Speed tuning in elementary motion detectors of the correlation type
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Abstract. A prominent model of visual motion detection
is the so-called correlation or Reichardt detector.
Whereas this model can account for many properties
of motion vision, from humans to insects (review, Borst
and Egelhaaf 1989), it has been commonly assumed that
this scheme of motion detection is not well suited to the
measurement of image velocity. This is because the
commonly used version of the model, which incorpo-
rates two unidirectional motion detectors with opposite
preferred directions, produces a response which varies
not only with the velocity of the image, but also with its
spatial structure and contrast. On the other hand,
information on image velocity can be crucial in various
contexts, and a number of recent behavioural experi-
ments suggest that insects do extract velocity for
navigational purposes (review, Srinivasan et al. 1996).
Here we show that other versions of the correlation
model, which consists of a single unidirectional motion
detector or incorporates two oppositely directed detec-
tors with unequal sensitivities, produce responses which
vary with image speed and display tuning curves that are
substantially independent of the spatial structure of the
image. This surprising feature suggests simple strategies
of reducing ambiguities in the estimation of speed by
using components of neural hardware that are already
known to exist in the visual system.

1 Introduction

The simplest way in which a visual system can determine
how fast and in what direction an object travels would
be to determine how long the object needs to cover the
distance between two given points. Indeed, ‘feature-
tracking’ mechanisms have been proposed along these
lines to explain motion vision (Braddick 1980; Ullman
1983) and are sometimes used in machine vision
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(Murray and Buxton 1990). The disadvantage of such
schemes, however, is that they need to identify the
object, or features within it, before carrying out the
tracking. In another class of models, this problem is
avoided by using information on local spatiotemporal
changes of intensity to measure velocity. In one subclass
of these ‘intensity-based’ models, the so-called gradient
models, image speed is determined by computing the
ratio of the local temporal and spatial gradients of
intensity (Fennema and Thompson 1975; Limb and
Murphy 1975). Gradient models have the property that
they measure the speed of an image independently of its
spatial structure. Modifications of this scheme have been
proposed for measuring image velocity in two dimen-
sions and for overcoming problems associated with low
and sparsely distributed contrasts (Hildreth and Koch
1987; Johnston et al. 1992; Srinivasan 1990).

Another subclass of the intensity-based models is the
so-called Reichardt or correlation detector, which ex-
tracts a motion signal from the spatiotemporal correla-
tions that are present in the moving image (Reichardt
1957). In this model, which has been very successful in
describing motion sensitivity in animal vision from in-
sects to primates (review, Borst and Egelhaaf 1989), the
signal from one input unit A is delayed or temporally
low-pass filtered and multiplied with that from a
neighbouring input B (see Fig. 1). As a consequence of
this structure, the model produces a strong output only
when the image moves in the direction (A — B). The
standard design of the correlation model, the so-called
balanced version, subtracts the output of this network
from that of an anti-symmetric one which multiplies the
signal from A with the filtered signal from B. The re-
sulting scheme produces a positive response when the
image moves in the direction (A — B), and a negative
response when the image moves in the direction (B —
A). Setting these two anti-symmetrical ‘half-detectors’ in
opposition has the virtue of cancelling out, by subtrac-
tion, the direction-unspecific components of the re-
sponse and makes the output of the overall network
highly selective for the direction of motion (Borst and
Egelhaaf 1990). Direction-unspecific response compo-
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Fig. 1. Basic structure of the ‘correlation” model of motion detection,
generalised here to the case of variable balance between the half-
detectors. Circles with dots denote non-linear interactions, namely the
multiplication of the two input signals. Square boxes denote the
temporal filters, namely pure time delays or temporal low-pass filters
as indicated by t. The symbol X represents a subtraction stage
(summation with opposite signs), and o indicates a variable gain factor
(coefficient of balance) which determines the degree to which the
outputs of the two half-detectors are balanced. A gain of a =1
represents the well-known fully balanced correlation model in which
both half-detectors contribute equally to the output; « = 0 represents
a fully unbalanced model in which only one half-detector contributes
to the response; and intermediate values of o represent partially
balanced detectors

nents may arise, for instance, from brightness changes in
the visual field which are unrelated to motion. The so-
called energy model is a variant of this basic scheme — by
combining a set of spatial and temporal filters as they
may be implemented in the primate visual cortex, in-
cluding a so-called opponency stage, it generates very
similar properties (Adelson and Bergen 1985; Verri and
Poggio 1986).

One of the prominent features of the correlation
model of motion detection is that the response depends
not only upon the speed of the image, but also upon its
spatial structure and contrast (Reichardt 1961; Varju
1959; Varju and Reichardt 1967; Buchner 1984). In
particular, when stimulated by moving sinusoidal grat-
ings, the response of the correlation model attains a
maximum not at a constant velocity, but at a velocity at
which the grating induces a specific temporal frequency.
The value of the optimum temporal frequency depends
upon the time delay or the time constant of the low-pass
filter. Thus, for a model with fixed parameters, gratings
with larger spatial wavelengths produce peak responses
at larger velocities. This property accounts very well for
the characteristics of the optomotor response in insects,
for example, and the optokinetic nystagmus in verte-
brates (review, Borst and Egelhaaf 1989). However, the
correlation model does not readily explain other be-
haviours that involve the extraction of image velocity
independently of the spatial structure, such as human
speed discrimination (Thompson 1984), or some more
recently investigated aspects of navigation and depth
discrimination in insects (Srinivasan et al. 1996).

Are the newly studied behaviours in insects mediated
by an entirely different kind of motion-detecting system,
or can they be explained by modifications of the well-

known correlation model? Here we show, analytically
and by numerical simulation, that by variation of the
balance coefficient in the correlation model, one can
produce responses to moving gratings that are more
closely related to velocity than to temporal frequency.
While this finding does not prove that image velocity is
indeed encoded in certain biological systems using such
mechanisms, it demonstrates that the measurement can
be made, in principle, by networks that require only
relatively minor modifications of the neural hardware
that is already believed to exist in biological visual
systems.

2 Methods

For the simulations, we used a reduced version of a two-
dimensional motion detector model (2DMD model;
Zanker 1996a, 1997), which comprises a linear array of
elementary motion detectors (EMDs) of the correlation
type. Each of the 256 EMDs in the array has the same
structure, looking in a ‘retinotopic’ manner at different
regions of a 2D stimulus. The EMD operated either
directly on the input intensity values, or the DC
components were removed by spatial band-pass filtering
in the two input lines of the EMD by means of isotropic
2D Difference of Gaussians (DOG) which mimic the
spatial transfer characteristics of many visual systems. A
first-order low-pass with time constant 7y was used as a
temporal filter. The temporally filtered signal from one
location was multiplied with the direct input from a
second location, separated horizontally by the sampling
interval A¢@. The output of two such anti-symmetric
subunits was subtracted with a balance coefficient o
varying between 0 (half-detector) and 1 (fully opponent
model) (see Fig. 1; for details of the 2DMD, see Zanker
1996b). In all simulations shown here, we fixed the
spatial and temporal model parameters at Ap = 4 pixels
and 1. = 2 simulation steps (frames). Each simulation
was run for 16 frames, which was sufficient for the
response to attain a steady state.

The stimuli consisted of sequences of 16 two-dimen-
sional images, comprising a vertically oriented sinewave
grating that was displaced horizontally between con-
secutive frames. The contrast of the grating was set to
maximum (intensity variation between 1 and 256 arbi-
trary units). The spatial period A (measured in image
pixels, inverse of spatial frequency) and the grating
displacement between consecutive frames, i.e. the speed
V' (measured in pixels per frame) were treated as vari-
ables. In the present context, the output of the EMD
array was averaged along its spatial dimension and over
the second half of the 16 response frames, to provide a
measure of the spatiotemporal average steady-state re-
sponses of the EMDs. The response, computed this way,
was compared for various stimulus and model parame-
ters. Basically, for any given set of model parameters, we
computed responses for 33 x 33 combinations of 4 and
V, which were varied independently in 32 logarithmic
steps between A = 4 and 256 pixels and ¥ = 1/4 and 16
pixels per frame. This yielded the 2D response contour



maps shown in Fig. 2. Since the spatial profile of the
sinusoidal grating was defined continuously and not in a
discrete manner, it was possible to generate sub-pixel
displacements (cf. Morgan and Watt 1982).

3 Results
3.1 Theory

Consider a sinusoidal grating with mean intensity /y, an
intensity modulation m and spatial period 4 (deg)
moving rightward at an angular velocity V' (deg/s). This
would induce a temporal frequency of ¥ /1 Hz in the
inputs, corresponding to an angular frequency
® =2nV /i The signal in receptor A (cf. Fig. 1) is
therefore Iy 4+ m - sin(wt). Let Agp denote the angular
separation between the neighbouring input units of the
correlation model. The output of the model is generated
by subtracting a fraction « of the response of one half-
detector from the response of the other, symmetrical
half-detector, as shown in Fig.l. Thus, o = 1.0 repre-
sents a balanced detector, o = 0.0 represents a half-
detector, and 0 < o < 1.0 represents a partially balanced
detector.

Denoting by 4(w) and ®(w) the amplitude and phase
response of the temporal filter, respectively, the tempo-
rally filtered input signal of the left detector input
channel S; and the unfiltered signal of the right input
signal S, (see Fig.1) can be expressed as

S1(t) = A(0) - Iy + A(w) - m - sin[w - t — D(w)]

and  Sx(¢) —Io+m'sin[co~t—w~A—Vﬂ
where A(0) denotes the zero-frequency (DC) gain of the
temporal filter. Similar expressions can be written for
the filtered signal S3 of the right detector input and the
unfiltered signal S, of the left input.

The response of the detector is given by
S1 -8, — oS3 -S4, where the bar denotes a time average.
It can be shown (cf. Egelhaaf et al. 1989) that in the
general case this response is

R=A4(0)-(1-a)-I§
+A(w) - m72 . {cos <wAV¢ + <D(a))>
—oc-cos(—wA—Vq)—HD(w)ﬂ (1)

If the model is balanced (« = 1) and uses a pure time delay
of magnitude AT, the amplitude and phase response are
given by 4(0) = A(w) = 1 and ®(w) = —AT - w, respec-
tively. Inserting this into equation (1) we obtain

2nA 2nV AT
R:m2~sin( n)u (p> . sin( n}b ) (2)

It is clear from (2) that the response does not depend
upon the velocity of the grating per se, but upon the
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temporal frequency ¥ /A that the moving grating induc-
es. The maximum response occurs at a temporal
frequency 1/4AT, regardless of the period of the grating.

If the model contains a first-order low-pass filter
with time constant t (instead of a pure time delay),
leading to an amplitude and phase response of

Alw) = ﬁ,A(O) =1, and ®(w) = —arctan (to),

respectively, the response is given by

m? . <2nAqo> . { <2nVr)]
R = - sIn - - sin|arctan | ——
1 +47r2K212 A A
\/ o
(3)

Here again, it is clear that the response does not depend
upon the velocity of the grating per se, but upon the
temporal frequency 7/ that the moving grating induc-
es. It can be shown that the maximum response occurs at
a temporal frequency 1/2xnt, regardless of the period of
the grating.

Consider next a half-detector (¢« = 0). With a pure
time delay (4(0) = 4(w) =1 and ®(w) = —AT - w), (1)
simplifies to

2 2V (A
R:I§+m7~cos[n7<7(p—AT>} 4)

We see from (4) that this response is no longer
dependent on temporal frequency per se. Rather, the
response attains a maximum at a constant velocity
Vopt = A@/AT, regardless of the period of the grating. In
other words, this detector is tuned to velocity rather
than temporal frequency.

If the half-detector uses a first-order low-pass filter
with time constant t instead of a pure time delay
(A(w) = ﬁ,A(O) =1, and ®(w) = —arctan (tw)),
from (1) we derive

m’ cos |2 Ap arctan 2nV
- - . Tt _
2..71 +4n2;1gz1:2 A A
(5)

We see that this response is not strictly a function of
velocity or temporal frequency. If we consider the
variation of the response as a function of velocity, it
can be shown that the maximum response occurs at a
velocity

A nA@
Vopt = T tan (}v ) (6)

The optimum velocity depends on the period 4 of the
grating. However, the dependence is weak because an
increase of A, for example, would cause the first term to
increase and the second to decrease. In particular, if
nA@/l < 1, ie. if the period of the grating is much
larger than the separation of the inputs, then (5) can be
approximated as

Ag
5 (7)

R=1I;+

V;)pt =
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Under these conditions, the optimum velocity is inde-
pendent of the grating period.

Consider, finally, a partially balanced detector
(0 << 1). The response of such a detector can be
obtained by combining the responses of the left half-
detector, Ry, and the right half-detector, Rrr.. We have
already calculated Ry for a detector with a pure time
delay (4) and a low-pass filter (5). In each case, the re-
sponse of the right half-detector, Rgy, is obtained from
Ryr simply by reversing the polarity of the velocity V of
the moving grating. The reason is that, since the right
half-detector is structurally a mirror image of the left
half-detector, the response evoked in the right half-de-
tector by a grating of a given contrast, period and speed,
moving from A to B, would be identical to the response
evoked in the left half-detector by an identical grating
moving from B to A. The overall response of the par-
tially balanced detector is then given by

R = RHL — OCRHR (8)

Inserting (4) into (8), we see that the response of a partially
balanced detector with pure time delays is given by

2
a2+ L eos | (A2
R=(1-uw) 10—1—2{005{;L (V AT)]

o[22 (42 1a)] ) 0

Inserting (5) into (8), the response of a partially balanced
detector with first-order low-pass filters is

R=(1-a) I}

+

m—2 {cos {271 % — arctan <277: VT)}
2../1+ 4,1222.[2 A A
Y, R
A 2nV
—0o - COS {ZnT(p + arctan< 71 Tﬂ }

Naturally, (9) and (10) reduce to the expressions (2) and
(3), respectively, for the case of fully balanced detectors
(x = 1), and to expressions (4) and (5), respectively, for
the case of half-detectors (o = 0).

Summarising the above results, we see that balanced
detectors (e« = 1) produce a response that depends crit-
ically on the temporal frequency of periodic gratings,
while half-detectors (¢ = 0) produce a response that
critically depends on velocity. We expect that partially
balanced detectors (o = 0.5) will exhibit a behaviour that
lies between these two extremes. That is, their responses
should exhibit speed tuning curves that depend weakly
on the grating period. In the next section we investigate
the properties of fully balanced detectors, partially bal-
anced detectors and half-detectors by means of com-
puter simulations.

3.2 Simulation

To get a general impression of the behaviour of motion
detectors as revealed by computer simulations, the
complete wavelength-speed profiles of the average
detector responses are shown in Fig. 2 as contour plots.
The fully opponent model (Fig. 2a) generates the
characteristic response profile of a correlation detector.
For grating displacements that are larger than half the
period between successive frames (top right corner of
plot), the stimulus appears to move in the opposite

Fig. 2a—c. Response profiles of three motion detector models (sketched
in the insets) for the variation of spatial frequency and speed of moving
gratings. Response contours are shown in 10% steps of the maximum
response, broken lines indicate regions of negative response. a In the
fully balanced correlation detector, two anti-symmetrical subunits are
subtracted from each other. b The ‘half-detector’ is a correlation
detector stripped down to only one (asymmetrical) subunit. ¢ In this
simple implementation of a gradient detector, after spatially bandpass
filtering of the input signal, the temporal gradient (approximated by
differences between successive simulation steps) is divided by the spatial
gradient (approximated by the difference between neighbouring points,
to which a small constant ¢ is added)
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direction, as a consequence of which the response is
inverted (dotted contours indicate negative response
regions). This phenomenon, known as ‘temporal alias-
ing’, is an artefact of the temporally discrete nature of
the simulation and would not occur in a biological
network using continuous time-dependent signals. A
second region of negative response, often referred to as
‘geometric interference’ or ‘spatial aliasing’, can be
observed for fine gratings (top left area of plot). When
the period A is smaller than twice the sampling distance
of the detector, the ‘Nyquist limit’ 2 A¢, the detector
response is inverted (e.g. G6tz 1964). By introducing a
bandpass filter into the input lines as mentioned in the
Methods, this effect can be minimised, with significant
responses being more or less limited to a range of
gratings with a spatial period between 8 and 32 pixels,
for instance (data not shown). In the dominating region
of positive response, the contours are slanted and
skewed, leading to an oblique overall orientation of
the profile. As a consequence, the maximum response
occurs at higher speeds when / is increased. This
characteristic pattern of results, which is less pro-
nounced though qualitatively the same for a detector
with a spatial bandpass in the input (data not shown),
will be shown in more detail in Figs. 3 and 4 below.
The half-detector (Fig. 2b) generates a response
profile that shares some similarities with the fully op-
ponent model, but is dominated by an overall positive
response that is largely independent of the stimulus pa-

Fig. 3a—c. Speed characteristics of three variants of the correlation
model. Each panel shows the average motion detector response to
rightward motion of gratings as function of speed V (abscissa) for
three different grating periods 4 (indicated by different symbols). All
data are normalised to the maximum response that is elicited by each
grating of a given period. Note that the data are plotted on different
scales for the ordinate. The continuous functions are derived from
(10), whereas the data points are the results of computer simulations
of a motion detector array. The results from these two procedures
differ for large pattern displacements where the apparent motion
stimuli of the digital simulations begin to alias. a For a fully opponent
correlation detector (balance coefficient o« = 1.0), the speed optimum
is shifted to higher values for larger grating periods. b For an
‘imperfectly’ balanced detector (x =0.5), the speeds eliciting the
largest response come closer together for the various gratings. ¢ For
the correlation half-detector (« = 0), the optimum speed and the speed
tuning curves are virtually identical for a range of grating periods
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rameters. This is a consequence of the fact that in this
model the effects of DC components in the input signals
are no longer cancelled by subtracting the two anti-
symmetrical units [cf. (5)]. Accordingly, stimulus aliasing
inherent to the apparent motion stimulus and geometric
interference do not generate negative responses, but lead
to smaller positive responses. When spatial bandpass
filters are added to the front end of the model to remove
the DC components from the input, the usual sign in-
versions are observed (data not shown). The regions of
response reduction/inversion due to geometric interfer-
ence are larger than those observed for the fully bal-
anced model. This further supports the view that a
perfectly balanced model, incorporating two anti-sym-
metrical half-detectors, possesses increased directional
selectivity (cf. Borst and Egelhaaf 1990).

The major observation in this contour plot, however,
is that the lobes of positive response are not skewed, but
rather stacked vertically with respect to the speed axis.
As a result, the response maxima are largely independent
of the structure of the stimulus pattern, as will be ana-
lysed in more detail in Fig. 3 and 4.

For purposes of illustration and immediate compar-
ison (Fig. 2c), the same simulations were carried out for
a simple implementation of the gradient scheme. For
this model, after spatial bandpass filtering of the input
with a DOG filter, the difference of the signals of two
consecutive frames is divided by the difference between
signals from neighbouring points, after adding a small
constant (¢ = 0.01) to the denominator. In this contour
plot it is clear that, apart from perturbations related to
stimulus aliasing, the response increases approximately
linearly with speed, largely independently of the struc-
ture of the stimulus pattern. This shows that this im-
plementation, at least within the limits tested here, meets
the expectations of the gradient scheme (Fennema and
Thompson 1975; Horn and Schunck 1981; Limb and
Murphy 1975) and that one could indeed retrieve a
largely unambiguous speed signal with such a model. In
particular, there is no decrease of the response after
reaching a maximum speed, a property that is qualita-
tively different from the correlation-type models. We
also note that, despite the fact that a spatial bandpass
filter is operating on the input images, the spatial fre-
quency tuning of the gradient scheme is rather broad,
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Fig. 4. Variation of optimum speed ¥, with grating period 4, for five
variants of the correlation model with different balance coefficients o
(indicated by different line types), as derived from (10). With
decreasing balance coefficient, the overall orientation of the lines
changes from diagonal (continuous line) to horizontal (dotted line),
indicating a change from temporal frequency tuning to speed tuning.
This general pattern is overlaid by systematic deviations in Vo, that
are predicted by the theory for small values of o when pattern
wavelengths approach the sampling interval Ag

unlike the situation in correlation-type models with
bandpass filters in their input lines.

Figure 3 examines more closely the dependence of the
average detector response on grating speed, with the
grating period A treated as simulation parameter. To
ease the comparison between the tuning curves for dif-
ferent A, the results are normalised with respect to the
maximum response for a given grating (the scaling fac-
tors are shown as labels next to each curve in the figure).
Furthermore, the negative response contributions due to
aliasing are excluded from the simulation data points
shown in Fig. 3, which at large speeds differ for that
reason from the graphs resulting from (10) that are
shown as continuous lines. In the perfectly balanced
correlation detector, the response curve shifts rightward
along the speed axis as the grating period A is increased,
as expected (Fig. 3a). The optimum speed is clearly
proportional to /, leading to a constant optimum tem-
poral frequency fopi = Vopt/4. This means that the re-
sponse is a maximum when a fixed number of stripes
pass the visual field of the detector per unit time. An
imperfectly balanced model (« = 0.5) behaves differently
(Fig. 3b). Apart from generally elevated response levels
(note that the ordinate scales vary in Fig. 3), the speed
characteristics for the three gratings approach each
other for this unbalanced correlation detector. As a
consequence, the maximum response occurs at rather
similar speeds for gratings of different periods. This
trend becomes more prominent when the balance coef-
ficient « is set to zero. In such a half-detector (Fig. 3c),
the grating speed that elicits the strongest response is
virtually identical for the two larger values of A. The
grating with the smallest period, close to the interference
limit 2A¢, elicits the maximum response at a slightly
higher speed. Under these extreme stimulus conditions,
the behaviour of the standard, fully balanced correlation
detector is even inverted.

To examine further the influence of stimulus temporal
frequency and speed, we plot in Fig. 4 the optimum
speed as a function of the grating period, as derived by
using (10). Five detector variants that differ in the bal-
ance coefficient (indicated by different symbols in the
figure) are compared, the extreme cases being the fully
balanced detector (balance coefficient o« = 1.0, con-
tinuous line) and the half-detector (« = 0.0, dotted line).
For the fully balanced detector, all significant data
points lie on a diagonal, indicating that the optimum
velocity Vop is strictly proportional to grating period A.
In other words, the response peaks at a constant tem-
poral frequency. For the half-detector, the optimum
velocity remains approximately constant for grating
periods ranging between A = 20 pixels and A = 80 pixels,
but increase when the interference limit 4 = 8 pixels is
approached, where all responses are virtually zero. This
generally ‘inverse’ behaviour for very small wavelengths
confirms the observation made with the simulations
shown in Fig. 3c, and can be expected from the restric-
tion for approximating (6) by (7). It is clear, however,
that the half-detector does not exhibit the constant fop
despite the variation of 4 — that is characteristic of the
standard, fully balanced correlation detector (this be-
haviour is referred to as temporal frequency tuning,
without implying that the detector response depends
unambiguously on the temporal frequency of a moving
pattern). As predicted in the ‘theory’ section, for large
grating periods this detector exhibits constant ¥, for
the variation of 4 (this behaviour is referred to as speed
tuning, without implying that the detector response is
determined unambiguously by pattern speed). The three
other data sets in Fig. 4 illustrate that correlation models
with intermediate values of the balance coefficient o
display intermediate characteristics. Thus, in this way, a
continuum between temporal frequency tuning and
speed tuning can be achieved by varying the degree to
which two opponent half-detectors are balanced.

4 Discussion

It has commonly been assumed that motion detectors
based on the correlation scheme always respond best to
a characteristic temporal frequency rather than a
characteristic speed. Indeed, this property has been used
as a characteristic ‘fingerprint’ to probe for the existence
of such schemes in animal vision. Here we have shown
that this kind of temporal frequency tuning is exhibited
only by a perfectly balanced correlation model. If we
consider imperfections in the subtraction stage that lead
to an imbalance between the two anti-symmetric sub-
units, and eventually to a half-detector, the character-
istics of a correlation detector are gradually transformed
from temporal frequency tuning to a kind of speed
tuning. The half-detector, which represents the case of
extreme imbalance, responds best to a preferred speed,
largely independent of the spatial period of the stimulus
grating, but at the expense of directional selectivity
(Egelhaaf et al. 1989). This has two important conse-
quences. Firstly, a signal closely related to speed could



easily be made available to the visual system even if
movement detection is mediated by a mechanism that
relies on correlation. It is easy to imagine that the speed
and temporal frequency of a moving grating are coded
simultaneously, and can be accessed simply by using the
signals appearing before and after the subtraction stage,
respectively, of a fully opponent correlation model. The
important point is that in such a scheme of double
‘readout’, with the restrictions discussed in the next
paragraph, there is no need to invoke additional
mechanisms of higher complexity to account for the
measurement of speed. Secondly, this means that on the
basis of experimental findings indicating that some speed
signal is used to control behaviour, for instance, it will
be difficult to reject the hypothesis that the underlying
mechanism is of the correlation type.

Although a half-detector is speed-tuned, it would not
be capable of measuring the speed of a grating unam-
biguously. One reason is that the bell-shaped response-
versus-speed curve implies that a response of a given
magnitude could have been evoked by one of two dif-
ferent speeds. This ambiguity can be eliminated by using
an additional half-detector with a different speed tuning
(i.e. a different optimum speed). The relative strengths of
the responses of the two detectors would then provide
unambiguous information on speed. The contrast of the
grating is another factor that confounds the ability of a
single detector to measure speed unambiguously. This is
because, for a grating of a given period and speed, the
response increases as the square of the contrast [cf. (1)],
and changes in detector output could therefore be due to
changes in speed or to changes in contrast. This ambi-
guity can again be eliminated by comparing the re-
sponses of two or more detectors with different speed
tunings. The ratio of their responses, for example, would
provide an indication of speed that is largely indepen-
dent of contrast. Furthermore, it has to be remembered
that all these considerations refer to the steady-state
response; the outcome may be different under dynamic
conditions.

Apart from gradient-based detectors, other schemes
have been proposed for estimating the velocity of image
motion independently of spatial structure and contrast.
Usually, this involves a combination of several channels
tuned to different spatial and temporal frequencies (e.g.
Heeger 1987, Zanker and Braddick, in preparation),
which also resolve other ambiguities, such as those
caused by variations in contrast. In this context, two
independent studies have used half-detectors of the
correlation type to estimate speed (Gliinder 1990; Snippe
and Koenderink 1994). Gliinder (1990) presents a model
for estimating 2D velocity. This uses an array of half-
detectors with sampling bases (Ag) of various sizes and
various directions, and estimates the speed and direction
of image motion in terms of the centroid of the distri-
bution of detector response in this parameter space.
Snippe and Koenderink (1994) discuss the velocity tun-
ing properties of half-detectors and show how the tuning
can be sharpened by using multiple delays or time con-
stants, together with multiple sampling bases. Contrast
invariance is achieved by using detectors tuned to dif-
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ferent velocities and adopting a winner-takes-all princi-
ple. However, both of these studies retrieve velocity
from an ensemble of correlation detectors and do not
consider the properties of the single element in any de-
tail. Our study, in contrast, focuses on comparing the
properties of a half-detector with those of a full detector
or a partially balanced detector.

Electrophysiological studies of the large-field, direc-
tionally selective neurones in the visual system of the fly
have often revealed the presence of second harmonics
(signals at twice the temporal frequency of the moving
grating) in their response (Egelhaaf et al. 1989). This has
been interpreted as evidence that the underlying motion
detectors are not perfectly balanced, and the amplitude
of the second harmonic has been used to infer the degree
of imbalance. In the light of our findings, it would be
interesting to investigate experimentally the temporal
frequency and velocity tuning of such units, and to ex-
amine whether the dependence of optimum speed on
spatial structure is related to the prevalence of the sec-
ond harmonic signals in the response of those neurones.

Recent behavioural studies on freely flying insects
suggest the presence of motion-detecting mechanisms
that retrieve the speed of the image on the eye, rather
independently of the spatial structure of the image. For
example, honeybees flying through a tunnel maintain
equidistance from the side walls by balancing the ve-
locities of the images on the two eyes, even when the
walls carry gratings of different spatial periods (Kirchner
and Srinivasan 1989; Srinivasan et al. 1991). Bees can
use image motion to distinguish objects at different
distances, independently of their absolute size (Lehrer
et al. 1988; Kirchner and Srinivasan 1989); they can also
distinguish objects of different absolute sizes, irrespec-
tive of their ranges (Horridge et al. 1992). These findings
imply that bees can disentangle size cues from velocity
cues, and measure the two parameters independently.
Bees can also be trained to find a food reward at a
constant distance from a landmark, independently of the
size of the landmark (Lehrer and Collett 1994). This
again suggests that the motion of the image of the
landmark is being measured independently of the size of
the image on the retina. Bees flying through long tunnels
measure distance travelled by integrating, over time, the
image velocity that they experience en route (Srinivasan
et al. 1996). This computation is again robust to changes
of the texture lining the tunnels. All of these behaviours
require image speed to be measured independently of
spatial structure. It is possible that these behaviours are
mediated by motion-detecting mechanisms that are en-
tirely different in nature from the well-known correla-
tion scheme, as suggested by some recent studies (e.g.
Douglass and Strausfeld 1996; Srinivasan et al. 1991,
1993; Srinivasan and Zhang 1997). Another possibility,
however, is that sensitivity to velocity is achieved by
using half-detectors or imperfectly balanced correlation
mechanisms, as described here.
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