sequential. White star indicates default parameter settings used throughout the paper.  
 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2021. ; https://doi.org/10.1101/2021.09.30.462633doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.30.462633
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 19 

 

 
 
Figure 4: Counting under a variable pacemaker. a-b. Example time course of a single run of the 
counting model with no internal noise using a Gaussian pacemaker (mean period = 40ms, var = 40 ms) 
(a) and a Poisson pacemaker (mean period = 40ms) (b). Lighter colors corresponds to units further along 
the counting array. Pacemaker pulses are depicted in black at the bottom of each panel. c. Elapsed time 
until the n-th unit is in the firing state for a Gaussian or Poisson pacemaker with and without internal noise 
(Noise parameters: 𝜎 = 0.6, 𝜏*+ = 0.5	ms). Periodic pacemaker with period = 40ms and no noise is in 
black. Gaussian and Poisson pacemakers have the same distribution parameters as in panels a and b. 
Bottom right corner plots coefficient of variation (CV) (y-axis on right) for counts 11, 13, 15, 17 and 19 
under all 4 conditions (no noise conditions have lower CV).  
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Figure 5: Hierarchical Counting. a. Local connectivity in the hierarchical architecture is identical to the 
1D model in each layer where units excite their neighbors forward and inhibit their neighbor backward 
(connections omitted for clarity). Layer 1 units continue to receive inputs from the pacemaker (grey 
arrows), but Layer 2 units, instead, receive input from neuron N in Layer 1 (black arrows). The total count 
depicted is 2N+3. b. Simulation of an N=5 unit layer 1 and an M=4 unit layer 2 network. Layer 1 units are 
shown in blue to green tones and layer 2 activity is shown in orange toned dashed lines. Pink arrow and 
vertical line correspond to the state of the hierarchical network depicted in panel a. Pacemaker period = 
40ms. c. Elapsed time until the Nth unit is in the firing state under the hierarchical architecture using 
either periodic (black), Poisson with no noise (red) or periodic with noise (teal, noise parameters: 𝜎 =
0.6, 𝜏*+ = 0.5	𝑚𝑠) pacemaker. Architecture has N=5 (layer 1) and M=100 (layer 2); M is large to allow for 
the possibility of outlying large counts. Alongside the right border are the distribution of elapsed times 
when unit 4,8, or 18 are in the firing state under the noise parameters 𝜎 = 0.6, 𝜏*+ = 0.5	ms; scale bar for 
side panel is 53 percent. Corresponding mean ± std. dev. for counts 4,8, and 18 are given by: 166.81 
±	37.94, 372.35 ± 113.64, and 776.11 ± 220.24 ms. d. Heatmap of mean count (colorbar) after 400ms 
under varying noise parameters using the same hierarchical architecture as in c. Above white line, the 
success probability falls below 90 percent. Yellow dashed line indicates region where count is equal to 
10. 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2021. ; https://doi.org/10.1101/2021.09.30.462633doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.30.462633
http://creativecommons.org/licenses/by-nc-nd/4.0/

