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Abstract. The motor units of a skeletal muscle may be re-
cruited according to different strategies. From all possible
recruitment strategies nature selected the simplest one: in
most actions of vertebrate skeletal muscles the recruitment
of its motor units is by increasing size. This so-called size
principle permits a high precision in muscle force generation
since small muscle forces are produced exclusively by small
motor units. Larger motor units are activated only if the to-
tal muscle force has already reached certain critical levels.
We show that this recruitment by size is not only optimal
in precision but also optimal in an information theoretical
sense. We consider the motoneuron pool as an encoder gen-
erating a parallel binary code from a common input to that
pool. The generated motoneuron code is sent down through
the motoneuron axons to the muscle. We establish that an
optimization of this motoneuron code with respect to its in-
formation content is equivalent to the recruitment of motor
units by size. Moreover, maximal information content of the
motoneuron code is equivalent to a minimal expected error
in muscle force generation.

1 Introduction

1.1 Recruitment of motor units by size

A skeletal muscle together with the motoneurons control-
ling it consists of several hundred motor units of different
sizes. A motor unit (MU) itself is defined as a motoneuron
together with its innervated muscle fibers. In the human me-
dial gastrocnemius muscle there are about 300 motor units
with tetanic forces ranging from 0.63 to 203.5g (Garnett et
al. 1979). The force output of a muscle is determined by
the sum of the force outputs of the active motor units. Due
to the large number and different properties of these units,
their recruitment must be specified in a suitable way. This
task is automatically performed by the motoneuron pool in
the spinal cord. The pool as a whole receives input from
the central nervous system and from peripheral receptors
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which is distributed to its individual motoneurons (MNs).
If the common input to the pool exceeds the threshold of
a motoneuron, this motoneuron will fire action potentials
and consequently activate the muscle fibers which it inner-
vates (Fig. 1). For a more detailed model of the motoneuron
pool including, for example, inhibitory Renshaw circuits, the
reader is referred to Akazawa and Kato (1990) and the ref-
erences therein. From physiological experiments one knows
that with increasing input motoneurons are recruited in order
of their size and hence their force-generating properties. This
order of recruitment is known as thesize principle(Henne-
man et al. 1965). Thus, smaller units producing less tension
are recruited at a lower level of input into the pool, while
larger units are recruited at progressively higher levels.

A large number of experimental studies have been de-
voted to the possible physiological mechanisms leading
to the size principle [see Henneman and Mendell (1981),
Lüscher and Clamann (1992) and the citations therein]. Here,
we investigate the benefit of recruitment by size instead of its
physiological explanation. We are interested in the internal
logic by which the motoneuron pool is guided to the activa-
tion of motor units according to their sizes. Our questions
are: What are the possible underlying optimization principles
governing the recruitment of motor units? How can optimal
precision in force generation and maximal information trans-
fer be realized simultaneously?

1.2 Shannon’s information transmission theorem and motor
unit encoding

In an information transmission system a source message is
processed by an encoder, fed through a channel and recon-
structed by a decoder. A user at the end of the transmission
system specifies a maximal distortion (error) which is per-
mitted in the received message. Depending on this distortion
bound, the source message is first compressed into a source
code and the information not needed to satisfy the bound is
discarded. The source code is then processed by the channel
encoder which adapts it to the characteristics of the chan-
nel and adds some redundancy to protect against noise. Af-
ter this second encoding step one obtains the channel code,
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Fig. 1. The transmission system of muscle inner-
vation. It consists of the motoneuron (MN) pool
which encodes the firing rate of a central neural
input I, the motoneuron axons which transmit
the parallel binary code and the muscle which
converts this code to a forceF . The muscle
fibers are innervated byα-motoneurons lying in
a common motoneuron pool in the spinal cord.
The figure shows three motor units each con-
sisting of a motoneuron and the muscle fibers it
innervates

which is transmitted through the channel and thereby proba-
bly contaminated by noise. The decoder performs the inverse
operations, reconstructing the channel code, the source code
and finally reproducing the original message up to the in-
formation lost by the source compression (see the diagram
below). Within this framework Shannon’sinformation trans-
mission theoremtells us what maximal rate of information
transmission (measured in bits per seconds or, alternatively,
in bits per channel symbol) can be achieved. This rate de-
pends on the channel capacity and on the distortion allowed
at the end of the transmission system (Shannon and Weaver
1949; Blahut 1987).

In order to apply the information theoretical paradigm to
the situation of muscle activation we have to make several
choices. As a source message we assume a signal represent-
ing some reference forceFR, which may be generated by the
motor cortex, for example, and which determines the muscle
force to be produced. The reference forceFR is encoded in
a mean firing rate representing the source code which is sent
by an efferent fiber to the spinal cord where it is distributed
to the motoneuron pool as an inputI. The motoneuron pool
acts as a second encoder, translating the source code into the
channel code. By restricting ourselves to pure recruitment
modulation in the absence of rate modulation we have only
two states of the motoneuroni corresponding to its activation
xi = 1, or inactivationxi = 0. With N motoneurons we ob-
tain a parallel binary channel code in which each codeword
is characterized by a motoneuron statex ∈ {0, 1}N . We
shall refer to this channel code as themotoneuron code. The
motoneuron code is transmitted to the muscle through the
motoneuron axons, which are assumed to represent a noise-
less parallel channel. As long as consideration is restricted
to a binary code with either zero or constant frequency for
each motoneuron, the noise-free assumption is reasonable.
The muscle decodes the received signalx by producing a
muscle forceF . We assume that the total muscle force is
a linear superposition of the forces of the individual motor
units. This muscle force at the end of the transmission sys-
tem should correspond, within some limits, to the original
reference force. The distortion of the original message (i.e.,
the deviation from the output characteristics) is small ifF
is close toFR. The stages of the transmission system are
summarized in the following diagram (cf. Fig. 1):

message source code channel code channel code system output

intended force pool input MN states MU states muscle force

FR −→ I −→ x =⇒ x −→ F

source encoder I encoder II channel decoder user

To apply Shannon’s statistical theory we introduce a
probability distributionp(FR) of the reference forceFR

which we assume to be monotonically decreasing. Thus,
small muscle forces are assumed to be produced more fre-
quently than larger ones. The distributionp induces a proba-
bility distribution of the motoneuron statesx and this directly
permits calculation of the information content of a wordx of
the motoneuron code. Since at this stage we are dealing with
a parallel binary code, each codewordx requires the same
transmission time and this allows us to measure the informa-
tion transmission of the channel code in bits per codeword.
Let us emphasize that Shannon’s information transmission
theorem was derived for the steady state, thereby ignoring
dynamic changes of the encoder and decoder which may be
prominent in our application to motor circuits.

The rate at which the relevant information is transmitted
from the central nervous system to the muscle can be en-
hanced in both encoding steps. First, the source code may
improve the rate by mapping the continuum of choices for
FR to a finite, well-chosen set of firing frequenciesI. Sec-
ond, the channel or motoneuron code may improve the rate
by choosing codewordsx with large information content. As
we shall see, the compression of the source code will limit
the number of possible combinations of active motor units
and the combination finally selected is determined by the
information maximization of the channel code.

Our work is organized as follows. In Sect. 2 we intro-
duce the model of motor unit recruitment and formalize the
classical point of view that the size principle generates pre-
cision for producing an optimal muscle force. In Sect. 3 we
turn to information theory and show that the size principle
follows from maximizing the information transmission. As
in Sect. 2 we address the question of the optimal distribution
of the motor unit forces. In Sect. 4 we combine these results
and propose a learning rule to enhance muscle force pre-
cision based on the local information theoretical principle.
In Sect. 5 we discuss and summarize our results and review
other approaches. The proofs of the theorems are given in
the Appendix.

2 Minimizing the expected error in muscle force
generation

Recruitment by size may be seen as a strategy to solve the
following combinatorial problem (Henneman 1990, p. viii):
‘How can the different tensions that individual motor units
develop be combined by activating appropriate motoneurons
to produce any total force that is required with the necessary
precisionand (computational)speed?’

Concerningspeed, the pool is restricted to a fixed recruit-
ment order according to which the motor units are activated.
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A predetermined order of recruitment provides economies
in neural circuits and reduces the computing time needed
to select an appropriate combination of active motor units.
Concerningprecision, such a predetermined order must be
an ascending order to provide the desired high precision.

2.1 The model of motor unit recruitment

Upon receiving a common global inputI(FR) represented as
a firing rate (Mendell and Henneman 1971), the pool must
assemble a total muscle forceF (I) as close as possible to
the given reference forceFR. The inputI is assumed to be
a monotonic function of the reference forceFR. If FR in-
creases,I will increase as well and the pool must recruit a
further motor unit as soon as the reference forceFR rises
aboveF (I). Which one of the motor units will be recruited
next is fixed by the predetermined order of recruitment. Let
N be the total number of motor units and let us enumer-
ate them according to increasing ‘size’, i.e., according to
increasing tetanic forces (which may all be assumed to be
different from each other). We define arecruitment order
π to be a permutationπ : {1, . . . , N} → {1, . . . , N} of
the N motor units onto themselves.Recruitment by sizeis
defined byπ = Id, i.e., by the order according to the basic
enumeration. The mechanism of recruitment assigns to the
ith motor unit within the recruitment orderπ a threshold
θπi . Depending onπ this threshold specifies at which level
of global inputI the unitπ(i) must be activated in order to
produce the intended muscle force. Let us write the force
of motor unit π(i) in the form fπ(i)(I − θπi ). Defining the
supra-threshold input̃I = I − θπi , one hasfπ(i)(Ĩ) = 0 for
Ĩ < 0 and fπ(i)(Ĩ) > 0 for Ĩ > 0. Moreover,fπ(i)(Ĩ) is
monotonically increasing iñI. In the model of Heckman
and Binder [see (2) below] the input-force relationfπ(i)(Ĩ)
is even strictly increasing for the suprathreshold inputĨ > 0.
The (total)muscle forcedepends on the recruitment orderπ
and is defined as a superposition of the individual motor unit
forces according to

F (I) ≡ Fπ(I) =
N∑
i=1

fπ(i)(I − θπi ) (1)

2.2 Example. The motor units of the cat medial
gastrocnemius

To give an example, we have chosen the input-force relation
according to Heckman and Binder (1991):

fi(Ĩ) = Fmax,i · (1− e−(freqi(Ĩ)/Ti)
Pi )

for Ĩ ≥ 0 , i = 1, . . . , N (2)

The functionfreqi(Ĩ) = freqthres,i+G· Ĩ represents the fir-
ing frequency of motoneuroni at relative inputĨ = I − θIdi .
The firing frequency is zero belowθIdi , jumps at this point
to some threshold-frequencyfreqthres,i and then increases
at a rate given by the gainG. The positive constantsTi
and Pi are additional parameters. Using the same data as
Heckman and Binder (1991, Table 2) for their 21 motor
units [freqthres,i ∈ (8, 17.5), G = 2.25, Ti ∈ (20, 56.5)

Fig. 2a,b. The total muscle forceFπ(I) (continuous line) approximating
the smooth reference forceFR(I) (dashed line). Whenever the reference
force rises above the muscle force actually exerted, an additional motor
unit is recruited. For the data in Heckman and Binder (1991) several of
the 21 motor units are recruited at nearly the same time.a Recruitment
by size according to the orderπ1 = Id in Fig. 3. This recruitment order
minimizes the deviation from the reference force.b Recruitment according
to the reverse orderπ22

andPi ∈ (2.1, 2.6)], we calculated the actual muscle forces
Fπ(I) when a reference forceFR is given. Note that the
correspondenceFR → I may be inverted due to its mono-
tonicity. This allows us to compare the two functionsFπ(I)
and FR(I) (Fig. 2). The recruitment orderπ was chosen
once to be recruitment by size (π = Id) and once to be the
reverse of that order. It should be stressed that for these
data the contributions of the motor units merge into a nearly
smooth curveFπ(I) if the reference forceFR is a suitable
sigmoidal function with a larger slope adapted to the slopes
of the motor unit forcesfi(I).

Given a recruitment orderπ, the (relative)error E π(FR)
is defined by the relative difference between the muscle force
outputFπ and the corresponding reference forceFR:

E π(FR)
.
=
|Fπ(I(FR))− FR|

FR
(3)

Next we introduce the probability densityp(FR) describing
the relative frequency with which the reference forceFR
must be encoded. This allows us to quantify the average
error in muscle force production according to

〈E π〉 =
∫ Fmax

Fmin

E π(FR) · p(FR) dFR (4)

To illustrate the dependence of the expected error〈E π〉
on the recruitment orderπ we chose a sequence of permuta-
tionsπ1 . . . π22 leading from the ascending to the descending
order. For each of these permutations we calculated the ex-
pected error〈E π〉 with respect to the constant probability
densityp(FR) = const. As Fig. 3 reveals, the minimal ex-
pected error is achieved for recruitment by increasing size.
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Fig. 3. a A sequence of permutations leading from order by (increasing)
size to the reverse.b The expected errors〈E πj 〉 for the corresponding
sequence of recruitment ordersπj . 〈E πj 〉 was calculated according to(4)
with a uniform distribution of the reference forcesFR. Since, according
to the table, larger motor units are recruited successively earlier,〈E πj 〉
increases with indexj (cf. Fig. 2)

2.3 Error-optimal recruitment of motor units

To prove that recruitment by size is optimal in precision we
restrict ourselves to the case of pure recruitment modulation
and assume that the motor unit forcesfi(Ĩ), Ĩ = I−θIdi , are
step functions of the form

fi(Ĩ) =

{
0 ; Ĩ < 0
fi = const ; Ĩ ≥ 0 , i = 1, . . . , N

(5)

Pure recruitment modulation takes place at the beginning of
the activation of certain finger muscles where motor units are
first recruited and discharge at nearly constant frequencies.
Rate modulation in these movements only occurs later, at
higher force levels (Milner-Brown et al. 1973).

Let us assume that the relation between inputI and in-
tended muscle forceFR is linear, sayI = FR. A linear rela-
tionship between supraspinal motor commands and muscle
force production has indeed been confirmed experimentally.
Ruegg and Bongioanni (1989) demonstrated such a linearity
for the human soleus and tibialis anterior. Moreover, we as-
sume that some minimal tone or ‘background’ forcef0 > 0
is always present. According to our model of recruitment,
thekth motor unit withinπ is activated at that moment when
the increasing reference forceFR becomes just larger than
the sum of the motor unit forces actually produced, i.e., just
beyond the point at which the equalityFR =

∑k−1
i=0 fπ(i)

holds. Due to the identityI = FR, the force
∑k−1

i=0 fπ(i)
corresponds to the input thresholdθπk of the kth motor unit
within the recruitment orderπ. Since after recruiting thiskth
unit the actual force becomesFπ(I) = θπk + fk = θπk+1, the
error E π (3) becomes

Fig. 4. a The total muscle forceFπ(I) (continuous line) and the refer-
ence forceFR(I) ≡ I (dashed line) for motor unit forces as defined in
(5). The recruitment orderπ is recruitment by size, i.e.,π = Id and thus
fπ(1) ≤ . . . ≤ fπ(N ). As soon as the reference forceFR(I) reaches the
actual muscle forceFπ(I) the next motor unit is recruited (‘next’ accord-
ing to the recruitment orderπ). Alternately one could postulate a more
symmetrical scenario where the next motor unit is activated as soon as the
difference|Fπ(I)−FR(I)| reached half the tetanic force of that next motor
unit. Although in such a scenario the average error would be smaller, our
qualitative statements would not change. Notice that there are intermediate
parts of the output characteristics that may not be reached by any coding.
b The error functionE π(FR ≡ I) [cf. (6) corresponding to the force
productionFπ(I) in a. Note that deviations from the output characteristics
at large muscle forces contribute less to the (relative) errorE π

E π(FR) =
θπk+1 − FR

FR
(6)

wherek + 1 is the smallest index such that the forceθπk+1 =
Fπ(I(FR)) is greater than or equal to the reference force
FR. The functionsFπ, FR andE π are illustrated in Fig. 4
for π = Id.

SettingFmax =
∑N

i=0 fi, the reference forceFR is as-
sumed to vary within the range [f0, Fmax] and (4) transforms
to

〈E π〉 =
∫ Fmax

f0

Eπ(FR) · p(FR) dFR (7)

Definition 1 (Error-optimality). A recruitment orderπ is
optimal in precision (short: error-optimal) if the expected
error 〈E π〉 is minimal with respect to all possible recruitment
ordersπ. More formally,π is error-optimal if〈E π〉 ≤ 〈E π̃〉
for any recruitment order̃π : {1, . . . , N} → {1, . . . , N}.

For the case of pure recruitment modulation with step func-
tions (5) as motor unit forces we now have:

Theorem 2.1 (Size principle from error optimization).
Let p(FR) be any monotonically decreasing probability den-
sity on the reference forcesFR. Then, recruitment by size is
the only recruitment order which is error-optimal. In other
words: the order of recruitmentπ is error-optimal if and only
if fπ(1) ≤ fπ(2) ≤ . . . ≤ fπ(N ) .

To give an idea of the proof, note thatE π(FR) is a saw-tooth
map as depicted in Fig. 4b. Since the ‘weighting function’
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p(FR) of these teeth monotonically decreases, the teeth must
be arranged in an ascending order to minimize the integral
(7). For more detailed arguments see the Appendix.

2.4 Error-optimal motor unit density

From physiological experiments one also knows not only
that the forces of activated motor units increase with in-
creasing input, but also that they increase progressively, i.e.,
the differencesfi − fi−1 increase withi. This is reflected
in the distribution of the motor unit forces: for a skeletal
muscle, the number of motor unitsn(f ) with tetanic force
f within some fixed interval4f typically decreases. Figure
5a shows this functionn(f ) for the human medial gastroc-
nemius (Garnett et al. 1979). The tetanic forces are chosen
to be the discrete valuesf = 4, 8, 12, 16, . . . , 40 andn(f )
is the number of motor units lying in an interval of length
4g around these values. To test our model we ask the same
question within our mathematical framework: Given the to-
tal numberN of motor units, a ‘background’ forcef0 and
some total forceFmax, what is the optimal distribution of the
motor unit forcesf1 ≤ f2 ≤ . . . ≤ fN under the constraint
that their sum

∑N
i=0 fi is equal toFmax ?

In order to treat this question analytically we define the
notion of motor unit densityd(f ) in our present discrete
case. Intuitively, the densityd(fi) of motor units with tetanic
forcefi should be proportional to the numbern(fi) of motor
unit forces lying within the interval (fi−1, fi) and inversely
proportional to the length of this interval itself. Since in our
case there is only one motor unit lying within this interval,
n(fi) = 1, we have the following definition:

Definition 2 (Motor unit density). Consider a pool with a
finite number of motor units of tetanic forces(f0 <)f1 <
. . . < fN . The densityd(f ) of the motor units is defined at
the pointsfi asd(fi)

.
= 1/(fi − fi−1) , i = 1, . . . , N .

In the reminder of this section we investigate the rela-
tion between the probabilityp(FR) of the reference forces
FR and theoptimal motor unit densityd(f ), i.e., the density
leading to a minimal expected error〈E π〉. We first establish
that a decreasing probability densityp(FR) leads to a de-
creasing optimal densityd(f ) of motor units. Consider the
family of probability densitiespα(FR) ∝ 1/(FR)α with real
numbersα and letdα(f ) be the corresponding optimal mo-
tor unit density. This optimal motor unit density is found
by adjusting thefi values in order to minimize the expected
error〈E Id〉. Since, by Theorem 2.1,〈E π〉 can only be min-
imal for recruitment by size, we assumeπ = Id. Numerical
simulations show thatdα(f ) only decreases ifα ≥ 0. If
−1 < α < 0, i.e., if the probability density of the refer-
ence forces increases slightly, the optimal densitydα(f ) has
a minimum in the middle range of the motor unit forcesf
(Fig. 5). Forα < −1 corresponding to a superlinear increase
of the reference force density, the optimal motor unit density
dα(f ) is monotonically increasing. It appears that the prob-
ability densityp(FR) = const , corresponding to measuring
the relative error|F − FR|/FR, is the limiting probability
density which just guarantees a decreasing density function
d(f ) of the motor unit forces. Knowing that the measured

Fig. 5. a The distribution of motor units characterized by their tetanic
forcef in the human medial gastrocnemius (Garnett et al. 1979).b Optimal
densitiesdα(f ) of the motor units for the probability densitiespα(FR) ∝
1/(FR)α with α = −0.01 (dashed line), α = 0 (continuous line) andα = 1
(dot-dashed line). If α = −1, the density would be constant (= 5). All
densities are normalized to yield a total forceFmax =

∫
fdα(f ) df = 100

within the intervalf ∈ [1, 20]. For the ‘background’ force we chosef0 = 1

motor unit density is indeed decreasing we can conclude that
nature needs an average precision for large forcesF which
is smaller than 1/F .

Let us consider in more detail the caseα = 1 in which
an analytical solution to the optimization problem can be
given.

Theorem 2.2 (Error-optimal motor unit density). Let N
be the number of motor units,f0 > 0 a non-vanishing
‘background’ force andFmax =

∑N
i=0 fi the sum of the un-

known motor unit forces. Let us assume a probability den-
sity p(FR) ∝ 1/FR . Then, the forcesfi minimizing the ex-
pected error〈E Id〉 in (7) increase exponentially according
to fi = (c − 1)f0c

i−1, i = 1, . . . , N , with some appropriate
constantc > 1. The optimal motor unit density is given by
d(f ) = c

c−1 · 1
f .

For the proof we refer to the Appendix. We can readily show
that c = N

√(Fmax/f0) .

According to the theorem and its assumptions, the den-
sity of motor unitsd(f ) ∝ 1/f is optimal in precision if one
assumes an appropriately decreasing probability distribution
for the reference forces. We are not the first to deduce such a
motor unit density: Tax and coworkers (Tax and van der Gon
1991) derived the same motor unit density from their model,
which – like ours – requires a linear input-force relationship.
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3 Maximizing the rate of information transmission

3.1 Compressing the source code

According to Shannon, the rate of information transmission
can be improved by compressing the source code and/or by
enhancing the information content of the channel code. We
first show that the source code may be compressed essen-
tially to the number of motor units by reducing the number
of source codewords. This permits a shorter sampling time
to identify a source codeword, which is given by the mean
rate of the global inputI. A shorter sampling time makes it
possible to increase the rate of information transmission to
the pool.

Let us assume that an input fiber must encode reference
forcesFR within some fixed range of firing frequencies. A
receiver (in our case the motoneuron pool) has to estimate
(e.g., implicitly by a leaky integrator) the time between two
successive spikes. If we assume that these spike intervals
characterizing a frequency are slightly perturbed it has to
measurek spike intervals in order to reduce the error of the
frequency estimate to the orderO(1/

√
k) (this follows from

the Chebyshev inequality applied to the arithmetic mean of
the spike intervals). Assuming a bounded domain of possi-
ble firing frequencies this implies that the receiver cannot
distinguish reliably more thanO(

√
k) different frequency

inputs.
Now, assuming a binary channel code formed byN mo-

toneurons, the pool has at its disposal a maximum of 2N

different states and thus can resolve not more than the same
amount of different source codewords. To identify reliably
one out of 2N [= O(

√
k0)] different firing frequencies as

its input, the pool must wait and integrate on the order of
k0 = 22N spike intervals. Indeed, with 22N measurements,
the receiver can reduce the error of the frequency estimate
to the necessary resolution of 1/2N .

However, as the experiments of Henneman showed, the
pool does not exploit all possible combinations of motor
units and thus cannot resolve 2N different inputs by pure re-
cruitment modulation (Henneman et al. 1965, 1974). Instead,
the activation of the motor units follows a well-defined re-
cruitment order leading to onlyN+1 different states, namely
(0, . . . , 0), (1, 0, . . . , 0), (1, 1, 0, . . . , 0), . . . , (1, . . . , 1). Each
of these states represents a channel codeword and specifies
up to which cell within the recruitment order the motoneu-
rons are activated. This motoneuron code again requires a
source code ofN +1 words which are expressed by different
input frequencies. But to resolveN + 1 frequencies the pool
must wait and integratek1 = (N +1)2 spike intervals in order
to reduce the expected error to 1/(N + 1). This leads to a
compression factor of

k1

k0
≤ (N + 1)2

22N
≤ e−

N
3 (N ≥ 3)

compared with a source code with 2N codewords. The re-
striction to a fixed recruitment order enhances the rate of
codeword transmission to the pool. On the other hand, the
compression of the source code leads to a loss in muscle
force precision. This, however, seems to lie within the tol-
erance defined by the user at the end of the communication
system.

3.2 Maximizing the information content of the motoneuron
code

By exploiting the maximal information content offered by
a motoneuron code restricted toN + 1 words, the rate of
information transmission could again be improved. LetXk

denote the random variable which takes the value 1 if mo-
tor unit k is active and 0 otherwise. Bypπk we denote the
probability that thekth motor unit within the recruitment
orderπ is activated at a random reference forceFR. Since
we assume thatFR = I this is just the probability thatFR
is larger than the thresholdθπk of the kth unit within π and
we have

pπk
.
= P (Xk = 1) =

∫ Fmax

θπ
k

p(FR) dFR , k = 1, . . . , N .

The recruitment probabilitiespπk induce the joint probabil-
ity pπΩ on the spaceΩ = {0, 1}N encoding the states of
the N motor units. Themotoneuron codecorresponding to
the recruitment orderπ consists of the subset of codewords
x = (x1, . . . , xN ) ∈ Ω with pπΩ(x) > 0. We now define
the information contentof the motoneuron code to be the
Shannon entropyHπ

MN of the probability distribution on
the motoneuron states:

Hπ
MN

.
= H(X1, . . . , XN ) = −

∑
x∈Ω

pπΩ(x) log2 p
π
Ω(x) . (8)

One may interpretHπ
MN as theaverage information per

state x = (x1, . . . , xN ) of the pool. Recall thatJ(x)
.
=

− log2 p
π
Ω(x) is the information in bits provided by the ob-

servation that the pool is in the particular statex. On the
average, the information provided by such an observation is∑

x∈Ω pπΩ(x)J(x) and this is equal toHπ
MN .

Fixing the tetanic forcesfi of the individual motor units,
we establish that among all recruitment orders, recruitment
by size provides the maximal Shannon information of the
motoneuron code:

Theorem 3.1 (Size principle from information optimiza-
tion). Let the probability densityp(FR) of the reference forces
FR be strictly decreasing. Then, the information content
Hπ
MN of the motoneuron code corresponding to the recruit-

ment orderπ is maximal if and only ifπ = Id, i.e., if π is
recruitment by size.

3.3 Information-optimal motor unit density

As in the previous approach, one may ask not only for the
optimal order, but for the optimaldistribution of the fi val-
ues. To do so, we now fix the order of recruitmentπ = Id
and let the motor unit forcesfi adapt (and with them the
thresholdsθi =

∑i−1
j=i fj .) To simplify the notation we drop

the supscriptπ = Id for the rest of the paper. In Theorem 2.2
we have seen that the probability densityp(FR) ∝ 1/FR
yields a minimal expected error if the densityd(f ) of motor
units is proportional to 1/f . In this information theoretical
approach we confirm that the densityd(f ) ∝ 1/f is optimal,
now in the sense of the maximal information content of the
motoneuron code.
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Fig. 6. a For an information-optimal motor unit distribution the motoneu-
ron statesx(i) must be equally probable. The twodark greyregions must
therefore have equal area. Put differently, the probability densityp(FR) of
the reference forcesFR leads to a maximal information contentHMN if
p(θi) ≈ const/fi = const/(θi+1 − θi) (cf. Lemma 3.1).b Considering
motor units with rate modulation, the optimal probability densityp(FR) has
its maximum where most units are sensitive to changes inFR or, more pre-
cisely in I(FR). For each inputI we counted the number of motoneurons
(MNS) in Table 1 of Graham and Redman (1993) having a strictly positive
slope (≥ 1.5Hz/nA) in the input-frequency relationfi(I) and plotted this
number againstI. Assuming a linear relation between the pool inputI and
the reference forceFR, the shape of the distribution qualitatively yields
the optimal densityp(FR) for which the pool extracts the maximum of
information from the rate modulated input

Theorem 3.3 (Information-optimal motor unit density).
Consider a finite numberN of motor units, some ‘back-
ground’ forcef0 and a sumFmax of the unknown motor unit
forcesfi. The densityd(f ) ∝ 1/f of motor unit forces is opti-
mal from an information theoretical point of view (i.e., leads
to a maximal information contentHMN of the motoneuron
code) if and only if the probability densityp(FR) of reference
forces itself is proportional to1/FR. The optimal motor unit
forcesfi are the same as in Theorem2.2.

The following lemma will be used in the proof of the
preceding two theorems. It gives a condition under which
the upper bound of log2 (N + 1) bits is achieved by a mo-
toneuron code restricted toN + 1 words.

Lemma 3.1 (Maximal information content criterion).
Let N be a fixed number of motor units satisfying(5) and
let the reference forcesFR vary randomly according to the
distributionp(FR) within some interval[Fmin ≡ f0, Fmax].
Then, the maximal information contentHMN = log2 (N + 1)
is reached for tetanic forcesfi satisfying

pΩ(x(i)) =
∫ θi+fi

θi

p(FR) dFR

= constant

(
=

1
N + 1

)
, i = 0, 1, . . . , N (9)

whereθi =
∑i−1

j=0 fj . This ‘equilibrium condition’ holds ap-
proximately iffi · p(θi) ≈ const. In particular, if the prob-
ability densityp is monotonically decreasing, it follows that
f1 ≤ . . . ≤ fN .

Proof of the lemma. Denoting the possible states of the
pool byx(i) = (1, . . . , 1, 0, . . . , 0) wherei denotes the num-
ber of 1’s, the information contentHMN reduces to

HMN = H(X1, . . . , XN )

= −
N∑
i=0

pΩ(x(i)) log2 pΩ(x(i)) (10)

This last expression is maximal [namely log2(N + 1)] if and
only if all the pΩ(x(i)) are equal, i.e., ifpΩ(x(i)) = 1/(N +1)
for everyi. Since the probabilitypΩ(x(i)) of statex(i) may be
written as the probability that theith motor unit is activated
minus the probability that the (i + 1)th is activated, we get
(cf. Fig. 6a)

pΩ(x(i)) = pi − pi+1 =
∫ θi+1

θi

p(FR) dFR

=
∫ θi+fi

θi

p(FR) dFR , i = 1, . . . , N (11)

We setθ1 = Fmin, pN+1 = 0 andθN+1 = Fmax. To achieve
the optimal valuespΩ(x(i)) = 1/(N + 1) , we first tunef1 so
that this equality holds fori = 1 and get the thresholdθ2.
Proceeding in the same way fori = 2, 3, . . . , N we determine
iteratively the values offi. Moreover, sinceθi < θi+1 and
sincep(FR) monotonically decreases, the equalities (9) may
only hold simultaneously for everyi if fi ≤ fi+1. �

The lemma states the following: To obtain the motoneu-
ron code with maximal information content, the probability
that the reference forceFR falls into a bin [θi, θi + fi] must
be equal for alli = 0, 1, . . . , N . Conversely, given motor
unit forcesf1 ≤ . . . ≤ fN and corresponding thresholds
θi =

∑i−1
j=0 fj , the pool best extracts information from an in-

put I(FR) if the probability densityp(FR) roughly satisfies
p(θi) ≈ const/fi = const/(θi+1−θi) . Thus, the information
extraction from the continuous input signalI is maximal if
the input probability densityp(I) is inversely proportional
to the threshold differences or, in other words, directly pro-
portional to the density of bins [θi, θi + fi] (cf. Fig. 6a).

The adaptation of the thresholds to the particular form
of the reference force distribution is intuitively clear: In re-
gions where the densityp(FR) is large, the ‘sample points’θi
must move closer together in order to distribute the ‘weight’
p(FR) uniformly on the ‘pillars’ atθi, i = 1...N . This corre-
sponds to the unfolding of a Kohonen map over some input
space which has its highest resolution at regions of highest
input density.

3.4 Generalization to motoneurons modulating their firing
frequencies

Finally, we remark that the approach of maximizing infor-
mation transmission can be extended to motor units with



18

rate modulation. For simplicity we again assume a linear re-
lationship between the pool input and the intended muscle
force,I = FR. If every motor uniti (i = 1, . . . , N ) can pro-
duceS different forcesfij (j = 1, . . . , S), the information
contentHMN maximally reaches log2 (N + 1)S, always as-
suming that a fixed order of recruitment pertains. The states
of the neurons induce bins [θi + fij , θi + fi,j+1] on the input
axes which are able to ‘detect’ inputsI with a granular-
ity corresponding to the intersection of all these partially
overlapping, bins. The upper bound≈ log2 (N + 1)S is at-
tained for a probability densityp(FR) which is proportional
to the density of the intervals [θi + fij , θi + fi,j+1], now in-
terpreted as bins on theFR axes. The reason is the same as
in Lemma 3.1: the maximal information content of the mo-
toneuron code is reached if all (N + 1)S states of the pool
have equal probability. This is only possible if a unit interval
on theFR axes with frequently used reference forces, i.e.,
largep(FR), induces a larger number of motoneuron states
than a unit interval on theFR axes with rarely used refer-
ence forces. The distribution in Fig. 6b shows the number
of motor units in Table 1 of Graham and Redman (1993)
which have a strictly increasing input-frequency relation at
the pointI (in the work cited the input-frequency relation
has slope either 0, 1.5 or ∞). We conclude that the pool
with the characteristics of Fig. 6b optimally extracts infor-
mation from its inputI if the densityp(FR) has the same
graph as in the figure. In terms of error optimization we find
that the muscle achieves its maximal relative precision at an
intermediate range of input corresponding to an intermediate
range of force.

4 Combination of the error-minimizing
and the information-maximizing approach

4.1 Equivalence of the two approaches

From Theorem 2.1 and Theorem 3.1 one directly concludes
that the approach of error minimizing in muscle force gener-
ation is equivalent to the approach of information maximiz-
ing of the motoneuron code if only the order of recruitment
is considered:

Corollary 4.1 (Equivalence of error minimizing and in-
formation maximizing). Let p(FR) be any strictly decreas-
ing probability density on the reference forcesFR and let
us assume that the inputI to the pool is proportional toFR.
Then, a recruitment order is optimal in precision if and only if
it provides the maximal information content of the motoneu-
ron code.

Specifying the probability densityp(FR) to be inversely
proportional toFR, the equivalence even extends to the op-
timal distribution of motor unit forcesfi. From Theorem 2.2
and Theorem 3.2 one deduces:

Corollary 4.2 (Equal motor unit distributions). Assume
p(FR) ∝ 1/FR and I ∝ FR. Then the optimal densityd(f )
of motor unit forcesfi is the same in the sense of minimizing
the expected error〈E 〉 and in the sense of maximizing the
information contentHMN of the motoneuron code.

The common optimal densityd(f ) is depicted in Fig. 5b by
the dot-dashed curve.

4.2 A learning rule maximizing the information content of
the motoneuron code

How could the optimal precision in muscle force generation
be learned? The straightforward answer is that the relative
error E between generated muscle forceF and reference
forceFR could be fed back to the motoneuron pool by cer-
tain receptors. However, the equivalence between the two
approaches suggests a new learning rule. Instead of look-
ing to the muscle one may concentrate on the motoneuron
pool itself and try to enhance the information content of
the motoneuron code by directly adapting the motoneuron
thresholdsθi. Let us write the time dependence of the thresh-
olds byθti . The method of steepest ascent to maximize the
information contentHMN leads to alearning rule of the
form

θt+1
i = θti +4θti , with 4θti = η

∂HMN

∂θti

where η > 0 is some learning rate. Using (10) and (11),
the adaption of the thresholds at each time stept may be
calculated as

4θi = η
∂HMN

∂θi

= η · p(θi) ·
(
log2 pΩ(x(i))− log2 pΩ(x(i−1))

)
(12)

wherep(θi) is the reference force probability density at the
level of the ith threshold. The value ofpΩ(x(i)) is given
by (11) and represents the probability that the motoneu-
rons are in statex(i) = (1, 1, .., 1, 0, .., 0) with i 1’s at the
beginning. Since according to (12) stationary thresholdsθi
are reached ifpΩ(x(i)) = pΩ(x(i−1)) , one recovers Lemma
3.1 stating that the maximal information content is achieved
if the states of the motoneurons are uniformly distributed.
Again, this last condition is satisfied if the ‘sensitivity’ of the
cell group at the inputI(FR) is proportional to the probabil-
ity densityp(FR) (cf. Fig. 6). Kohonen’s learning algorithm
produces exactly the same final thresholdsθi when it unfolds
theθi’s in order to get a one-dimensional topological map of
a large number of input samplesI(FR) (cf. end of Sect. 3.3).
According to this information theoretical learning rule, the
size principle eventually develops and the highest possible
precision in muscle force generation is guaranteed accord-
ing to Corollaries 4.1 and 4.2. Let us again emphasize that
such conclusions rely on our model of recruitment which
connects the motor unit forces to the motoneuron thresholds
and on the hypothesis that smaller muscle forces are more
frequently used than large ones.

5 Discussion

5.1 The exceptional case of reversed recruitment order

How can we explain exceptional cases of muscle activa-
tion with recruitment other than in order of size? For most
movements, the smoothness of muscle force production or
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the deviation from linear output characteristics is a reason-
able measure of optimization. However, there are situations
in which the objectives of the movement are not smoothness
or linearity of the input-output relation, and which therefore
require other optimization criteria. Examples of such tasks
are the escape reflex of a fish or the paw shake of a cat to
shed an object stuck to its paw.

In order to apply Shannon’s steady-state theory to these
altered information transmission systems one must redefine
the distortion function and the probability densityp(FR) of
the reference forces. A more appropriate measure of distor-
tion would then be the acceleration of muscle force gener-
ation rather than the smoothness of the muscle force itself.
With respect to this new kind of distortion, the restriction
to a binary motoneuron code ofN + 1 words of a fixed re-
cruitment order is too severe because it does not allow the
activation of just one selected motor unit population. The
motoneuron code must therefore be enlarged by additional
words such as (0, . . . , 0, 1, 1) describing the activation of
only the second-largest and largest motor unit. We argue
that such a combination of motor units would need addi-
tional projections into the pool since it cannot be generated
by tuning the common global input alone. In the case of
teleost fish one finds that the Mauthner cell located in the
brainstem projects its axon to the contralateral side of the
spinal cord and there makes contact with the large and fast
motoneurons along the entire length of the spinal cord. Dur-
ing the startle response these large motoneurons are activated
at very short latencies (Yasargil and Diamond 1968). In the
case of the rapid paw shake of a cat the movement frequency
corresponds to the twitch contraction frequency of the larger
and faster motor units in the pool (Smith et al. 1980). This
indicates that strict recruitment by size is circumvented and
larger motor units may well be activated without activating
the smaller ones.

In order to recruit the larger motor units exclusively the
source code must be extended by additional words as well.
However, an extended source code requires a longer trans-
mission time if the words are still encoded by mean frequen-
cies and transmitted through one single input fiber. Since the
transmission time is crucial in the case of the escape reflex,
nature solved this dilemma by providing an additional par-
allel input fiber. An important event (which corresponds to
a high probability of occurrence in Shannon’s setting) is
passed to the motoneuron pool by the Mauthner axon and
thus allows for a shorter codeword length. It should be noted
that the rate of information transmission from the sensory
neuron to the Mauthner cell itself is also enhanced by the
use of fast electrical synapses.

The situation of variable codeword lengths is reminis-
cent of Huffman codes in technical applications. For such
codes the lengthl of a codeword is inversely related to its
probabilityp of occurrence (roughlyl ∝ log 1/p; see Blahut
1987).

5.2 Relation to other theoretical works

In different studies, models of the motoneuron pool have
been proposed with different aims (Mendell and Henneman
1971; Akazawa and Ktao 1990; Heckman and Binder 1991).

These workers begin with individual motor units and calcu-
late the total muscle force by integrating over the input-
output relationship of the motor units weighted by the mo-
tor unit densities. Others (Tax and van der Gon 1991; Studer
1994) begin with a linear input-output relationship for total
muscle force and go back to calculate the motor unit densi-
ties and thresholds needed to reproduce this relationship. Our
model of the motoneuron pool may be included in this latter
class since we assume the same linear input–muscle force
relationship of the muscle force and determine the appro-
priate recruitment thresholds of the individual motor units.
In contrast to the models cited, however, we disregard rate
modulation and consider pure recruitment modulation of the
motor units, which leads us to a binary motoneuron code.
A common feature of the cited models is that they do not
derive the size principle but instead consider it as one of
several properties which must be built into their description
of the motoneuron pool.

It was Henneman himself, in his early work in 1965, who
suggested several advantages of recruitment by size for solv-
ing a combinatorial problem (see beginning of Sect. 2). The
size principle was investigated from a more theoretical point
of view by Hatze and coworkers. By numerical simulations
they showed that the size principle emerges from minimizing
muscle energy consisting of mechanical work and different
forms of heat production (Hatze and Buys 1977). In a sec-
ond work, the size principle is shown to be a special case
of the Weber-Fechner law for biosensors (Hatze 1979). This
law states that the sensitivity of the biological sensor system
scales inversely to the amount of input1.

The size principle has not been investigated from the
point of view of information theory before. In most work
dealing with information theory, the information transmis-
sion of a single neuron is calculated assuming either a mean
rate code or a spike interval code. Considering different stim-
uli (encoding different features) these works have tried to
classify the temporal output patterns of a neuron and to
quantify how much information an output pattern carries
about the applied stimulus or feature (for an overview see
de Ruyter van Steveninck and Bialek 1988). It appears, how-
ever, that a neuron may encode several features instead of
only one, and that, in addition, a single feature may be en-
coded by a pool of distinct neurons (Gawne et al. 1991). In
the case of the motoneuron pool the feature ‘motor drive’ is
represented by a mean firing rate and supplied as a common
input to the neuronal pool (Mendell and Henneman 1971).
Since we consider motoneurons in the spinal cord we are
in the fortunate situation that we know not only the com-
mon stimulus but also how the induced motoneuron code
is interpreted: the weighted sum of the codeword compo-
nents yields the total muscle force. In this sense we include
semantic aspects of the neuronal code. Starting with the in-
formation theoretical principle we have deduced the optimal
binary motoneuron code and find that this code is also opti-
mal at the semantic level of muscle force precision.

There are further connections to optimization principles
in motor control in which one tries to deduce the shape of a

1 More formally, if4x is an increment of the inputx and4y the cor-
responding increment of the outputy of the biosensor, the Weber-Fechner
law states that4y is proportional to4x/x.
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movement by minimizing its acceleration or jerk (Hogan and
Flash 1987). It was pointed out by Hogan that such a princi-
ple of minimum jerk would be compatible with minimizing
the information needed to represent motions internally. On
the level of a single muscle, we have in fact established this
same idea formally: the requirement of a minimal average
jerk in muscle force generation leads to the size principle
and this allows one to control the muscle activation with a
minimal amount of input information.

5.3 Summary and concluding remarks

We have argued that recruitment by size improves the rate of
information transmission from the motoneuron pool to the
muscle. The restriction to a fixed recruitment order allows a
compression of the source code and thus enhances informa-
tion transmission to the pool. The fact that this order is by
size enhances the information content of the channel or mo-
toneuron code. We have shown that the maximal information
content of the motoneuron code is equivalent to a minimal
deviation from the intended muscle force (Fig. 4). Given the
probability distribution of these intended muscle forcesFR,
we inferred the optimal distribution of the individual motor
unit forcesfi. This optimal force distribution is compati-
ble with the condition in the human medial gastrocnemius
(Fig. 5).

A fixed recruitment order allows for a simple connec-
tivity pattern in the motoneuron pool: the common input
only needs to be distributed uniformly to all motoneurons
and these determine the order of recruitment by their thresh-
olds. If rare motor tasks like high-frequency shaking have
to be encoded, the motoneuron code must be enlarged by
the exclusive activation of larger motor units. An exten-
sion of the motoneuron code is only possible if the pre-
ceding source code is less compressed. From the physio-
logical point of view, an implementation of a larger mo-
toneuron code would require further excitatory or inhibitory
connections projecting onto the motoneurons. For instance,
one could imagine additional interneurons or an alteration
of the strong inhibitory feedback by Renshaw cells which
under normal conditions are probably responsible for the
linearization of the pool’s output. In this sense, the com-
pression of the source code sheds light on the ‘hardware’,
i.e., the connectivity within the motoneuron pool. Enhancing
the information content of the motoneuron code by adapting
the thresholds of the motoneurons sheds light, in turn, on
the ‘software’, i.e., the plasticity of the motoneurons.

Appendix

Proof of Theorem 2.1.

We must show that, whenever for a recruitment orderπ, two
successive forcesfk, fk+1 satisfyfk > fk+1, the transposi-
tion k ↔ k+1 reduces the expected error〈E π〉. Defining the
new permutation ˜π by π̃(k) = π(k + 1), π̃(k + 1) = π(k) and
π̃(i) = π(i) otherwise, we need to prove that〈E π̃〉 < 〈E π〉 .
Note that all these transpositions eventually produce a re-
cruitment such thatf1 ≤ . . . ≤ fN . Interchanging two neigh-
boring units implies that in the graph ofE π (Fig. 4b) two

neighboring teeth are interchanged while the remaining teeth
do not change.

Sinceπ(j) andπ̃(j) only differ whenj = k andj = k+1,
the thresholdsθπi =

∑i−1
j=0 fπ(j) andθπ̃i =

∑i−1
j=0 f̃π̃(j) of π and

π̃, respectively, are all equal up toi = k + 1. For this index
one hasθπk+1 = θπk + fk while θπ̃k+1 = θπ̃k + fk+1 = θπk + fk+1.
With the help of Fig. A1a one finds

〈E π〉 − 〈E π̃〉 =
∫ θπ̃k+1

θπ̃
k

(fk − fk+1)
FR

· p(FR) dFR

−
∫ θπk+1

θπ̃
k+1

fk+1

FR
· p(FR) dFR >

>
(fk − fk+1)

FR
· p(θπ̃k+1) · fk+1

−fk+1

FR
· p(θπ̃k+1) · (fk − fk+1) = 0

To obtain the inequality, we estimate the value of each of
the integrals by means of their boundary values and the
minimum and maximum value ofp(FR) within the interval
[θπk , θ

π̃
k+1] and [θπ̃k+1, θ

π
k+1], respectively. Sincep(FR) mono-

tonically decreases, these values are equal top(θπ̃k+1) in both
cases. In fact it is only required thatp(FR)/FR is strictly
monotonically decreasing. Notice that the first interval has
lengthfk+1 and that the second has lengthfk − fk+1. �

Proof of Theorem 2.2.

Since we fix the recruitment orderπ to be π = Id, we
will drop the superscript index ‘Id’ ofE and θ in the
following. Necessary conditions that the motor unit forces
fk minimize the expected error〈E 〉 are ∂〈E 〉/∂fk = 0 ,
k = 1, . . . , N . We will deduce from these conditions that
the fk must have the form stated in the theorem. Instead
of differentiating formally we consider the approximation
∂〈E 〉/∂fk ≈ 4〈E 〉/h by means of the difference quotient
and leth approach 0 from above. Let us define the pertur-
bation f̄k = fk +h and f̄k+1 = fk+1−h and let us denote by
〈 ¯E 〉 the expected error obtained with these new forcesf̄k
and f̄k+1. Notice that the constraint

∑N
i=0 fi = Fmax is still

satisfied under this variation offk andfk+1. Using (6), one
calculates (cf. Fig. A1b)

4〈E 〉
h

≡ 〈 ¯E 〉 − 〈E 〉
h

=
1
h

(∫ θk+1

θk

h · p(FR) dFR

−
∫ θk+1+h

θk+1

(fk+1 − h)p(FR) dFR

)
≈

≈
∫ θk+1

θk

p(FR) dFR − fk+1p(θk+1)

=

(
const
θk

− const
θk+1

)
−fk+1

const
(θk+1)2

=
const
θk+1

(
fk
θk
− fk+1

θk+1

)
The approximation is due to the neglect of the term

∫ θk+1+h
θk+1

h·
p(FR) dFR in the parentheses which is roughly proportional
to h2. To obtain the second last equation we use the assump-
tion p(FR) = const/(FR)2 while for the last equation we use
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θk+1 = θk + fk . In the limit h → 0, the approximation≈
turns into an equality and the conditions∂〈E 〉/∂fk = 0 are
transformed tofk/θk − fk+1/θk+1 = 0, or

fk+1

θk+1
=
fk
θk

= . . . =
f1

θ1

= constant
.
= c− 1 . (A.1)

Let us check that the forcesfi = (c − 1)f0c
i−1, i =

1, . . . , N , satisfy these last conditions. Using the summation
formula for the geometric series we calculate

θk+1 =
k∑
i=0

fi = f0 + (c− 1)f0

k∑
i=1

ci−1

= f0 + (c− 1)f0
ck − 1
c− 1

= f0c
k (A.2)

and we indeed verify (A.1).
The constantc = N

√
Fmax/f0 > 1 is deduced from the

same equality (A.2) due to the definition ofFmax. Finally,
the densityd(f ) = c/(c − 1) · 1/f at the pointsf = fi,
i = 2, . . . , N , is obtained from

d(fi) =
1

fi − fi−1
=

1
(c− 1)f0ci−2(c− 1)

=
c

c− 1
1
fi

. (A.3)

�

Proof of Theorem 3.1.

As in the proof of Theorem 2.1 we must show that, whenever
two successive forcesfk, fk+1 of a recruitment order satisfy
the (nonoptimal) relationfk > fk+1, the transpositionk ↔
k + 1 reduces the information contentHπ

MN .
Let us consider the recruitment ordersπ andπ̃ as defined

in the proof of Theorem 2.1. Fori = 1, . . . , N with i /= k, i /=
k+1, one haspπΩ(x(i)) = pπ̃Ω(x(i)) since the thresholdsθπi and
θπ̃i , i /= k+1, corresponding to the recruitment ordersπ andπ̃,
respectively, are the same. For the indexi = k + 1, however,
θπk+1 > θπ̃k+1, and it is only the sumS = pΩ(x(k))+pΩ(x(k+1))
which is the same forπ and π̃. We now define

HS(λ)
.
= −(λ log2 λ + (S − λ) log2(S − λ)) , λ ∈ (0, S)

If, for example,λ = pπΩ(x(k)), HS(λ) is that part of the
information contentHπ

MN which is obtained by restricting
the sum (10) to the two indicesi = k and i = k + 1. The
functionHS(λ) has the property thatHS(λ̃) > HS(λ) when-
ever |S/2− λ̃| < |S/2−λ|. Using (11), the fact thatp(I) is
monotonically decreasing and the assumptionfk > fk+1, this
same condition is verified for̃λ = pπ̃Ω(x(k)) andλ = pπΩ(x(k)) .
Together with (10) we therefore obtain

H π̃
MN −Hπ

MN = HS(pπ̃Ω(x(k)))−HS(pπΩ(x(k))) > 0

which was to be shown. �

Proof of Theorem 3.3.

Let us first assume thatp(θi) = c1/θi with some constant
c1 > 0. Since Lemma 3.1 states thatfi ·p(θi) ≈ c2 with some
c2 > 0, one getsfi ≈ (c− 1) · θi wherec− 1 = c2/c1. This
is, up to the approximation≈, equivalent to (A.1). Using

k+1f

θk+1 θk+2θk+1θk RF = I

π

f  - f  k

ε
ε

k+1

π

a

θk+2 RF = I

k+1f

θk θk+1

F

f k

h

b

Fig. A1. a The error functionsE π(FR) (continuous line) and E π̃(FR)
(dashed line), FR = I, within the interval [θπk , θ

π
k+2]. Since the recruitment

order π̃ emerges fromπ by exchanging onlyi ↔ i + 1, the two functions
are equal outside this interval.b The actual forceF (FR), FR = I, within
the interval [θk, θk+2], once forfk, fk+1 and once forf̄k = fk +h, f̄k+1 =
fk+1 − h. If 〈E 〉 is minimal, the local condition (〈 ¯E 〉 − 〈E 〉)/h ≈ 0 is
satisfied

the calculation (A.2) we conclude thatfi = (c − 1)f0c
i−1 ,

i = 1, . . . , N . The densityd(f ) ∝ 1/f is now deduced from
(A.3).

Conversely, ifd(fi) = c/(c− 1) · 1/fi for i = 2, . . . , N ,
we conclude from the definitiond(fi) = 1/(fi − fi−1) that
fi = c ·fi−1 (i = 2, . . . , N ). For the thresholdsθi =

∑i−1
j=0 fj

one calculatesθi = f0+f1
∑i−1

j=1 c
j−1 = f0+f1·(ci−1−1)/(c−

1) . Settingf1 = (c − 1)f0 we get (c − 1)θi = f1c
i−1 = fi

which is equivalent tofi · c1/θi = c2 . With Lemma 3.1 we
conclude thatp(θi) ≈ c1/θi . �
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