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Abstract

An important problem in neuroscience is to understand how brains extract relevant signals
from mixtures of unknown sources, i.e., perform blind source separation. To model how the brain
performs this task, we seek a biologically plausible single-layer neural network implementation
of a blind source separation algorithm. For biological plausibility, we require the network to
satisfy the following three basic properties of neuronal circuits: (i) the network operates in the
online setting; (ii) synaptic learning rules are local; (iii) neuronal outputs are nonnegative. Clos-
est is the work by Pehlevan et al. [Neural Computation, 29, 2925–2954 (2017)], which considers
Nonnegative Independent Component Analysis (NICA), a special case of blind source separation
that assumes the mixture is a linear combination of uncorrelated, nonnegative sources. They
derive an algorithm with a biologically plausible 2-layer network implementation. In this work,
we improve upon their result by deriving 2 algorithms for NICA, each with a biologically plausi-
ble single-layer network implementation. The first algorithm maps onto a network with indirect
lateral connections mediated by interneurons. The second algorithm maps onto a network with
direct lateral connections and multi-compartmental output neurons.

Keywords: Blind source separation, nonnegative independent component analysis, neural net-
work, local learning rules

1 Introduction

Brains effortlessly extract relevant signals from mixtures of unknown sources [3, 4, 5, 21, 12, 1,
20, 11, 2], an unsupervised signal processing problem known as blind source separation. A classic
example in audition is the cocktail party problem, in which a listener tries to follow a single
conversation in the presence of multiple background conversations. We seek a model of how brains
perform blind source separation.

A special case of blind source separation is Nonnegative Independent Component Analysis
(NICA), which assumes a generative model in which the mixture of stimuli is a linear combination
of uncorrelated, nonnegative sources; i.e., x = As, where s denotes the nonnegative vector of source
intensities, A is a mixing matrix and x denotes the vector of mixed stimuli. The goal of NICA is
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Figure 1: Illustration of Plumbley’s 2-step algorithm for NICA. The red, blue and oranges dots track
three source vectors across the mixing, whitening and rotation steps. Our algorithms transform
Mixtures into Recovered Sources in a single step implemented by single-layer neural networks.

to infer the source vectors s from the mixture vectors x. Both the linear additivity of stimuli and
nonnegativity of the sources are reasonable assumptions in biological applications. For example, in
olfaction, concentrations of odorants are both additive and nonnegative.

Plumbley [16] showed that when the sources are well-grounded (i.e., they have nonzero proba-
bility of taking infinitesimally small values), NICA can be solved in 2 steps; see Figure 1. In the first
step, the mixture undergoes noncentered whitening; that is, the mixture is linearly transformed to
have identity covariance matrix. The second step rotates the mixture until it lies in the nonnegative
orthant. The result of these 2 steps must be a permutation of the original sources. This important
observation led to a number of algorithms for implementing the rotation step [17, 18, 13, 22], many
of which have neural network implementations.

Unfortunately, the above-mentioned networks do not offer a viable model of brain function
because they do not satisfy one or more of the following three common requirements for biological
plausibility [14]. First, the network operates in the online or streaming setting where it receives
one input at a time and the output is computed before the next input arrives. Second, each
synaptic update is local in the sense that it depends only on variables represented in the pre- and
post-synaptic neurons. Third, the neuronal outputs are nonnegative.

Building on Plumbley’s method, Pehlevan et al. [15] proposed a 2-layer network for NICA, with
each layer derived from a principled objective function. The first layer implements noncentered
whitening and the second orthogonally rotates the whitened mixture. While their networks satisfies
the requirements for biological plausibility, from a biological perspective, there are advantages to a
single-layer network that economizes the number of neurons, which take up valuable resources such
as space [19] and metabolic energy [8].

In this work, we derive 2 NICA algorithms (Algorithms 1 & 2) that can be implemented in
biologically plausible single-layer networks. The first algorithm maps onto a network with point
neurons and indirect lateral connections mediated by interneurons (Figure 2), and the second algo-
rithm maps onto a network with 2-compartmental neurons and direct lateral connections (Figure 3).
To derive our algorithms, we adopt a normative approach which relies on the fact that the original
sources can be expressed (up to permutation) as optimal solutions of single objective functions that
combine the 2 objectives from [15].
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Notation. For integers p, q, let Rp denote p-dimensional Euclidean space, Rp+ denote the nonneg-

ative orthant in Rp, Rp×q denote the set of p× q real-valued matrices and Rp×q+ denote the subset
of matrices with nonnegative entries. Let Sp++ denote the set of p×p positive definite matrices and
let Ip denote the p× p identity matrix. Given T samples h1, . . . ,hT of a time series, let

〈h〉 :=
1

T

T∑
t=1

ht, Chh :=
1

T

T∑
t=1

(ht − 〈h〉)(ht − 〈h〉)>

respectively denote the empirical mean and covariance of the time series. Let ht := 1
t (h1 + · · · +

ht) denote the running sample mean. Given a data matrix H = [h1, . . . ,hT ], let δH := [h1 −
〈h〉, . . . ,hT − 〈h〉] denote the centered data matrix.

2 Review of prior work

In this section, we review Plumbley’s analysis [16] and the objective functions used by Pehlevan
et al. [15] to derive a 2-layer network for NICA. Let d ≥ 2 and s1, . . . , sT ∈ Rd+ be T samples of
d-dimensional nonnegative source vectors whose components are uncorrelated. Since a constant
factor multiplying a source can be absorbed into the associated column of the mixing matrix A, we
can assume, without loss of generality, that each component of the source vector has unit sample
variance. In particular, Css = Id. Let k ≥ d, A be a full rank k × d mixing matrix and define the
k-dimensional mixture vectors by xt := Ast for t = 1, . . . , T .

2.1 Plumbley’s NICA method

Plumbley [16] proposed solving NICA in 2 steps: noncentered whitening followed by orthogonal
transformation, which are depicted in Figure 1.

Noncentered whitening is a linear transformation y := Fx of the mixture, where y ∈ Rd and
F is a d × k whitening matrix such that y has identity covariance matrix, i.e., Cyy = Id. The
combined effect of source mixing and prewhitening steps, which is encoded in the d× d matrix FA
(since y = Fx and x = As), is an orthogonal transformation. To see this, we use the facts that
Css = Id, y = FAs and Cyy = Id to write

(FA)(FA)> = (FA)Css(FA)> =
1

T

T∑
t=1

FA(st − 〈s〉)(st − 〈s〉)>(FA)>

=
1

T

T∑
t=1

(yt − 〈y〉)(yt − 〈y〉)> = Cyy = Id.

In the second step, one looks for an orthogonal matrix R such that the transformation z := Ry
is nonnegative. For the solution to be unique up to a permutation, each source si must be well
grounded; that is, P (si < δ) > 0 for all δ > 0. Then by [16, Theorem 1], the vector z is equal to a
permutation of the sources s.
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2.2 Similarity matching objectives for the 2-step algorithm

To obtain a biologically plausible network, Pehlevan et al. [15] proposed novel mathematical formu-
lations of the noncentered whitening and rotation steps, which can be implemented by a biological
plausible 2-layer network.

Here we recall the principled objective functions they use for each layer, which are closely related
to the objective functions we use to derive our networks. To this end, define the k×T concatenated
data matrix X := [x1, . . . ,xT ]. In the first step, Pehlevan et al. [15] optimize, with respect to the
d× T matrix Y := [y1, . . . ,yT ], the following objective:

arg min
Y∈Rd×T

− Tr(δY>δYδX>δX) subject to δY>δY � T IT and Y = FX, (1)

where F is some d × k matrix and the constraint enforces that the difference T IT − δY>δY is
positive semidefinite. As shown in [15], objective (1) is optimized when Y is a noncentered whitened
transformation of X.

For the second step, Pehlevan et al. [15] introduce the following Nonnegative Similarity Matching
(NSM) objective:

arg min
Z∈Rd×T

+

‖Z>Z−Y>Y‖2Frob. (2)

The objective minimizes the mismatch between similarities of the nonnegative outputs Z and
the noncentered whitened mixtures Y (as measured by inner products). As shown in [15], any
orthogonal transformation of Y to the nonnegative orthant, which corresponds to a permutation
of the original sources, is a solution of the NSM objective (2).

From objectives (1) and (2), Pehlevan et al. [15] derive a 2-step algorithm for NICA that can
be implemented in a 2-layer neural network that operates in the online setting, uses local learning
rules, and whose rotation layer has nonnegative neuronal outputs.

3 Combined objectives for NICA

We now modify objectives (1) and (2) to obtain 2 objectives for NICA, which will be the start-
ing points for the derivations of our 2 online NICA algorithms with single-layer neural network
implementations.

3.1 Adding a nonnegativity constraint to the noncentered whitening objective

We first modify the noncentered whitening objective (1). Note that the solution of objective (1) is
not unique — left multiplying any solution Y by an orthogonal matrix R yields another noncentered
whitened transformation of X. In fact, the second step of Plumbley’s method [16] is to identify an
orthogonal transformation R that results in a nonnegative whitened transformation Z = RY. Here,
we combine the 2 objectives by adding a nonnegativity constraint to the noncentered whitening
objective (1), as follows:

arg min
Y∈Rd×T

+

− Tr(δY>δYδX>δX) subject to δY>δY � T IT and Y = FX, (3)

where F is some d× k matrix.
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3.2 Adding a whitening matrix to the NSM objective

Next, we alter the NSM objective (2) by replacing the Gram matrix Y>Y with terms that depend
only on X, which will avoid the need for the noncentered whitening step. Consider the eigende-
composition of the covariance matrix Cxx = UΛU>, where U is a k × d matrix with orthonormal
column vectors and Λ is a d×d diagonal matrix whose diagonal entries are the nonzero eigenvalues

of Cxx. Then the whitening matrix F must be of the form QΛ−
1
2 U>, where Q is an arbitrary d×d

orthogonal matrix. Therefore,

Y>Y = X>F>FX = X>UΛ−1U>X = X>C+
xxX,

where C+
xx := UΛ−1U> is the Moore-Penrose inverse of Cxx. Substituting in for Y>Y in the NSM

objective (2) results in our second objective:

arg min
Z∈Rd×T

+

‖Z>Z−X>C+
xxX‖2Frob. (4)

4 Single-layer neural networks for NICA

Starting from objectives (3) and (4), we derive our 2 online NICA algorithms. The first algorithm
maps onto a single-layer network with point neurons and indirect lateral connections. The sec-
ond algorithm maps onto a single-layer network with 2-compartmental neurons and direct lateral
connections.

4.1 Single-layer network with point neurons and indirect lateral connections

The derivation of our online algorithm starting from objective (3) closely follows the derivation
of the whitening layer in the network derived in [15]. The main difference is that the neuronal
outputs are constrained to be nonnegative. To begin, we introduce m-dimensional activity vectors
n1, . . . ,nT , with m ≥ d, which we concatenate into the data matrix N := [n1, . . . ,nT ], and use the
Gramian δN>δN as a Lagrange multiplier to enforce the constraint δY>δY � T IT :

min
Y∈Rd×T

+

max
N∈Rm×T

Tr
[
−δY>δYδX>δX + δN>δN(δY>δY − T IT )

]
subject to Y = FX.

Next, we normalize by T 2 and substitute synaptic weight matrices Wxy and Wyn in place of
1
T δYδX> and 1

T δNδY>, respectively:

min
Y∈Rd×T

+

max
N∈Rd×T

min
Wxy∈Rd×k

max
Wyn∈Rm×d

L1(Y,N,Wxy,Wyn) subject to Y = FX,

where

L1(Y,N,Wxy,Wyn) :=
1

T
Tr
(

2δN>WynδY − 2δY>WxyδX− δN>δN
)

− Tr
(
WynW

>
yn) + Tr(WxyW

>
xy

)
.

The substitution can be readily justified by differentiating L1 with respect to Wxy and Wyn and
noting the minimum (resp. maximum) is achieved when Wxy = 1

T δYδX> (resp. Wyn = 1
T δNδY>).
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Since L1 satisfies the saddle point property with respect to N and Wxy, and with respect to Y
and Wyn, we can interchange the order of optimization, as follows:

min
Wxy∈Rd×k

max
Wyn∈Rm×d

min
Y∈Rd×T

+

max
N∈Rd×T

L1(Y,N,Wxy,Wyn) subject to Y = FX. (5)

We first solve objective (5) in the offline setting. In general, optimizing over (Y,N) is challenging
due to the constraint that Y be a nonnegative linear transformation of X. In appendix A, we show
that when the synaptic weights Wxy and Wyn are at their optimal values, we can optimize over
(Y,N) by repeating the following projected gradient descent steps until convergence:

Y ←
[
Y + γ

(
WxyX−W>

ynN
)]

+
, N← N + γ (WynY −N) , (6)

where γ > 0 is a small step size and [·]+ denotes taking the positive part elementwise, which
ensures the nonnegativity of Y. In the case the synaptic weights Wxy and Wyn are not at their
optimal values, we repeat the above projected gradient descent steps until convergence to obtain
an approximation of the optimal (Y,N). We then perform a gradient descent-ascent step of the
objective L1 with respect to Wxy and Wyn:

Wxy ←Wxy + η

(
1

T
δYδX> −Wxy

)
(7)

Wyn ←Wyn + η

(
1

T
δNδY> −Wyn

)
. (8)

Here η > 0 is the learning rate for Wxy and Wyn.
Next, we solve the objective (5) in the online setting. At each time step t, we approximate the

optimization over (yt,nt) by taking the following projected gradient descent steps until convergence:

yt ← [yt + γ(Wxyxt −Wnynt)]+, nt ← nt + γ(Wynyt − nt), (9)

where we have defined Wny := W>
yn. We then take stochastic gradient descent-ascent steps in

Wxy and Wyn by replacing the averages in equations (7) and (8) with their online approximations:

Wxy ←Wxy + η
(

(yt − yt)(xt − xt)
> −Wxy

)
Wyn ←Wyn + η

(
(nt − nt)(yt − yt)

> −Wyn

)
Wny ←Wny + η

(
(yt − yt)(nt − nt)

> −Wny

)
.

The symmetry of the updates for Wny and Wyn ensures that Wny = W>
yn after each iteration

provided the constraint holds at initialization. As we show in appendix B, we can relax this
initialization constraint, which yields our first online NICA algorithm, Algorithm 1.
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Figure 2: Single-layer network with interneurons for implementing Algorithm 1.

Algorithm 1: Bio-NICA with interneurons

input mixtures {x1, . . . ,xT }; parameters γ, η
initialize Wxy, Wyn, Wny, x0 = 0, y0 = 0, n0 = 0
for t = 1, 2, . . . , T do

repeat
yt ← [yt + γ(Wxyxt −Wnynt)]+
nt ← nt + γ(Wynyt − nt)

until convergence
xt ← xt−1 + 1

t (xt − xt−1)
yt ← yt−1 + 1

t (yt − yt−1)
nt ← nt−1 + 1

t (nt − nt−1)
Wxy ←Wxy + η((yt − yt)(xt − xt)

> −Wxy)
Wny ←Wny + η((yt − yt)(nt − nt)

> −Wny)
Wyn ←Wyn + η((nt − nt)(yt − yt)

> −Wyn)
end for

Algorithm 1 can be implemented in a single-layer network with point neurons and indirect
lateral connections mediated by interneurons, Figure 2, so we refer to the algorithm as ‘Bio-NICA
with interneurons’. The network consists of k input neurons, d principal (output) output neurons
and m interneurons. Feedforward synapses between the input and principal neurons encode the
weight matrix Wxy and lateral synapses between the principal neurons (resp. interneurons) and the
interneurons (resp. principal neurons) encode the weight matrix Wyn (resp. Wny). At each time
step t, the k-dimensional mixture xt, which is represented by the k input neurons, is multiplied
by the weight matrix Wxy, which yields the d-dimensional projection Wxyxt. This is followed
by the fast recurrent dynamics in equation (9). The equilibrium values of yt and nt respectively
correspond to the nonnegative output of the principal neurons and the output of the interneurons.
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We can write the elementwise synaptic updates as follows,

W ij
xy ←W ij

xy + η
(

(yit − yit)(x
j
t − x

j
t )−W ij

xy

)
, 1 ≤ i ≤ d, 1 ≤ j ≤ k,

W ij
ny ←W ij

ny + η
(

(yit − yit)(n
j
t − n

j
t )−W ij

ny

)
, 1 ≤ i ≤ d, 1 ≤ j ≤ m,

W ij
yn ←W ij

yn + η
(

(nit − nit)(y
j
t − y

j
t )−W ij

yn

)
, 1 ≤ i ≤ m, 1 ≤ j ≤ d,

where we recall that xt, yt and nt are the running means of xt, yt and nt, respectively. We
assume that each neuron stores the running mean of its activity. Biologically, these means could
be represented at the pre- and post-synaptic terminals by slowly changing calcium concentrations.
From the elementwise updates, we see that the update for each synapse is local in the sense that it
only depends on variables that are represented in the pre- and post-synaptic neurons.

4.2 Single-layer network with 2-compartmental neurons and direct lateral con-
nections

The derivation of the our online algorithm starting form objective (4) is closely related to the
derivation of the single-layer networks with multi-compartmental neurons for solving generalized
eigenvalue problems [10, 9]. To begin, we expand the square, drop terms that do not depend on Z,
and normalize by T 2:

min
Z∈Rd×T

+

1

T 2
Tr
(
−2Z>ZX>C+

xxX + Z>ZZ>Z
)
. (10)

Next, we introduce synaptic weight matrices Wxz and Wzz in place of 1
T ZX>C+

xx and 1
T ZZ>,

respectively, which results in the minimax objective:

min
Z∈Rd×T

+

min
Wxz∈Rd×k

max
Wzz∈Sd++

L2(Z,Wxz,Wzz), (11)

where

L2(Z,Wxz,Wzz) :=
2

T
Tr
(
Z>WzzZ− 2Z>WxzX

)
− Tr

(
W2

zz − 2WxzCxxW
>
xz

)
.

The equivalence between the minimization problem (10) and the minimax problem (11) can be
seen by taking partial derivatives of L2 with respect to Wxz (resp. Wzz) and noting the minimum
(resp. maximum) is achieved when Wxz = 1

T ZX>C+
xx (resp. Wzz = 1

T ZZ>). Since the objective
L2 satisfies the strict saddle point property with respect to Z and Wzz, we can interchange the
order of optimization, as follows:

min
Wxz∈Rd×k

max
Wzz∈Sd++

min
Z∈Rd×T

+

L2(Z,Wxz,Wzz). (12)

We first solve the minimax objective (12) in the offline setting by minimizing L2 over Z and
then taking gradient descent-ascent steps in Wxz and Wzz. The minimization over Z can be
approximated by repeating the following projected gradient descent steps until convergence:

Z← [Z + γ(WxzX−WzzZ)]+,
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where γ > 0 is a small step size. Next, having minimized over Z, we perform a gradient descent-
ascent step of the objective function L2 with respect to Wxz and Wzz:

Wxz ←Wxz + 2η

(
1

T
ZX> −WxzCxx

)
, (13)

Wzz ←Wzz +
η

τ

(
1

T
ZZ> −Wzz

)
. (14)

Here τ > 0 is the ratio between the learning rates for Wxz and Wzz, and η ∈ (0, τ) is the learning
rate for Wxz. The upper bound η < τ ensures that Wzz remains positive definite given a positive
definite initialization.

To solve the minimax objective (12) in the online setting, we take stochastic gradient ascent-
descent steps. At each time step t, analogous to the offline setting, we first minimize over the
output zt by repeating the following projected gradient descent steps until convergence:

zt ← [zt + γ(ct −Wzzzt)]+, (15)

where we have defined the projection ct := Wxzxt. We then take stochastic gradient descent-ascent
steps in Wxz and Wzz. To this end, we replace the averages 1

T ZX> and 1
T ZZ> in equations (13)

and (14) with their respective online approximations (zt − zt)(xt − xt)
> and (zt − zt)(zt − zt)

>.
While we could approximate the matrix WxzCxx in the online setting with Wxz(xt−xt)(xt−xt),
this does not lead to local learning rules. Instead, we observe that

WxzCxx =
1

T

T∑
t=1

Wxz(xt − 〈x〉)(xt − 〈x〉)> =
1

T

T∑
t=1

(ct − 〈c〉)(xt − 〈x〉)>,

and replace WxzCxx with the online approximation (ct − ct)(xt − xt)
>. This yields our second

online algorithm for NICA, Algorithm 2.

Algorithm 2: Bio-NICA with 2-compartmental neurons

input mixtures {x1, . . . ,xT }; parameters γ, η, τ
initialize Wxz, Wzz, x0 = 0, c0 = 0
for t = 1, 2, . . . , T do

ct ←Wxzxt
repeat

zt ← [zt + γ(ct −Wzzzt)]+
until convergence
xt ← xt−1 + 1

t (xt − xt−1)
ct ← ct−1 + 1

t (ct − ct−1)
Wxz ←Wxz + 2η(ztx

>
t − (ct − ct)(xt − xt)

>)
Wzz ←Wzz + η

τ (ztz
>
t −Wzz)

end for

Algorithm 2 can be implemented in a single-layer network with 2-compartmental neurons and
direct lateral connections, Figure 3, so we refer to the algorithm as ‘Bio-NICA with 2-compartmental
neurons’. The network consists of k input neurons and d output neurons. Each output neuron has

9



Figure 3: Single-layer network with 2-compartmental neurons for implementing Algorithm 2.

a dendritic compartment and a somatic compartment. Feedforward synapses between the input
and output neurons encode the weight matrix Wxz and recursive lateral synapses between the
output neurons encode the weight matrix −Wzz. At each time step t, the k-dimensional mixture
xt, which is represented by the input neurons, is multiplied by the weight matrix Wxz, which is
encoded by the feedforward synapses connecting the input neurons to the output neurons. This
yields the d-dimensional projection ct = Wxzxt, which is computed in the dendritic compartments
of the output neurons and then propagated to their somatic compartments. This is followed by the
fast recurrent neural dynamics in equation (15). The equilibrium value of zt corresponds to the
nonnegative somatic activity of the output neurons.

The elementwise synaptic updates are as follows,

W ij
xz ←W ij

xz + 2η
(
zitx

j
t − (cit − cit)(x

j
t − x

j
t )
)
, 1 ≤ i ≤ d, 1 ≤ j ≤ k,

W ij
zz ←W ij

zz +
η

τ

(
zitz

j
t −W ij

zz

)
, 1 ≤ i, j ≤ d,

where we recall that xt and ct are the running means of xt and ct, respectively. We assume that
the input neurons and output neurons respectively store the running means xt and ct. Thus, we
see that the update for each synapse is local; that is, the update depends only on variables that
are represented in the pre- and post-synaptic neurons.

5 Numerical experiments

We evaluated Algorithms 1 and 2 on synthetic and real datasets and compare their performance to 2
state-of-the-art online NICA algorithms: Nonnegative PCA [18] and 2-layer NSM [15]. Nonnegative
PCA requires (noncentered) pre-whitened inputs, which we implemented offline. To quantify the
performance of the algorithms, we use the mean-squared error,

error(t) =
1

td

t∑
t′=1

|st′ −Pyt′ |2,

10



Figure 4: Performance of algorithms when presented with mixtures of sparse random uniform
sources, in terms of permutation error. The lines and shaded regions denote the means and 90%
confidence intervals over 10 runs.

where P is the permutation matrix that minimizes the error at the final time point. For detailed
descriptions of our implementations, see appendix C. The evaluation code is available at https:

//github.com/flatironinstitute/bio-nica.

5.1 Mixture of sparse random uniform sources

We first compare the algorithms on a synthetic dataset generated by independent and identically
distributed samples. Following [15], each source sample was set to zero with probability 1/2 or
sampled uniformly from the interval (0,

√
48/5) with probability 1/2. We used random square

mixing matrices whose elements were independent standard normal random variables. In Figure 4,
we plot the performance of each algorithm on mixtures of 3- and 10-dimensional sources.

5.2 Mixture of natural images

We apply the NICA algorithms to the problem of recovering images from their mixtures, see Figure 5
(left). Three image patches of size 252×252 pixels were chosen from a set of images of natural scenes
[6] previously used in [7, 18, 15]. Each image is treated as one source, with the pixel intensities
(shifted and scaled to be well-ground and have unit variance) representing the 2522 = 63504
samples. The source vectors were multiplied by a random 3 × 3 mixing matrix to generate 3-
dimensional mixtures, which were presented to the algorithms 5 times with a randomly permuted
order in each presentation. In Figure 5 (right), we show the performance of each algorithm.
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Figure 5: Performance of algorithms when presented with mixtures of natural images. The left
image shows the sources, mixtures, and recovered sources (from Algorithms 1 and 2). The right
plot shows the performance of the algorithms in terms of permutation error. The lines and shaded
regions denote the means and 90% confidence intervals over 10 runs.

6 Summary

In this work, we derived 2 algorithms for NICA, each of which can be implemented by biologically
plausible single-layer networks. Our networks respectively use two-thirds and one-third as many
neurons as the 2-layer biologically plausible network derived in [15].

Our numerical experiments suggest that Algorithms 1 and 2 are outperformed by Nonnegative
PCA and the 2-layer NSM. However, a direct comparison is not entirely fair because Nonnegative
PCA requires prewhitened inputs and its neural network implementation does not use local learning
rules, and the 2-layer NSM network requires 2 layers of neurons. Our algorithms perform both the
whitening and the rotation steps in a single layer, which leads to a trade-off in performance. We view
this as consistent with the fact that biological systems must make trade-offs between performance
and resource efficiency.

Finally, we do not prove convergence guarantees for Algorithms 1 and 2. In general, establishing
theoretical guarantees for gradient descent-ascent problems is challenging and is further complicated
by the non-smoothness of the projected gradient descent steps in Algorithms 1 and 2.

Acknowledgements. We thank Siavash Golkar, Johannes Friedrich, Tiberiu Tesileanu, Alex
Genkin, Jason Moore and Yanis Bahroun for helpful comments and feedback on an earlier draft of
this work. We especially thank Siavash Golkar for pointing out that, in Sec. 4.2, W(xt−xt)(xt−xt)
is not equal to (ct − ct)(xt − xt) due to the (suppressed) time-dependency of the weights W.
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A Optimization over neural activity matrices (Y,N) in the deriva-
tion of Algorithm 1

In this section, we show that when Wxy and Wyn are at their optimal values, the optimal neural
activity matrices (Y,N) can be approximated via projected gradient descent. We first compute
that optimal values of Wxy and Wyn.

Lemma 1. Suppose (W∗
xy,W

∗
yn,Y

∗,N∗) is an optimal solution of objective (5). Then

W∗
xy = PA>, W∗,>

yn W∗
yn = PA>AP>,

for some permutation matrix P.

Proof. From [15, Theorem 3], we know that every solution of the objective

arg min
Y∈Rd×T

− Tr(δY>δYδX>δX) subject to δY>δY � T IT and Y = FX, (16)

is of the form Y = FX, where F is a whitening matrix. In particular, since Y = FAS and S also has
identity covariance matrix, Y is an orthogonal transformation transformation of S. Furthermore,
since S is well grounded, by [16, Theorem 1], Y is nonnegative if and only if FA is a permutation
matrix. Therefore, every solution Y∗ of the objective

arg min
Y∈Rd×T

+

− Tr(δY>δYδX>δX) subject to δY>δY � T IT and Y = FX, (17)

is of the form Y∗ = PX for some permutation matrix P. In addition, differentiating the expression

−Tr(δY>δYδX>δX + δN>δN(δY>δY − T IT )), (18)
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with respect to δY and setting the derivative equal to zero, we see that the at the optimal value,
δN∗,>δN∗ = δX>δX = δS>A>AδS.

Differentiating L1 with respect to Wxy and Wny, we see that the optimal values for the synaptic
weight matrices are achieved at Wxy = 1

T δYδX> and Wyn = 1
T δNδY>. Thus,

W∗
xy =

1

T
δY∗δX> =

1

T
PδSδS>A> = PA>,

and

W∗,>
yn W∗

yn =
1

T 2
δYδN∗,>δN∗δY> =

1

T 2
PδSδS>A>AδSδS>P> = PA>AP>.

Next, we show that when Wxy and Wyn are at their optimal values, the optimal (Y∗,N∗) can
be approximated by running the projected gradient dynamics in Eq. (6).

Lemma 2. Suppose Wxy = PA> and W>
ynWyn = PA>AP> for some permutation matrix P.

Then

Y∗ = (W>
ynWyn)−1WxyX = PS, N∗ = WynY

∗. (19)

is a solution of the min-max problem

min
Y∈Rd×T

+

max
N∈Rm×T

2

T
Tr
(
δN>WynδY − δY>WxyδX− δN>δN

)
s.t. Y = FX. (20)

In particular, (Y∗,N∗) is the unique solution of the min-max problem

min
Y∈Rd×T

+

max
N∈Rm×T

2

T
Tr
(
N>WynY −Y>WxyX−N>N

)
, (21)

which can be approximated by running the projected gradient dynamics in Eq. (6).

Proof. We first relax the condition that Y be a nonnegative linear transformation of X and consider
the min-max problem

min
Y∈Rd×T

max
N∈Rd×T

2

T
Tr
(
δN>WynδY − δY>WxyδX− δN>δN

)
.

After differentiating with respect to δY and δN, we see that this objective is optimized when the
centered matrices δY and δN are given by

δY = (W>
ynWyn)−1WxyδX, δN = WynδY.

Next, we see that the above relations for the centered matrices hold when Y and N are given by
Eq. (19), where we have used the fact that Wxy = PA> and W>

ynWyn = PA>AP>. Note that Y
is a linear transformation of X and Y is nonnegative since it is a permutation of the nonnegative
sources. It follows that (Y,N) is also a solution to the constrained min-max problem (20). Finally,
differentiating the objective in Eq. (21) with respect to Y and N, we see that the optimal Y and
N are again given by Eq. (19).
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B Decoupling the interneuron synapses

The NICA algorithm derived in section 4.1 requires the interneuron-to-output neuron synaptic
weight matrix Wny to be the the transpose of the output neuron-to-interneuron synaptic weight
matrix Wyn. Enforcing this symmetry via a centralized mechanism is not biologically plausible,
and is commonly referred to as the weight transport problem.

Here, we show that the symmetry of the 2 weights asymptotically follows from the learning rules
in Algorithm 1, even when the symmetry does not hold at initialization. Let Wny,0 and Wyn,0

denote the initial values of Wny and Wyn. Then, in view of the updates rules Algorithm 2, the
difference Wny −W>

yn after t updates is given by

Wny −W>
yn = (1− η)t (Wny,0 −W>

yn,0).

In particular, the difference decays exponentially.

C Details of numerical experiments

The simulations were performed on an Apple machine with a 2.8 GHz Quad-Core Intel Core i7
processor.

C.1 Mixing matrices

We used the 3 × 3 mixing matrix for the 3-dimensional random uniform sources that was used in
[15]:

A =

0.031518 0.38793 0.061132
−0.78502 0.16561 0.12458
0.34782 0.27295 0.67793

 .
The 10×10 mixing matrix for the 10-dimensional random uniform sources is as follows (entries are
rounded to 2 decimal places for space considerations):

A =



−1.61 0.11 0.11 1.26 −0.01 −1.66 0.45 0.48 0.93 −0.57
−0.95 −0.05 0.35 −0.68 1.14 0.71 −0.38 −0.20 −0.20 2.02
0.54 2.16 0.06 −0.08 0.36 −0.16 −0.22 −1.82 −0.22 0.40
−0.98 −0.12 −1.45 −0.58 −0.56 0.34 −0.51 0.19 −0.44 −0.15
−0.87 0.54 0.68 1.28 0.63 1.04 −0.81 1.08 −0.65 −0.30
0.91 0.84 0.45 −0.31 −0.14 −1.46 −0.18 0.48 −0.41 0.75
−1.20 1.29 0.39 −1.40 0.84 −2.32 −1.54 −0.26 −1.99 −0.34
1.34 0.75 −1.29 −0.63 −1.63 −1.05 0.07 0.09 −0.67 0.28
−0.32 −0.38 −0.11 1.18 −0.41 0.58 −0.92 1.09 0.41 1.29
2.04 2.00 −0.50 0.78 −0.65 −0.93 0.42 −1.69 −1.16 −0.68


.

The 3× 3 mixing matrix for the 3-dimensional natural image sources is given by:

A =

 0.71964649 −1.55757433 −1.94561985
−1.77115767 −0.99092683 0.35559978
−0.78408667 1.09213136 −1.36539258

 .
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C.2 Implementation of algorithms

For each of the algorithms that we implement, we use a time-dependent learning rate of the form:

ηt =
η0

1 + γt
. (22)

To choose the parameters, we perform a grid search over η0 ∈ {10−1, 10−2, 10−3, 10−4, 10−5} and
over γ ∈ {10−2, 10−3, 10−4, 10−5, 10−6, 10−7}. In Table 1 we report the best performing hyperpa-
rameters we found for each algorithm. We now detail our implementation of each algorithm.

1. Bio-NICA with interneurons (Algorithm 1): The neural outputs were computed using
the quadratic convex optimization function solve qp from the Python package quadprog.
After each iteration, we checked if any output neuron had not been active up until that
iteration. If so, we flipped the sign of its feedforward inputs. In addition, if the norm of one
of the row vectors of Wxy fell below 0.1, we would replace the row vector with a random
vector to avoid the row vector becoming degenerate; and if a singular value of Wxy, Wyn or
Wny fell below 0.01, we replaced the singular value with 1 (we checked every 100 iterations).

2. Bio-NICA with 2-compartmental neurons (Algorithm 2): The neural outputs were
computed using the quadratic convex optimization function solve qp from the Python pack-
age quadprog. We used the time-dependent learning rate of Eq. (22) and included τ ∈
{0.01, 0.03, 0.05, 0.08, 0.1, 0.3, 0.5, 0.8, 1, 3} in the grid search to find the best performance.
After each iteration, we checked if any output neuron had not been active up until that iter-
ation. If so, we flipped the sign of its feedforward inputs. In addition, if a eigenvalue of Wzz

fell below 0.01, we replaced the eigenvalue with 1 to prevent Wzz from becoming degenerate
(we checked every 100 iterations).

3. 2-layer NSM: We implemented the algorithm in [15] with time-dependent learning rates.
For the whitening layer, we used the optimal time-dependent learning rate reported in [15]:
ζt = 0.01/(1 + 0.01t). For the NSM layer, we used the time-dependent learning rate of
Eq. (22). To compute the neuronal outputs, we used the quadratic convex optimization
function solve qp from the Python package quadprog. After each iteration, we checked if
any output neuron had not been active up until that iteration. If so, we flipped the sign of
its feedforward inputs.

4. Nonnegative PCA (NPCA): We use the online version given in [18]. The algorithm
assumes the inputs are noncentered and whitened. We performed the noncentered whitening
offline. After each iteration, we checked if any output neuron had not been active up until
that iteration. If so, we flipped the sign of its feedforward inputs.

Alg. 1 (η0, γ) Alg. 2 (η0, γ, τ) 2-layer NSM (η0, γ) NPCA (η0, γ)

d = 3 (10−2, 10−3) (10−1, 10−2, 0.8) (10−1, 10−7) (10−2, 10−5)

d = 10 (10−2, 10−3) (10−3, 10−4, 0.03) (10−1, 10−6) (10−2, 10−5)

Images (10−3, 10−6) (10−2, 10−4, 0.5) (10−1, 10−6) (10−3, 10−5)

Table 1: Optimal hyperparameters used for Alg. 1, Alg. 2, 2-layer NSM, and NPCA.
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