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Abstract. The motor units of a skeletal muscle may be re-which is distributed to its individual motoneurons (MNs).
cruited according to different strategies. From all possiblelf the common input to the pool exceeds the threshold of
recruitment strategies nature selected the simplest one: ia motoneuron, this motoneuron will fire action potentials
most actions of vertebrate skeletal muscles the recruitmerand consequently activate the muscle fibers which it inner-
of its motor units is by increasing size. This so-called sizevates (Fig. 1). For a more detailed model of the motoneuron
principle permits a high precision in muscle force generationpool including, for example, inhibitory Renshaw circuits, the
since small muscle forces are produced exclusively by smalieader is referred to Akazawa and Kato (1990) and the ref-
motor units. Larger motor units are activated only if the to- erences therein. From physiological experiments one knows
tal muscle force has already reached certain critical levelsthat with increasing input motoneurons are recruited in order
We show that this recruitment by size is not only optimal of their size and hence their force-generating properties. This
in precision but also optimal in an information theoretical order of recruitment is known as ttsize principle(Henne-
sense. We consider the motoneuron pool as an encoder geman et al. 1965). Thus, smaller units producing less tension
erating a parallel binary code from a common input to thatare recruited at a lower level of input into the pool, while
pool. The generated motoneuron code is sent down througlarger units are recruited at progressively higher levels.
the motoneuron axons to the muscle. We establish that an A large number of experimental studies have been de-
optimization of this motoneuron code with respect to its in-voted to the possible physiological mechanisms leading
formation content is equivalent to the recruitment of motorto the size principle [see Henneman and Mendell (1981),
units by size. Moreover, maximal information content of the Lischer and Clamann (1992) and the citations therein]. Here,
motoneuron code is equivalent to a minimal expected erroe investigate the benefit of recruitment by size instead of its
in muscle force generation. physiological explanation. We are interested in the internal
logic by which the motoneuron pool is guided to the activa-
tion of motor units according to their sizes. Our questions
are: What are the possible underlying optimization principles
governing the recruitment of motor units? How can optimal
1 Introduction precision in force generation and maximal information trans-
fer be realized simultaneously?
1.1 Recruitment of motor units by size

A skeletal muscle together with the motoneurons control-1 > Shannon’s information transmission theorem and motor
ling it consists of several hundred motor units of different it encoding

sizes. A motor unit (MU) itself is defined as a motoneuron

together with its innervated muscle fibers. In the human me-

dial gastrocnemius muscle there are about 300 motor unit{! @n information transmission system a source message is
with tetanic forces ranging from.63 to 2035¢ (Gamett et  Processed by an encoder, fed through a channel and recon-
al. 1979). The force output of a muscle is determined bftructed by a decoder. A user at the end of the transmission
the sum of the force outputs of the active motor units. DueSyStém specifies a maximal distortion (error) which is per-
to the large number and different properties of these unitsmitted in the received message.'Dependmg on thls distortion
their recruitment must be specified in a suitable way. Thisbound, the source message is first compressed into a source
task is automatically performed by the motoneuron pool inc0d€ and the information not needed to satisfy the bound is
the spinal cord. The pool as a whole receives input fromdiscarded. The source c;ode is then procegsgd by the channel
the central nervous system and from peripheral receptor§”C°der which adapts it to the characteristics of the chan-
nel and adds some redundancy to protect against noise. Af-
Correspondence tow. Senn (e-mail: wsenn@iam.unibe.ch) ter this second encoding step one obtains the channel code,
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Fig. 1. The transmission system of muscle inner-

motoneuron pool muscle vation. It consists of the motoneuron (MN) pool
MNs motor unit forces fj which encodes the firing rate of a central neural

@) MN-axons input I, the motoneuron axons which transmit

— the parallel binary code and the muscle which

F pool input [ f —_— output F converts this code to a forc&. The muscle
R

O — . : i uscl
source code \ channel code fibers are innervated by-motoneurons lying in

(mean rate) (muscle force) 53 common motoneuron pool in the spinal cord.

(parallel, binary) : -
—©>7/ The figure shows three motor units each con-

sisting of a motoneuron and the muscle fibers it
source encoder channel decoder user innervates

which is transmitted through the channel and thereby probawhich we assume to be monotonically decreasing. Thus,
bly contaminated by noise. The decoder performs the inversesmall muscle forces are assumed to be produced more fre-
operations, reconstructing the channel code, the source codpiently than larger ones. The distributipinduces a proba-
and finally reproducing the original message up to the in-bility distribution of the motoneuron statesand this directly
formation lost by the source compression (see the diagramermits calculation of the information content of a wardf
below). Within this framework Shannonisformation trans-  the motoneuron code. Since at this stage we are dealing with
mission theorentells us what maximal rate of information a parallel binary code, each codewardequires the same
transmission (measured in bits per seconds or, alternativelytransmission time and this allows us to measure the informa-
in bits per channel symbol) can be achieved. This rate detion transmission of the channel code in bits per codeword.
pends on the channel capacity and on the distortion allowedlet us emphasize that Shannon’s information transmission
at the end of the transmission system (Shannon and Weavéheorem was derived for the steady state, thereby ignoring
1949; Blahut 1987). dynamic changes of the encoder and decoder which may be
In order to apply the information theoretical paradigm to prominent in our application to motor circuits.
the situation of muscle activation we have to make several The rate at which the relevant information is transmitted
choices. As a source message we assume a signal represeinbm the central nervous system to the muscle can be en-
ing some reference forcEgr, which may be generated by the hanced in both encoding steps. First, the source code may
motor cortex, for example, and which determines the musclémprove the rate by mapping the continuum of choices for
force to be produced. The reference foilcg is encoded in  Fi to a finite, well-chosen set of firing frequenciésSec-
a mean firing rate representing the source code which is semind, the channel or motoneuron code may improve the rate
by an efferent fiber to the spinal cord where it is distributedby choosing codewords with large information content. As
to the motoneuron pool as an inpltThe motoneuron pool we shall see, the compression of the source code will limit
acts as a second encoder, translating the source code into thiee humber of possible combinations of active motor units
channel code. By restricting ourselves to pure recruitmentind the combination finally selected is determined by the
modulation in the absence of rate modulation we have onlyinformation maximization of the channel code.
two states of the motoneurércorresponding to its activation Our work is organized as follows. In Sect.2 we intro-
z; = 1, or inactivationz; = 0. With N motoneurons we ob- duce the model of motor unit recruitment and formalize the
tain a parallel binary channel code in which each codeworctlassical point of view that the size principle generates pre-
is characterized by a motoneuron statec {0,1}". We  cision for producing an optimal muscle force. In Sect.3 we
shall refer to this channel code as tmetoneuron codeThe  turn to information theory and show that the size principle
motoneuron code is transmitted to the muscle through thdollows from maximizing the information transmission. As
motoneuron axons, which are assumed to represent a noisi Sect. 2 we address the question of the optimal distribution
less parallel channel. As long as consideration is restricte@f the motor unit forces. In Sect. 4 we combine these results
to a binary code with either zero or constant frequency forand propose a learning rule to enhance muscle force pre-
each motoneuron, the noise-free assumption is reasonableision based on the local information theoretical principle.
The muscle decodes the received sigadby producing a In Sect.5 we discuss and summarize our results and review
muscle forceF. We assume that the total muscle force is other approaches. The proofs of the theorems are given in
a linear superposition of the forces of the individual motor the Appendix.
units. This muscle force at the end of the transmission sys-
tem should correspond, within some limits, to the original
reference force. The distortion of the original message (i.e.2 Minimizing the expected error in muscle force
the deviation from the output characteristics) is smalF'if generation
is close toFr. The stages of the transmission system are

summarized in the following diagram (cf. Fig. 1): Recruitment by size may be seen as a strategy to solve the
following combinatorial problem (Henneman 1990, p. viii):
message source code channel code channel code sysemouput ‘Howy can the different tensions that individual motor units
intended force pool input MN states MU states muscle force . . . .
P - ; . . - . - develop be combined by activating appropriate motoneurons
source  encoder | encoder I channel decoder  user to produce any total force that is required with the necessary

precisionand (computationalypee@’
To apply Shannon’s statistical theory we introduce a  Concerningspeedthe pool is restricted to a fixed recruit-
probability distribution p(Fz) of the reference forceF’y ment order according to which the motor units are activated.
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A predetermined order of recruitment provides economiegiz: F'' NI
in neural circuits and reduces the computing time needed 25
to select an appropriate combination of active motor units. [~
Concerningprecision such a predetermined order must be g
an ascending order to provide the desired high precision. 2

2.1 The model of motor unit recruitment

a 200 400 600 800 1000 120(I [nA]
Upon receiving a common global inpI{Fs) represented as .
a firing rate (Mendell and Henneman 1971), the pool must®: ¥~ NI
assemble a total muscle ford&(I) as close as possible to e
the given reference forcEr. The input!/ is assumed to be 20 ”
a monotonic function of the reference foré&. If Fr in- 15 I
creases] will increase as well and the pool must recruit a 7
further motor unit as soon as the reference foFe rises 10 S
aboveF'(I). Which one of the motor units will be recruited 5 %
next is fixed by the predetermined order of recruitment. Let . .
N be the total number of motor units and let us enumer-® 200 400 600 800 1000 1200 (Al

ate them according to increasing ‘size’, i.e., according toFig. 2a,b. The total muscle forcg"" () (continuous ling approximating
increasing tetanic forces (WhiCh may all be assumed to bdhe smooth reference forcEr(I) (dashed ling Whenever the reference

different from each other). We define racruitment order forpg rises e_above the muscle force actually exertgd, an additional motor
be a permutation: : {1 N} - {1 N} of unit is recruited. For the data in Heckman and Binder (1991) several of

7 10 p h - Y NS L the 21 motor units are recruited at nearly the same timBecruitment

the N motor units onto themselveRecruitment by sizes by size according to the order; =Id in Fig.3. This recruitment order

defined byr =1d, i.e., by the order according to the basic minimizes the deviation from the reference forbeRecruitment according
enumeration. The mechanism of recruitment assigns to th& the reverse order;;

ith motor unit within the recruitment order a threshold

67 . Depending onr this threshold specifies at which level

of global input! the unitw(;) must be activated in order to and P; € (2.1,2.6)], we calculated the actual muscle forces
produce the intended muscle force. Let us write the forceF'™(I) when a reference forcé’r is given. Note that the

of motor unit=(i) in the form f;)(I — 67). Defining the  correspondencér — I may be inverted due to its mono-
supra-threshold inpuf = I — 07, one hasf,((/) = 0 for  tonicity. This allows us to compare the two functiofs (1)

I <0 and fﬂ-(i)(i) ~0forl >o0. Moreover,fﬂ(i)(f) is and Fr(1) (Flg.2). The recruitment order was chosen
monotonically increasing irf. In the model of Heckman ©NCe to be recruitment by sizer €1d) and once to be the
and Binder [see (2) below] the input-force relatigg( 1) reverse of thgt oyder. It should be s_tressed that for these
is even strictly increasing for the suprathreshold input 0. data the contributions of the motor units merge into a nearly

The (total)muscle forcedepends on the recruitment order smooth curveF™ (/) if the reference forcdz is a suitable

and is defined as a superposition of the individual motor unitz'fgtrﬁg'Sn%tgjrngrt:i?r;o"r"ég‘;(ll"’)‘rger slope adapted to the slopes
forces according to i)

Given a recruitment order, the (relativelerror & (Fr)

I al - is defined by the relative difference between the muscle force
()= F7(1) = Z Fray( = 07) (1) output ™ and the corresponding reference forg:
1=1

|[F™(I(Fr)) — Frl

GO R

3

2.2 Example. The motor units of the cat medial

gastrocnemius Next we introduce the probability densipfFr) describing

the relative frequency with which the reference forEg
Tmust be encoded. This allows us to quantify the average
error in muscle force production according to

To give an example, we have chosen the input-force relatio
according to Heckman and Binder (1991):

7 —(freq;(D) /Ty
fL(I) = Fmaw,i : (l —€ (freai(D)/T2) ) Fraxz

for 7>0, i=1...,N @ (= [ ) ) dFn (@)
~ ~ Funin

The functionfreq;(I) = freginres,i+ G-I represents the fir-

ing frequency of motoneurohat relative inputf =1-0 To illustrate the dependence of the expected effof)

The firing frequency is zero below/?, jumps at this point on the recruitment order we chose a sequence of permuta-

to some threshold-frequenciteg:..s,; and then increases tionsm ... m leading from the ascending to the descending

at a rate given by the gaif/. The positive constant$; order. For each of these permutations we calculated the ex-

and P; are additional parameters. Using the same data apected error(¢s ™) with respect to the constant probability

Heckman and Binder (1991, Table 2) for their 21 motor densityp(Fgr) = const. As Fig. 3 reveals, the minimal ex-

units [freginres: € (8,175), G = 2.25, T; € (20,56.5) pected error is achieved for recruitment by increasing size.



m=(1,234,56,7,...,20,21) FQ) >
m=(2,1,4,3,6,58, ..., 19, 21) gl
m3=(2,4,1,6,3,8,5,...,21, 19) -~
m=(4,2,6,1,8 3, 10, ..., 17, 19) —
m5=(4,6,2,8,1,10,3, ..., 19, 17) —
m0=(20, 18, 21,16, 19, 14, ..., 1, 3) - Fe(D
m1=(20, 21, 18, 19, 16, 17, ..., 3, 1) 7
m=(21, 20, 19, 18, 17, 16, ..., 2, 1)
a a =K
(&)
7 EF
6 .
5 \5\\
4
3
: b I1=Fg
1 o Fig. 4. aThe total muscle forcd"™(I) (continuous ling and the refer-
0 _ ence forceFgr(I) = I (dashed ling for motor unit forces as defined in
b 5 10 15 20 (5). The recruitment orderr is recruitment by size, i.eq =Id and thus

Fig. 3. aA sequence of permutations leading from order by (increasing) /=@ < --- < fx(x)- AS soon as the reference foréé: (/) reaches the
size to the reverseb The expected erroré# ™) for the corresponding actual muscle forcd™™ (I) the next motor unit is recruited (‘next’ accord-

sequence of recruitment orders. (™) was calculated according (d) ing to the recruitment ordef). Alternately one could postulate a more
with a uniform distribution of the reference forcé;. Since, according symmetrical scenario where the next motor unit is activated as soon as the
to the table, larger motor units are recruited successively eafHef; ) difference| F™ (I)— F'r(I)| reached half the tetanic force of that next motor
increases with index (cf. Fig. 2) unit. Although in such a scenario the average error would be smaller, our

qualitative statements would not change. Notice that there are intermediate
parts of the output characteristics that may not be reached by any coding.
. . . b The error function®™(Fr = I) [cf. (6) corresponding to the force
2.3 Error-optimal recruitment of motor units productionF™ (I) in a. Note that deviations from the output characteristics
at large muscle forces contribute less to the (relative) efrér

To prove that recruitment by size is optimal in precision we

restrict ourselves to the case of pure recruitment modulatlorl 07— Fr
and assume that the motor unit forgggl), I = I — 69, are " (Fr) = Fr (6)
step functions of the form wherek + 1 is the smallest index such that the fofge, =
B - [<0 F™(I(FR)) is greater than or equal to the reference force
fi(h) = f = const : I>0. i=1.... N Fg. The functionsF™, Fr and & ™ are illustrated in Fig. 4
- T for = =Id.

) Setting Fiqz = zjﬁo fi, the reference forcd’y is as-

Pure recruitment modulation takes place at the beginning ofumed to vary within the rangéd. F7..,] and (4) transforms
the activation of certain finger muscles where motor units ard©
first recruited and discharge at nearly constant frequencies. Finaa
Rate modulation in these movements only occurs later, at® ") :/ &r(FR) - p(Fr) dFRr )
higher force levels (Milner-Brown et al. 1973). f

Let us assume that the relation between inpaind in-  Definition 1 (Error-optimality). A recruitment orderr is
tended muscle forcé; is linear, sayl = F. A linear rela-  optimal in precision (short: error-optimal) if the expected
tionship between supraspinal motor commands and musclerror (&™) is minimal with respect to all possible recruitment
force production has indeed been confirmed experimentallyordersz. More formally,r is error-optimal if (£™) < (&™)
Ruegg and Bongioanni (1989) demonstrated such a linearitjor any recruitment ordefr : {1,...,N} — {1,..., N}.
for the human soleus and tibialis anterior. Moreover, we as-
sume that some minimal tone or ‘background’ forfge> O
is always present. According to our model of recruitment,
the kth motor unit withinz is activated at that moment when Theorem 2.1 (Size principle from error optimization).

the increasing reference fordé; becomes just larger than ! . - i
the sum of the motor unit forces actually produced, i.e., justLetp(FR) be any monotonically decreasing probability den

. : . ) sity on the reference force8g. Then, recruitment by size is
beyond the point at which the equalityz = > ;- fxt)  the only recruitment order which is error-optimal. In other

holds. Due to the identity = Fpg, the fOFCGZf':Bl f=@y  words: the order of recruitment is error-optimal if and only
corresponds to the input threshdlfl of the kth motor unit  if frq) < fr) < ... < fav)-

within the recruitment order. Since after recruiting thisth

unit the actual force becomds™(I) = 0} + f, = 0},,, the  To give an idea of the proof, note thét™ (£r) is a saw-tooth
error & ™ (3) becomes map as depicted in Fig. 4b. Since the ‘weighting function’

0

For the case of pure recruitment modulation with step func-
tions (5) as motor unit forces we now have:
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p(Fr) of these teeth monotonically decreases, the teeth must
be arranged in an ascending order to minimize the integra
(7). For more detailed arguments see the Appendix.

Jany
[e)}

=
[\S)

2.4 Error-optimal motor unit density

0

IS

From physiological experiments one also knows not only
that the forces of activated motor units increase with in-
creasing input, but also that they increase progressively, i.e., 1 12
the differencesf; — f;_1 increase withi. This is reflected

in the distribution of the motor unit forces: for a skeletal
muscle, the number of motor unitg f) with tetanic force

f within some fixed interval\ f typically decreases. Figure
5a shows this functiom(f) for the human medial gastroc-
nemius (Garnett et al. 1979). The tetanic forces are chose
to be the discrete valueg = 4,8,12 16,...,40 andn(f)

is the number of motor units lying in an interval of length -
4 g around these values. To test our model we ask the sam
guestion within our mathematical framework: Given the to-
tal numberN of motor units, a ‘background’ forcg, and
some total force,,..., what is the optimal distribution of the
motor unit forcesf; < f, < ... < fy under the constraint
that their Sungo fi is equa| tOF 0z ? Fig. 5. a The distribution of motor units characterized by their tetanic

. . . . force f in the human medial gastrocnemius (Garnett et al. 19¥@)ptimal
In order to treat this question analytically we define the densitiesd(f) of the motor units for the probability densitigs, (Fr) o

notion of motor unit densityi(f) in our present discrete 1, ya with o = —0.01 dashed liny a = 0 (continuous linpanda = 1
case. Intuitively, the density(f;) of motor units with tetanic  (dot-dashed ling If a = —1, the density would be constant (= 5). Al
force f; should be proportional to the numbe(f;) of motor densities are normalized to yield a total forEg,q. = f fda(f)df =100
unit forces lying within the intervalf;_1, f;) and inversely  within the intervalf € [1, 20]. For the ‘background’ force we chogg = 1
proportional to the length of this interval itself. Since in our

case there is only one motor unit lying within this interval,

n(f:) = 1, we have the following definition: motor unit density is indeed decreasing we can conclude that
nature needs an average precision for large fofceghich
is smaller than 1F .

number of motor unTt

20 28 36

(Y

5.8

5.6

5.4

nit demyity d(f)

motoru
[8)]
vl

motor unit forces
b £

Definition 2 (Motor unit density). Consider a pool with a
finite number of motor units of tetanic forcéf <)f1 <

... < fn . The densityi(f) of the motor units is defined at Let us consider in more detail the case= 1 in which
the pointsf; asd(f;) = 1/(fi — fi—1),i=1,...,N. an analytical solution to the optimization problem can be
given.

In the reminder of this section we investigate the rela-
tion between the probability(Fr) of the reference forces

Fr and theoptimal motor unit density(f), i.e., the density  Thegrem 2.2 (Error-optimal motor unit density). Let N
leading to am|n|mal expec':t.ed eerf”}. We first establish  pe the number of motor units, > O a non-vanishing
that a decre_asmg probablhty densMFR)_ leads to a de- ‘background’ force andF;,,., = Z].\_[ fi the sum of the un-
creasing optlma! .den3|t§l(.f) of motor units. C0n§|der the known motor unit forces. Let uszé%sume a probability den-
family of probability densitiepq (Fr) oc 1/(Fx)* with real sity p(Fr) o< 1/Fg . Then, the forceg; minimizing the ex-
numbersa and letd,(f) be the corresponding optimal mo- pected error(#74) in (7) increase exponentially according
tor unit density. This optimal motor unit density is found 0 f; = (c— ) foc—L, i = 1 N, with some appropriate
by adjusting thef; values in order to minimize the expected . TR Lo

error (#74). Since, by Theorem 2.1 ™) can only be min- ccl(()?)St:aHEC .>11. The optimal motor unit density is given by
imal for recruitment by size, we assume=Id. Numerical =1 f-

simulations show thatl,(f) only decreases itx > 0. If
-1 < a < 0, ie., if the probability density of the refer- . .
ence forces increases slightly, the optimal denditgf) has chortthE pro%f we refer to the Appendix. We can readily show
a minimum in the middle range of the motor unit forcgs ate = y/(Fmaa/ fo) -

(Fig. 5). Fora < —1 corresponding to a superlinear increase  According to the theorem and its assumptions, the den-
of the reference force density, the optimal motor unit densitysity of motor unitsd(f) o< 1/f is optimal in precision if one
d~(f) is monotonically increasing. It appears that the prob-assumes an appropriately decreasing probability distribution
ability densityp(F'r) = const, corresponding to measuring for the reference forces. We are not the first to deduce such a
the relative erroflF' — Fg|/Fg, is the limiting probability = motor unit density: Tax and coworkers (Tax and van der Gon
density which just guarantees a decreasing density functiod991) derived the same motor unit density from their model,
d(f) of the motor unit forces. Knowing that the measured which — like ours — requires a linear input-force relationship.
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3 Maximizing the rate of information transmission 3.2 Maximizing the information content of the motoneuron
code
3.1 Compressing the source code

According to Shannon, the rate of information transmissionBy exploiting the maximal information content offered by
9 ' a motoneuron code restricted 6 + 1 words, the rate of

can be improved by compressing the source code and/or b%formation transmission could again be improved. Bt
enhancing the information content of the channel code. W enote the random variable which takes the value. 1 if mo-
I!rsl’lt sthotvr\]/ that tft])e sofurcet code_tmzy bedco_mprtissed esse{b-r unit k£ is active and 0 otherwise. Byj, we denote the
1ally to the number of motor units by reducing theé number robability that thekth motor unit within the recruitment
of source codewords. This permits a _sho_rter sampling tim rderr is activated at a random reference foiEg. Since
to identify a source codeword, which is given by the mean, . oo me thaF}, = I this is just the probability thaf;
rate of the global inpuf. A shorter sampling time makes it is larger than the thresholéf of the kth unit within = and
possible to increase the rate of information transmission the have :
the pool.
Let us assume that an input fiber must encode reference =~ Frnas
forces Fi, within some fixed range of firing frequencies. A Pk = S(Xy =1) :/ﬂ p(Fr)dFg, k=1...,N.
receiver (in our case the motoneuron pool) has to estimate o
(e.g., implicitly by a leaky integrator) the time between two The recruitment probabilities? induce the joint probabil-
successive spikes. If we assume that these spike interva|{.~‘y %, on the space? = {0,1}" encoding the states of
characterizing a frequency are slightly perturbed it has toe & motor units. Themotoneuron codeorresponding to
measurek spike intervals in order to reduce the error of the {he recruitment order consists of the subset of codewords
frequency estimate to the ord@(1/v/k) (this follows from . = (z1,...,xy) € £ with p%(z) > 0. We now define
the Chebyshev inequality applied to the arithmetic mean ofhe information conteniof the motoneuron code to be the
the spike intervals). Assuming a bounded domain of possishannon entropyH7,, of the probability distribution on
ble firing frequencies this implies that the receiver cannotihe motoneuron states:
distinguish reliably more tha(+v/k) different frequenc
inputsg. d Vo) a Y Hiyny=HXy,...,XN)=— ZPB(J?) log, p(z) . (8)
Now, assuming a binary channel code formed\oyno- z€N
toneurons, the pool has at its disposal a maximum®f 2 One may interpretf/§,, as theaverage information per
different states and thus can resolve not more than the samsate x = (z1,...,zy) of the pool. Recall that/(z) =
amount of different source codewords. To identify reliably — log, p7,(z) is the information in bits provided by the ob-
one out of 2 [= O(\/ko)] different firing frequencies as servation that the pool is in the particular stateOn the
its input, the pool must wait and integrate on the order ofaverage, the information provided by such an observation is
ko = 22NV spike intervals. Indeed, with?2 measurements, > zeo PH(x)J(x) and this is equal tdij, .
the receiver can reduce the error of the frequency estimate Fixing the tetanic forceg; of the individual motor units,
to the necessary resolution of 2. we establish that among all recruitment orders, recruitment
However, as the experiments of Henneman showed, they size provides the maximal Shannon information of the
pool does not exploit all possible combinations of motor motoneuron code:
units and thus cannot resolvé& 2lifferent inputs by pure re-
cruitment modulation (Henneman et al. 1965, 1974). InsteadTheorem 3.1 (Size principle from information optimiza-
the activation of the motor units follows a well-defined re- tion). Let the probability density(Fr) of the reference forces
cruitment order leading to onliy +1 different states, namely Fj; be strictly decreasing. Then, the information content
©,...,0),(10,...,0),(110,...,0),...,(1,...,1). Each  H7, . of the motoneuron code corresponding to the recruit-
of these states represents a channel codeword and specifigent orderr is maximal if and only ifr =1d, i.e., if 7 is
up to which cell within the recruitment order the motoneu- recruitment by size.
rons are activated. This motoneuron code again requires a
source code oV +1 words which are expressed by different
input frequencies. But to resolv€ +1 frequencies the pool 3.3 Information-optimal motor unit density
must wait and integratk;, = (IV+ 1) spike intervals in order
to reduce the expected error tg(V + 1). This leads to a As in the previous approach, one may ask not only for the

compression factor of optimal order, but for the optimalistribution of the f; val-
k (N + 1) N ues. To do so, we now fix the order of recruitment Id
kl S o <e s (N2=3) and let the motor unit forceg; adapt (and with them the
0

threshold9); = Z;;l f;.) To simplify the notation we drop
compared with a source code with' Zodewords. The re- the supscriptr = Id for the rest of the paper. In Theorem 2.2
striction to a fixed recruitment order enhances the rate ofve have seen that the probability densit{f’r) < 1/Fgr
codeword transmission to the pool. On the other hand, thgields a minimal expected error if the densitff) of motor
compression of the source code leads to a loss in musclenits is proportional to Af. In this information theoretical
force precision. This, however, seems to lie within the tol- approach we confirm that the densitff) « 1/f is optimal,
erance defined by the user at the end of the communicationow in the sense of the maximal information content of the
system. motoneuron code.
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Fig. 6. aFor an information-optimal motor unit distribution the motoneu-

ron statesz(® must be equally probable. The tvdark greyregions must
therefore have equal area. Put differently, the probability depgiy;) of
the reference forces’r leads to a maximal information contehf,,  if
p(0;) = const/f; = const/(0;+1 — 0;) (cf. Lemma 3.1).b Considering
motor units with rate modulation, the optimal probability dengity'r) has
its maximum where most units are sensitive to changegror, more pre-

cisely in I(F'r). For each inputl we counted the number of motoneurons
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1
= tant( = =0,1,....N
consan< N +1>7 i=0,1,..., 9

whered; = 3='_ f; . This ‘equilibrium condition’ holds ap-
proximately if f; - p(6;) ~ const. In particular, if the prob-
ability densityp is monotonically decreasing, it follows that
fig...< fn.

Proof of the lemma. Denoting the possible states of the
pool by z® = (1,...,1,0,...,0) wherei denotes the num-
ber of 1's, the information conterif;» reduces to

HMN :H(X17"'5XN)

N
== _pa@?)log, pe(=?)

=0
This last expression is maximal [namely %QQH 1)] if and
only if all the p (™) are equal, i.e., ipo(z®) = 1{(N+1)
for everyi. Since the probability, (=) of statez” may be
written as the probability that th#h motor unit is activated
minus the probability that thei ¢ 1)th is activated, we get
(cf. Fig. 6a)

(10)

) 041
po(@) =p; — pr = / p(Fr)dFr

i

0i+fi
:/ p(FR)dFR, ’L':].,...,N (11)
0;

We sett; = Fin, pn+1 = 0 andOy.y = Fq,. TO achieve
the optimal value,(z) = 1/(N +1), we first tunef; so

(MNS) in Table 1 of Graham and Redman (1993) having a strictly positive that this equality holds fof = 1 and get the thresholéb.

slope & 1.5Hz/nA in the input-frequency relatiorf;(I) and plotted this
number against. Assuming a linear relation between the pool inpwnd
the reference forcéd'r, the shape of the distribution qualitatively yields
the optimal densityp(F'r) for which the pool extracts the maximum of
information from the rate modulated input

Theorem 3.3 (Information-optimal motor unit density).

Consider a finite numbeN of motor units, some ‘back-
ground’ force fy and a sum#,,,,,. of the unknown motor unit
forcesf;. The densityl(f) « 1/ f of motor unit forces is opti-

Proceeding in the same way for 2,3, ..., N we determine
iteratively the values off;. Moreover, sinced; < 6,4+, and
sincep(F’r) monotonically decreases, the equalities (9) may
only hold simultaneously for everyif f; < fi1. O

The lemma states the following: To obtain the motoneu-
ron code with maximal information content, the probability
that the reference forcgéy falls into a bin p;, 6; + f;] must
be equal for alli = 0,1,..., N. Conversely, given motor
unit forces f; < ... < fy and corresponding thresholds

0; = Z?:Ol [, the pool best extracts information from an in-

mal from an information theoretical point of view (i.e., leads put [(FZR) if the probability densityp(F'z) roughly satisfies

to a maximal information contenfl 5,y of the motoneuron
code) if and only if the probability densipfF'r) of reference
forces itself is proportional td/Fg. The optimal motor unit
forcesf; are the same as in Theore22

The following lemma will be used in the proof of the

p(0;) = const/ f; = const/(0;41—0;) . Thus, the information
extraction from the continuous input signalis maximal if
the input probability density(7) is inversely proportional
to the threshold differences or, in other words, directly pro-
portional to the density of bing], 6; + f;] (cf. Fig. 6a).

The adaptation of the thresholds to the particular form

preceding two theorems. It gives a condition under whichof the reference force distribution is intuitively clear: In re-

the upper bound of log N + 1) bits is achieved by a mo-
toneuron code restricted ¥ + 1 words.

Lemma 3.1 (Maximal information content criterion).

Let N be a fixed number of motor units satisfyif®) and
let the reference force8r vary randomly according to the
distribution p(Fg) within some interval F,,.;.. = fo, Finaz]-
Then, the maximal information contelt,; y = log, (V + 1)
is reached for tetanic forceg; satisfying

] 0i+fi
pa(a®) = / p(Fr)dFp
)

i

gions where the densipy(Fr) is large, the ‘sample point#;

must move closer together in order to distribute the ‘weight’
p(Fr) uniformly on the ‘pillars’ atd;, i = 1...N. This corre-
sponds to the unfolding of a Kohonen map over some input
space which has its highest resolution at regions of highest
input density.

3.4 Generalization to motoneurons modulating their firing
frequencies

Finally, we remark that the approach of maximizing infor-
mation transmission can be extended to motor units with
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rate modulation. For simplicity we again assume a linear re-The common optimal density(f) is depicted in Fig.5b by

lationship between the pool input and the intended musclehe dot-dashed curve.

force, I = Fr. If every motor uniti (¢ = 1,..., N) can pro-

duce S different forcesf;; (j = 1,...,.S), the information

contentH ),y maximally reaches log vV + 1)S, always as- 4.2 A learning rule maximizing the information content of

suming that a fixed order of recruitment pertains. The stateshe motoneuron code

of the neurons induce bing,[+ f;;, 0; + f; j+1] on the input

axes which are able to ‘detect’ inpufswith a granular- How could the optimal precision in muscle force generation

ity corresponding to the intersection of all these partially be learned? The straightforward answer is that the relative

overlapping, bins. The upper boundlog, (V +1)S is at-  error & between generated muscle foréeand reference

tained for a probability density(F'r) which is proportional  force F'r could be fed back to the motoneuron pool by cer-

to the density of the interval9]+ f;;,0; + f; j+1], now in-  tain receptors. However, the equivalence between the two

terpreted as bins on thE€z axes. The reason is the same asapproaches suggests a new learning rule. Instead of look-

in Lemma 3.1: the maximal information content of the mo- ing to the muscle one may concentrate on the motoneuron

toneuron code is reached if alN(+ 1)S states of the pool pool itself and try to enhance the information content of

have equal probability. This is only possible if a unit interval the motoneuron code by directly adapting the motoneuron

on the F'r axes with frequently used reference forces, i.e.,threshold®;. Let us write the time dependence of the thresh-

large p(F'r), induces a larger number of motoneuron statesolds by #!. The method of steepest ascent to maximize the

than a unit interval on thé’r axes with rarely used refer- information contentt;n leads to alearning rule of the

ence forces. The distribution in Fig. 6b shows the numberform

of motor units in Table 1 of Graham and Redman (1993) . . . OHuyn

which have a strictly increasing input-frequency relation atf; ~ = 0; + A0 , with A0 =0,

the pointI (in the work cited the input-frequency relation i

has slope either 0,.8 or co). We conclude that the pool wheren > 0 is some learning rate. Using (10) and (11),

with the characteristics of Fig.6b optimally extracts infor- the adaption of the thresholds at each time stepay be

mation from its inputl if the densityp(Fr) has the same calculated as

graph as in the figure. In terms of error optimization we find OH N

that the muscle achieves its maximal relative precision at a0 =1 00,

intermediate range of input corresponding to an intermediate ' 4 ,

range of force. P =190 - (108, po?) ~ logpoG)  (12)
wherep(6;) is the reference force probability density at the
level of theith threshold. The value b, (z®) is given

4 Combination of the error-minimizing by (11) and represents the probability that the motoneu-

and the information-maximizing approach rons are in state = (1,1,..,1,0,..,0) with i 1's at the
beginning. Since according to (12) stationary threshélds

4.1 Equivalence of the two approaches are reached ipo(z®?) = po(z¥~Y), one recovers Lemma

3.1 stating that the maximal information content is achieved
From Theorem 2.1 and Theorem 3.1 one directly concludesf the states of the motoneurons are uniformly distributed.
that the approach of error minimizing in muscle force gener-Again, this last condition is satisfied if the ‘sensitivity’ of the
ation is equivalent to the approach of information maximiz- cell group at the inpuf (Fr) is proportional to the probabil-
ing of the motoneuron code if only the order of recruitmentity densityp(Fr) (cf. Fig. 6). Kohonen's learning algorithm

is considered: produces exactly the same final threshdlda/hen it unfolds
thed;’s in order to get a one-dimensional topological map of
Corollary 4.1 (Equivalence of error minimizing and in- a large number of input samplé§F'r) (cf. end of Sect. 3.3).

formation maximizing). Let p(Fr) be any strictly decreas- According to this information theoretical learning rule, the

ing probability density on the reference forcé% and let  size principle eventually develops and the highest possible

us assume that the inpiitto the pool is proportional ta*'z. precision in muscle force generation is guaranteed accord-

Then, a recruitment order is optimal in precision if and only if ing to Corollaries 4.1 and 4.2. Let us again emphasize that

it provides the maximal information content of the motoneu-such conclusions rely on our model of recruitment which

ron code. connects the motor unit forces to the motoneuron thresholds
and on the hypothesis that smaller muscle forces are more

Specifying the probability density(Fr) to be inversely ~ frequently used than large ones.

proportional toF'r, the equivalence even extends to the op-

timal distribution of motor unit forceg;. From Theorem 2.2 ) )

and Theorem 3.2 one deduces: 5 Discussion

Corollary 4.2 (Equal motor unit distributions). Assume 5.1 The exceptional case of reversed recruitment order
p(Fr) x 1/Fr and I « Fg. Then the optimal density(f)

of motor unit forcesf; is the same in the sense of minimizing How can we explain exceptional cases of muscle activa-
the expected erro(¢) and in the sense of maximizing the tion with recruitment other than in order of size? For most
information contentd ;5 of the motoneuron code. movements, the smoothness of muscle force production or
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the deviation from linear output characteristics is a reasonThese workers begin with individual motor units and calcu-
able measure of optimization. However, there are situationsate the total muscle force by integrating over the input-
in which the objectives of the movement are not smoothnessutput relationship of the motor units weighted by the mo-
or linearity of the input-output relation, and which therefore tor unit densities. Others (Tax and van der Gon 1991; Studer
require other optimization criteria. Examples of such tasks1994) begin with a linear input-output relationship for total
are the escape reflex of a fish or the paw shake of a cat tmuscle force and go back to calculate the motor unit densi-
shed an object stuck to its paw. ties and thresholds needed to reproduce this relationship. Our

In order to apply Shannon’s steady-state theory to thesenodel of the motoneuron pool may be included in this latter
altered information transmission systems one must redefinelass since we assume the same linear input-muscle force
the distortion function and the probability densji¢F'r) of relationship of the muscle force and determine the appro-
the reference forces. A more appropriate measure of distorpriate recruitment thresholds of the individual motor units.
tion would then be the acceleration of muscle force generin contrast to the models cited, however, we disregard rate
ation rather than the smoothness of the muscle force itselfimodulation and consider pure recruitment modulation of the
With respect to this new kind of distortion, the restriction motor units, which leads us to a binary motoneuron code.
to a binary motoneuron code df + 1 words of a fixed re- A common feature of the cited models is that they do not
cruitment order is too severe because it does not allow thelerive the size principle but instead consider it as one of
activation of just one selected motor unit population. Theseveral properties which must be built into their description
motoneuron code must therefore be enlarged by additionabdf the motoneuron pool.
words such as (0..,0,1,1) describing the activation of It was Henneman himself, in his early work in 1965, who
only the second-largest and largest motor unit. We arguguggested several advantages of recruitment by size for solv-
that such a combination of motor units would need addi—ing a combinatorial problem (see beginning of Sect. 2). The
tional projections into the pool since it cannot be generatedsize principle was investigated from a more theoretical point
by tuning the common global input alone. In the case ofof view by Hatze and coworkers. By numerical simulations
teleost fish one finds that the Mauthner cell located in thethey showed that the size principle emerges from minimizing
brainstem projects its axon to the contralateral side of thenuscle energy consisting of mechanical work and different
spinal cord and there makes contact with the large and fasorms of heat production (Hatze and Buys 1977). In a sec-
motoneurons along the entire length of the spinal cord. Durond work, the size principle is shown to be a special case
ing the startle response these large motoneurons are activatefithe Weber-Fechner law for biosensors (Hatze 1979). This
at very short latencies (Yasargil and Diamond 1968). In thelaw states that the sensitivity of the biological sensor system
case of the rapid paw shake of a cat the movement frequencycales inversely to the amount of input
corresponds to the twitch contraction frequency of the larger  The size principle has not been investigated from the
and faster motor units in the pool (Smith et al. 1980). Thispoint of view of information theory before. In most work
indicates that strict recruitment by size is circumvented an ealing with information theory, the information transmis-
larger motor units may well be activated without activating sjon of a single neuron is calculated assuming either a mean
the smaller ones. rate code or a spike interval code. Considering different stim-

In order to recruit the larger motor units exclusively the y|i (encoding different features) these works have tried to
source code must be extended by additional words as We|b|assify the tempora| output patterns of a neuron and to
However, an extended source code requires a longer trangantify how much information an output pattern carries
mission time if the words are still encoded by mean frequen-apout the applied stimulus or feature (for an overview see
cies and transmitted through one Single input fiber. Since th%]e Ruyter van Steveninck and Bialek 1988) It appears, how-
transmission time is crucial in the case of the escape reflexgyer, that a neuron may encode several features instead of
nature solved this dilemma by providing an additional par-only one, and that, in addition, a single feature may be en-
allel input fiber. An important event (which corresponds to coded by a pool of distinct neurons (Gawne et al. 1991). In
a high probability of occurrence in Shannon’s setting) isthe case of the motoneuron pool the feature ‘motor drive’ is
passed to the motoneuron pool by the Mauthner axon angepresented by a mean firing rate and supplied as a common
thus allows for a shorter codeword length. It should be notednput to the neuronal pool (Mendell and Henneman 1971).
that the rate of information transmission from the sensorysince we consider motoneurons in the spinal cord we are
neuron to the Mauthner cell itself is also enhanced by then the fortunate situation that we know not only the com-
use of fast electrical synapses. mon stimulus but also how the induced motoneuron code

The situation of variable codeword |ength5 iS reminis- is interpreted: the We|ghted sum of the codeword compo-
cent of Huffman codes in technical applications. For suchnents yields the total muscle force. In this sense we include
codes the lengtth of a codeword is inversely related to its semantic aspects of the neuronal code. Starting with the in-
probability p of occurrence (roughly oc log 1/p; see Blahut  formation theoretical principle we have deduced the optimal
1987). binary motoneuron code and find that this code is also opti-

mal at the semantic level of muscle force precision.
) ) There are further connections to optimization principles

5.2 Relation to other theoretical works in motor control in which one tries to deduce the shape of a

In different StUdie_s’ mOdeIS Of_ the motoneuron p00| have 1 More formally, if Az is an increment of the input and Ay the cor-
been proposed with different aims (Mendell and_ Hennemanesponding increment of the outpytof the biosensor, the Weber-Fechner
1971; Akazawa and Ktao 1990; Heckman and Binder 1991)law states that\y is proportional toAz/z.
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movement by minimizing its acceleration or jerk (Hogan andneighboring teeth are interchanged while the remaining teeth
Flash 1987). It was pointed out by Hogan that such a princi-do not change.

ple of minimum jerk would be compatible with minimizing Sincen(j) and=(j) only differ whenj = k andj = k+1,

the information needed to represent motions internally. Orthe thresholdg? = Z?;()l fr(jy @ndO7 = Z?;ol fﬂj) of = and

the level of a single muscle, we have in fact established this: respectively, are all equal up o= k + 1 For this index
same idea formally: the requirement of a minimal averagepne hasd7,, = 07 + fi While 07, = 07 + fie1 = 07 + fran.

jerk in muscle force generation leads to the size principlewyith the help of Fig. Ala one finds

and this allows one to control the muscle activation with a

minimal amount of input information. o - Ok v — fk
P () =y = [ )y ar
o5
i el‘rcrﬂ
5.3 Summary and concluding remarks B / fre1 p(Fp)dFp >
. . 0
We have argued that recruitment by size improves the rate of -
information transmission from the motoneuron pool to the > (fk = fisa) (0,1 - frsa
muscle. The restriction to a fixed recruitment order allows a Fr
compression of the source code and thus enhances informa-  Jrn OF) - (fi — fra) =0
tion transmission to the pool. The fact that this order is by Fg Pkt ko Tkt

size enhances the information content of the channel or mor,

. : ._~To obtain the inequality, we estimate the value of each of
toneuron code. We have shown that the maximal informatiory, integrals by means of their boundary values and the

gonfcetr_lt 0]; the trﬂot_ortleu(rjor(lj code lis ;equivallze_)nt;o g.minirt?]alminirqum and maximum value gf(Fr) within the interval
eviation from the intended muscle force (Fig. 4). Given e[agﬁLl] and 7., 07.,], respectively. Since/(F) mono-

probability distribution of these intended muscle fordgs ; g
we inferred the optimal distribution of the individual motor L%nslggll%ﬁ?;;??ﬁ:bﬂ?;éﬁ:?:; 3{;&37%&15) Igtrti)(?ttlg

unit fprcesfi. Th|§_opt_|mal force d'St”bUt.'on Is compatl- monotonically decreasing. Notice that the first interval has
?'I:(Iegvgh the condition in the human medial gastrocnem|us,|engthf}ﬁ1 and that the second has length— frs1. O

A fixed recruitment order allows for a simple connec- Proof of Theorem 2.2.
tivity pattern in the motoneuron pool: the common input Since we fix the recruitment order to be = =Id, we
only needs to be distributed uniformly to all motoneuronsill drop the superscript index ‘Id’ of and 6 in the
and these determine the order of recruitment by their threshfollowing. Necessary conditions that the motor unit forces
olds. If rare motor tasks like high-frequency shaking havef, minimize the expected errof%) are d(&)/0fx = 0,
to be encoded, the motoneuron code must be enlarged by = 1 ..., N. We will deduce from these conditions that
the exclusive activation of Iarger motor units. An exten- the fr must have the form stated in the theorem. Instead
sion of the motoneuron code is only possible if the pre-of differentiating formally we consider the approximation
ceding source code is less compressed. From the physiQ}<;§>/af,C ~ /(&) /h by means of the difference quotient
logical point of view, an implementation of a larger mo- and leth approach 0 from above. Let us define the pertur-
toneuron code would require further excitatory or inhibitory pation f;, = f, + k and fz+1 = fx+1 — h and let us denote by
connections projecting onto the motoneurons. For instance<,;g'> the expected error obtained with these new forges
one could imagine additional interneurons or an alteration,,q Fre1. Notice that the constraife Y, f; = Fyuaq is stil
of the strong inhibitory feedback by Renshaw cells which gaiicfied under this variation qf. andzfgﬂ. Using (6), one
under normal conditions are probably responsible for the.5iculates (cf. Fig. Alb) ’
linearization of the pool's output. In this sense, the com- B
pression of the source code sheds light on the ‘hardware’A(#) (&) — () 1 <
i.e., the connectivity within the motoneuron pool. Enhancing ;= h T

Or+1
[ b ptEw ars
the information content of the motoneuron code by adapting

O

the thresholds of the motoneurons sheds light, in turn, on Okvath
the ‘software’, i.e., the plasticity of the motoneurons. —/9 (ferr — R)p(FR) dFR | ~
k+1
Or+1
Appendix ~ / P(FR) dFR — fre1p(Ok+1)
Ok
Proof of Theorem 2.1. - (const_ const)
We must show that, whenever for a recruitment ordemo O Or+1
successive forcegy, fr+1 satisfy fr > fr+1, the transposi- _f const _ const/ fi B fr+1
tion k — k+1 reduces the expected erf@f ™). Defining the 0002~ O \Or O

new permutationr by (k) = 7(k + 1), 7(k + 1) = (k) and S P

7(i) = 7(i) otherwise, we need to prove tha&t *) < (£7).  The approximation is due to the neglect of the tq”gﬁll h-

Note that all these transpositions eventually produce a rep(Fr) dF'r in the parentheses which is roughly proportional
cruitment such thaf; < ... < fy. Interchanging two neigh- to h2. To obtain the second last equation we use the assump-
boring units implies that in the graph éf™ (Fig.4b) two  tion p(Fr) = cons}(Fr)? while for the last equation we use



Or+1 = O + fr . In the limit h — 0O, the approximatiorr
turns into an equality and the conditiof$~) /0f, = 0 are
transformed tofy. /0x — fr+1/0k+1 =0, OF

frr1 _ fr - fi
Oper O~ 01

= constant=c—1. (A1)

Let us check that the force§ = (c — 1)foc'™?%, i =

1,..., N, satisfy these last conditions. Using the summation?

formula for the geometric series we calculate

k k
O1 =Y fi=fot(c—Dfoy ¢ F

i=0 =1
k-1
=for(c=Dfo .4 = foc®

and we indeed verify (A.1).

The constant: = \/me/fo > 1 is deduced from the
same equality (A.2) due to the definition 6F,,.. Finally,
the densityd(f) = ¢/(c — 1)-1/f at the pointsf = f;,

(A.2)

1=2,...,N, is obtained from
1 1
d(f;) = = .
U= o fin ™ (= Dfoci-2e — 1)
c 1
Tel1f (A.3)
[l

Proof of Theorem 3.1.
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f k+1

0, O O B2 Fp=1

b By Bs1 Os2 Fe=1

Fig. Al. aThe error functions? ™ (F) (continuous ling and &7 (F'r)
(dashed ling F'r = I, within the interval §7, 67, ]. Since the recruitment
orderz emerges fromr by exchanging only < ¢ + 1, the two functions
are equal outside this intervdl. The actual force’(Fr), Fr = I, within
the interval Py, 0r+2], once for fx, fr+1 and once forfy, = fr. +h, fr+1 =
fr+1 — h. If (&) is minimal, the local condition(¢5) — (#))/h = 0 is
satisfied

As in the proof of Theorem 2.1 we must show that, whenever

two successive forcef, fr+1 Of a recruitment order satisfy
the (nonoptimal) relatiorf, > fr+1, the transpositiork «—
k + 1 reduces the information contet], .

Let us consider the recruitment orderands as defined
in the proof of Theorem 2.1. For=1,... , N withi # k, i #
k+1, one hagp,(z?) = pT, (™) since the thresholdg™ and
07, i # k+1, corresponding to the recruitment orderands,
respectively, are the same. For the indexk + 1, however,
07,, > 07, and it is only the suns = po(z®) +p, (z-*D)
which is the same forr and 7. We now define

Hgs(\) = —(Alogy A + (S — A) log,(S — ) , A € (0, 5)

If, for example, A = ph(z®)), Hg()\) is that part of the
information contentH}, ,, which is obtained by restricting
the sum (10) to the two indices= k andi = k£ + 1. The
function Hg(\) has the property tha‘lfs(/\) > Hg()\) when-
ever|S/2— | < |S/2— A|. Using (11), the fact thai(]) is
monotonically decreasing and the assumpffipn- f;m, this
same condition is verified fox = p,(z®) andX = p7,(™) .
Together with (10) we therefore obtain

— Hjyy = Hs@ (™)) — Hs(pf(e™)) > 0

which was to be shown. O

7
HJ\JN

Proof of Theorem 3.3.

Let us first assume that(d;) = c1/6; with some constant
c1 > 0. Since Lemma 3.1 states th@&atp(d;) ~ ¢, with some
c2 > 0, one getsf; ~ (¢ — 1) 0; wherec — 1 =cy/c;. This
is, up to the approximation-, equivalent to (A.1). Using

the calculation (A.2) we conclude thgt = (¢ — 1)foc* 1,
i=1,...,N. The densityd(f) o< 1/ f is now deduced from
(A.3).

Conversely, ifd(f;) =c¢/(c—1)-1/f; fori= LN,
we conclude from the definitiod(f;) = 1/(f; — ) that

fi=c-fi1 (G= ., N). For the threshold8; = ZE Olf]

one calculates; = fo+f1 Z] L7 = for fr (T =1)/(e—

1). Setting f1 = (c — 1)fo we get ¢ — 1)0; = fic'™* = f;
which is equivalent tof; - ¢1/60; = ¢, . With Lemma 3.1 we
conclude thap(;) ~ ¢1/6; . |
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