
Abstract. Using Stein's model with and without reversal
potentials, we investigated the mechanism of production
of spike trains with a CV (ISI) (standard deviation/mean
interspike interval) greater than 0.5, as observed in the
visual cortex. When the attractor of the deterministic
part of the dynamics is below the ®ring threshold, spike
generation results primarily from random ¯uctuations.
Using computer simulation for a range of membrane
decay times and with other model parameters set to
values appropriate for the visual cortex, we demonstrate
that CV (ISI) is then usually greater than 0.5; if the
attractor is above the threshold, spike generation is
mainly due to deterministic forces, and CV (ISI) is then
usually lower than 0.5. The critical value of the
inhibitory postsynaptic potential (IPSP) rate at which
CV (ISI) becomes greater than 0.5 is determined,
resulting in speci®cations of how neurones might adjust
their synaptic inputs to elicit irregular spike trains.

1 Introduction

In vivo cell recordings show that most neurones ®re
irregularly. For example, the coe�cient of variation
(CV), of interspike intervals (ISIs), of neurones in the
visual cortex of the monkey is greater than 0.5 [28].
A comparison between in vitro and in vivo experiments
strongly supports the assertion that the irregularity
results from input from other neurones, both inhibitory
and excitatory [14]. How does the variability of the
elicited spike train relate to the characteristics of the
synaptic input? This is a fundamental question and one
of the central themes in computational neuroscience [17,
30]. A better understanding of the origins of irregularity
in spike trains will help us to elaborate general principles
of neuronal circuitry [20, 21, 25±27] and to test whether
rate or timing coding is the fundamental mode of neural
communication [12, 15, 27].

In this paper, using the leaky integrate-and-®re model
(Stein's model), we explore how values of CV (ISI)
(abbreviated to CV in the remainder of the paper)
greater than 0.5 occur for physiologically plausible pa-
rameter regions. The ®ring mechanisms in these model
neurones can operate in two ways. The ®rst occurs when
the passage of membrane potential to the ®ring thresh-
old is essentially driven by deterministic forces (as de-
®ned below in Sect. 2.4), possibly supplemented or
modi®ed by random ¯uctuations; that is to say, without
these ¯uctuations the neurone would ®re regularly. In
this case CV is usually less than 0.5. The other case
occurs when the threshold is crossed primarily as a result
of random ¯uctuations; in this case, without the ¯uctu-
ations ®ring would not occur at all, and CV is normally
greater than 0.5. This provides an answer to the ques-
tion: how does CV greater than 0.5 occur? Using this
theory, we also estimate how large an inhibitory post-
synaptic potential (IPSP) rate (or alternatively what
number of active inhibitory synapses) is needed for CV
to reach 0.5. This answers the question: when does a CV
greater than 0.5 occur? We provide evidence for these
relationships for a range of parameter values using
computer simulations of Stein's model.

To con®rm our results using a slightly more realistic
model, we consider a model with reversal potentials.
Numerical simulations provide the same results as for
the leaky integrator without reversal potentials. The
number of inhibitory input synapses or the IPSP rate at
which CV becomes greater than 0.5 closely matches the
number at which random ¯uctuations are essential for
threshold crossings to occur.

In recent years there has been much research on the
output variability of single neurone models, see for ex-
ample [8] and references therein. In particular (see also
[23]), Troyer and Miller [32] have pointed out that if
postspike voltage is reset to a value higher than the
resting potential, the integrate-and-®re model is capable
of producing e�erent spike trains with a CV greater than
0.5. In the present paper and [8] where the behaviour of
the perfect integrate-and-®re model was analysed, we
show that there is a wide range of parameters within
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which the integrate-and-®re model ®res irregularly, with
a CV greater than 0.5. We focus on Stein's model with or
without reversal potentials, but without the device used
by Troyer and Miller. A major purpose of the present
paper is to clarify the underlying mechanisms of gener-
ation of irregular spike trains for the integrate-and-®re
model. Our work thus di�ers from some earlier studies
[32] both in the model used and the purpose of the in-
vestigation. Furthermore, to the best of our knowledge,
no one has systematically carried out an analysis (con-
®rmed by numerical simulations) of CV by linking it to
the position of the equilibrium of the deterministic part
of the single neurone dynamics, as we do here.

2 Models

2.1 Stein's model

The basic idea of Stein's model [7, 13, 34] is that
neurones are integrate-and-®re devices charged with
incoming excitatory postsynaptic potentials (EPSPs) and
IPSPs. The inter-arrival times of single EPSPs and IPSPs
are exponentially distributed with rate NEkE and NIkI,
respectively, where NE�NI� is the number of a�erent,
excitatory (inhibitory) synapses and kE�kI� is the rate of
EPSPs (IPSPs) propagating along each synapse. The
membrane potential Vt at time t is governed by

dVt � ÿ 1

c
�Vt ÿ Vrest�dt � a � dNE

t ÿ b � dN I
t �1�

with V0 � Vrest, where a > 0 and b > 0 are the magnitude
of single EPSPs and IPSPs, Vrest is the resting potential,
1=c the decay rate and NE

t ;N
I
t are Poisson processes with

rate NEkE and NIkI. Once the membrane potential
crosses the threshold potential, Vth, a spike is elicited,
and Vt is reset to Vrest. We take Vrest � ÿ50 mV, Vth is
20 mV above the resting potential and a � b � 0:5 mV
[30] for Stein's model.

2.2 Lower bounds on membrane potential

There is, however, a substantial problem for the model
de®ned by (1). We know that the voltage of single
neurones is bounded from below, about 10 mV below
the resting potential, but Vt visits any negative value with
a positive probability. There are several ways to prevent
this from happening. One is simply to suppose the
membrane potential is V �t � max�Vt; Vrest�. The advan-
tage of this modi®cation is that all analytical results in
the literature on the ®rst exit time of Vt are valid for V �t
[13, 34]. Another way is to impose a lower boundary
condition for Vt and thus obtain a new process vt [30]
which is de®ned in the following way.

dv�n�1�t � ÿ 1
c �v�n�1�t ÿ Vrest�dt � a � dNE

t ÿ b � dN I
t

v�n�1�sn�1 � Vrest

(
�2�

Let s1 � 0, n � 0, and de®ne a sequence of stopping
times by

sn�1 � infft : v�n�t < Vrest; t � sng
vt is then de®ned as

P
n v�n�t Ifsn<t<sn�1g, where I is the

indicator function. According to the de®nition above, it
is easily seen that vt � Vrest. Obviously, vt and Vt or V �t
are di�erent. Suppose that at time t0; Vt0 � Vrest; and
Vt < Vrest for t0 < t < t1. Vt evolves according to (1) and
therefore below the resting potential; for t0 < t < t1; V �t
remains at its resting potential, and any incoming EPSPs
have no e�ect. Furthermore, the ®rst passage times of Vt
and V �t are identical. vt, however, responds to any
incoming EPSPs, and therefore vt is di�erent from Vt,
and their ®rst passage times might be di�erent. V �t might
spend a very long time at the resting potential and not
respond to any incoming signals at all. The de®nition of
vt overcomes this drawback. Interestingly from numer-
ical results (see Fig. 1), we conclude that if we concen-
trate on CV, which is the purpose of this paper, the
behaviour of these two models is very close, and hence
all theoretical results about CV of Vt are good approx-
imations to those of vt. In the remainder of this paper,
we therefore con®ne ourselves to Vt.

The other, more biologically realistic modi®cation is
to include reversal potentials in Stein's model [23, 34]

dZt � ÿ Zt ÿ Vrest

c
dt � �a�VE ÿ Zt�dNE

t � �b�VI ÿ Zt�dN I
t

�3�
Zt is now a birth-and-death process with boundaries VE

and VI where VI < Vrest < Vth < VE. Once Zt is below Vrest,
the decay term Zt ÿ Vrest will increase membrane poten-
tial Zt; whereas when Zt is above Vrest, the decay term will
reduce it.

2.3 Deterministic and stochastic components

Usually a discrete process like Stein's model (a birth-
and-death process [6]) is hard to deal with theoretically,
and so various approximations have been sought. The
di�usion process [9] serves such a purpose [24, 34]:

dwt � ÿ 1

c
�wt ÿ Vrest�dt � l dt � r dBt �4�

with w0 � Vrest, where Bt is standard Brownian motion
and

l � aNEkE ÿ bNIkI r2 � a2NEkE � b2NIkI �5�
More generally, a stochastic dynamical system can be
expressed as

dXt � b�Xt�dt � r�Xt�dMt �6�
where b; r 2 C1�IR� and Mt is an L2-martingale. We
de®ne the following dynamics

dEXt � Eb�Xt�dt �7�
as the deterministic part of Xt where E is expectation [3].
Note that Vt;wt and Zt are all of form (6). For example,
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Stein's model with Poisson process inputs can be written
in this formulation, with deterministic component
yt � EVt given by

dyt � ÿ 1

c
�yt ÿ Vrest�dt � l dt �8�

and stochastic component �r � 1�
d �Mt � a�dNE

t ÿ NEkE dt� ÿ b�dN I
t ÿ NIkI dt� �9�

When we say a state y is an attractor of the deterministic
part of Vt we mean that y is an attractor of the dynamics
(8).

3 Results: Stein's model

We ®rst consider Stein's model and then move (in the
next section) to a model with reversal potentials. For
convenience of discussion, we have ®xed a few param-
eters: NE � 100 � NI (see [30] for a discussion of this
choice), kE � 100Hz [1], and c lies within the range
20:2� 14:6ms [22]. Hence the rate of total excitatory
inputs is 10; 000 Hz, which is approximately equivalent
to 300� 33 Hz due to the properties of the Poisson
process, i.e. N 0E � 300 and k0E � 33. In [30] the authors
employ N 0E � 300 in their simulations. Furthermore, in
our simulations, c takes the values 5.6, 10.1, 20.2,
34.8 ms. As pointed out in the previous section, it is

hard to ®nd an informative analytical formula for the
®rst exit time of Vt from �ÿ1; Vth�.

3.1 Predicting CV

A direct check on the dynamics de®ned by (1) shows that
there are two essentially di�erent cases:

1. Vth > lc� Vrest, i.e. the threshold is above the position
of the attractor y of the deterministic part given by

ÿ�y ÿ Vrest�=c� l � 0 �10�
The process starting from Vrest will initially be driven
by the deterministic force ÿ�yt ÿ Vrest�=c dt � l dt to
approach lc� Vrest, while also ¯uctuating with a
random motion d �Mt about this trajectory. Once, the
membrane potential reaches lc� Vrest, the determin-
istic force ± tending either to depolarize or hyperpo-
larize the membrane potential ± becomes zero. The
random ¯uctuations cause the membrane potential to
¯uctuate around lc� Vrest and threshold crossings
occur purely as a result of these random ¯uctuations.
We then expect the e�erent spike train to be irregular.

2. Vth < lc� Vrest. In this case, the membrane potential
would cross the threshold as a result of the deter-
ministic force ÿ�yt ÿ Vrest�=c dt � l dt alone, but its
trajectory is modi®ed by random ¯uctuations. We
expect then that the e�erent spike trains would be
quite regular.

Fig. 1. Mean ®ring time and coe�cient of variation (CV) for the two models Vt (lines) and vt (points), kE � 100. We numerically simulate CV and
®ring time of vt and Vt at kI � 10; 20; . . . ; 100 for NE � NI � 100. When the ratio r � kI=kE is small both ®ring time and CV of Vt and vt are
close. kd

I is de®ned as the point at which CV equals 0.5 and indicated by arrows, from left to right, for comparison with Fig. 2
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Note that this analysis does not involve the well-known
theory of random perturbations (see [3] for a complete
description, [29, 35, 37]) where the random force
becomes small, and the trajectories of the random
processes concentrate around the deterministic trajecto-
ries. Then, only with a small probability does the
random process deviate from the deterministic process.
As a consequence its CV approaches zero. In the model
we consider here, the variation of the random term is
always greater than a

�����������
NEkE
p

. This large random force
will always introduce appreciable and signi®cant `noise'
into the model.

How does the nature of the synaptic inputs relate to
whether �Vth ÿ Vrest� < lc or > lc? According to the
de®nition of l, we see that the threshold condition
�Vth ÿ Vrest� � lc is equivalent to kE ÿ kI � �Vth ÿ Vrest�=
�acNE�. Let us denote ka

I � kE ÿ �Vth ÿ Vrest�=�acNE� as
the critical point, the critical level of inhibitory input, at
which the dynamical attractor equals the threshold.
Starting from kI � 0 (see Fig. 2), i.e. input with only
excitatory synapses, we see that the position of attractor
w is above the threshold. For c � 5:60 ms, ka

I � 29 is the
critical point(indicated by arrow in Fig. 2): for kI < 29
the attractor is situated above the threshold; and vice
versa for kI > 29. ka

I � 61; 80; 89 are the critical points
for c � 10:1 ms, c � 20:2 ms and c � 34:8 ms, respec-
tively (indicated by arrows in Fig. 2). In particular, when
an exact balance between excitatory and inhibitory in-

puts is attained, the attractor y is situated at the resting
potential, i.e. there is no deterministic input from syn-
aptic input at all.

3.2 Testing the predictions

Corresponding to the cases discriminated above, we
carried out numerical simulations of Stein's model to
determine whether the predictions about CV are correct.
We ®nd that the threshold (ka

I ) at which CV is greater
than 0.5 almost coincides with the threshold at which Vth

becomes less than Vrest � lc as shown in numerical
results (Fig. 1b).We summarise the numerical results in
Table 1. More speci®cally, we have the following result:

kd
I ÿ 10 < ka

I < kd
I � 10 �11�

In conclusion, we see that CV is greater than 0.5 mainly
due to random forces, the increase in which is caused by
the increase in inhibitory synaptic inputs. When inhib-
itory inputs and excitatory inputs are poorly balanced,
output CV is less than 0.5, whereas a good balance
ensures a CV greater than 0.5. CV is thus a good
indicator of the underlying dynamics: CV > 0:5 implies
that the attractor is almost always below the threshold;
CV < 0:5 that the attractor is almost always above the
threshold. Finally, it is impossible to assert ka

I � kd
I since

when the attractor is close to the threshold, prediction of
CV becomes uncertain because the `noise' term d �Mt is
appreciable.

4 The model with reversal potentials

In this section we assume that VI � ÿ60 mV and
VE � 50 mV, values which match experimental data
and, are used in the literature [23]. Again as in the
literature [23], we impose a local balance condition on
the magnitude of each excitating PSP (EPSP) and IPSP
by �a�VE ÿ Vrest� � �b�Vrest ÿ VI� � 1 mV, i.e. starting from
the resting potential, a single EPSP or a single IPSP will
depolarize or hyperpolarize the membrane potential
1 mV above or below the resting potential. We also
consider the case in which these expressions equal
0.5 mV.

4.1 Predicting CV in the presence of reversal potentials

The deterministic part of Zt de®ned by (3) can be written
as

Fig. 2. Position of attractor y, a linear function of NI, de®ned by (10)
vs inhibitory postsynaptic potential (IPSP) rate, for NI � 100 and
total (EPSP) rate=10,000 Hz. When there are only excitatory inputs,
y is above the threshold (20 mV above resting potential which equals
ÿ30 mV) no matter what c is, for su�ciently strong input intensity; a
better balance between excitatory and inhibitory inputs pulls it down
to the resting potential ÿ30 mV. The values of ka

I at which the
attractor is equal to the threshold are indicated by arrows for di�erent
c � 5:6; 10:1; 20:2 and 34:8 ms (from left to right), by comparison
with Fig. 1b

Table 1. ka
I and �kd

I ÿ 10; kd
I � 10� for c � 5:60; 10:1; 20:2; 34:8 ms

in Stein's model

c (ms) ka
I �kd

I ÿ 10; kd
I � 10�

5.60 29 [24, 44]
10.1 61 [50, 70]
20.2 80 [64, 84]
34.8 89 [70, 90]
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dEZt � ÿEZt ÿ Vrest

c
dt

� ��a�VE ÿ EZt�NEkE � �b�VI ÿ EZt�NIkI�dt �12�
and the equilibrium state is given by

z � Vrest=c� �aNEkEVE � �bNIkIVI

1=c� �aNEkE � �bNIkI
�13�

As before we de®ne ka
I as the value satisfying

Vth � Vrest=c� �aNEkEVE � �bka
INIVI

1=c� �aNEkE � �bka
INI

We have a similar situation (Fig. 3) as described
above for Stein's model: a strong imbalance between
excitatory and inhibitory inputs, i.e. an equivalent large
deterministic input ensures the attractor z is above the
threshold Vth; a better balance between excitatory and
inhibitory inputs moves the attractor towards the resting
potential, here ÿ50 mV.

4.2 Testing the predictions

Numerical results are summarised in Table 2 for Vth �
ÿ25 mV (25 mV above the resting potential),
Vth � ÿ30 mV (20 mV above the resting potential)
and Vth � ÿ35 mV (15 mV above the resting potential).
We see that a much better prediction than that of Stein's

model (without reversal potentials) is obtained. For
example, when Vth � ÿ30 mV we have kd

I � ka
I � kd

I � 2.
In other words in Stein's model with reversal potentials,
kd
I is constrained to be closer to ka

I than in the same
model without reversal potentials.

From numerical results (see Figs. 1b and 4), we see
that one of the di�erences between Stein's model with
and without reversal potentials lies in the former being
much less sensitive to the decay rate 1=c [19]. This could
be understood from (4) and (2). If we rewrite (4) in the
form

Fig. 3. Position of attractor z de®ned by (13) vs IPSP rate kI, kE � 100
with �a�VE ÿ Vrest� � �b�Vrest ÿ VI� � 1 mV, and NE � 100 � NI. When
there are only excitatory inputs, z is above the threshold (ÿ30 mV); a
better balance between excitatory and inhibitory inputs moves it
towards the resting potential ÿ50 mV. ka

I ± at which the position of
attractor is equal to the threshold ± is indicated by arrows for
c � 5:6; 10:1; 20:2 and 34:8 ms (from left to right)

Table 2. ka
I and �kd

I ÿ 10; kd
I � 10� for c � 5:6; 10:1; 20:2 and

34.8 ms, Vth � ÿ25, )30 and )35 mV. Results for the case when
Vth � ÿ30 mV are plotted in detail in Figs. 3 and 4

c (ms) ka
I �kd

I ÿ 10; kd
I � 10�

5.60 9 [0, 20]
10.1 15 [5, 25]
20.2 18 [8, 28]
34.8 19 [9, 29]

Vth � ÿ25mV
5.60 15 [5, 25]
10.1 20 [11, 31]
20.2 23 [12, 32]
34.8 25 [13, 33]

Vth � ÿ30mV
5.60 23 [12, 32]
10.1 28 [14, 34]
20.2 31 [14, 34]
34.8 32 [16, 36]

Vth � ÿ35mV

Fig. 4. CV in simulations of the reversal potentials model for
the case �a�VE ÿ Vrest� � �b�Vrest ÿ VI� � 1 mV, NE � 100 � NI,
Vth � ÿ30 mV, calculated at kI � 10; 20; � � � ; 100 for c � 5:60;
10:1; 20:2 and 34:8 ms, and kE � 100. kd

I is de®ned as the point
at which CV equals 0.5, indicated by arrows, for comparison with
Fig. 3
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dZt �ÿ Zt ÿ Vrest

c
dt ÿ �a�Zt ÿ Vrest�dNE

t ÿ �b�Zt ÿ Vrest�dN I
t

� �a�VE ÿ Vrest�dNE
t � �b�VI ÿ Vrest�dN I

t

�ÿ �Zt ÿ Vrest� 1
c dt � �a dNE

t � �b dN I
t

� �
� �a�VE ÿ Vrest�dNE

t � �b�VI ÿ Vrest�dN I
t �14�

we see that in the model with reversal potentials, there
are three `leakage' terms: the ®rst is �Zt ÿ Vrest�=c dt, the
second and the third are �a�Zt ÿ Vrest�dNE

t and
�b�Zt ÿ Vrest�dN I

t , respectively. The latter two terms are
stronger than the ®rst term (see the range of c at the end
of Sect. 2), i.e. the model with reversal potentials tends
to forget much faster than Stein's model without reversal
potentials and, at the same time, to ensure its activity is
less sensitive to the decay rate. Another advantage of
(14) is that we can apply the comparison theorem in
stochastic di�erential equations. We expect that appli-
cation of this theorem would provide a theoretical
answer to a current debate about whether the tail of the
output interspike interval distribution is long or short
[37, 34].

The EPSP and IPSP sizes used in the simulations
above for the model with reversal potentials are 1 mV
when Zt � Vrest. However, we use 0.5 mV for the model
without reversal potentials. Of course, they are not
completely comparable since for the model with reversal
potentials, the term �a�VE ÿ Vt� (�b�Vt ÿ VI�) change
when Vt moves away from Vrest: In particular, when
Vt � VI, then the term �b�Vt ÿ VI� vanishes. However, we
also consider the case when �a�VE ÿ Vrest� � a �

�b�Vrest ÿ VI� � b � 0:5 mV. In Figs. 5 and 6 we show
numerical simulations for this case. It is readily seen that
kI at which the position of attractor is the same as the
threshold coincides well with the value at which CV
equals 0.5.

5 Discussion

Inputs in the present paper are exclusively Poisson
process [8], which indicates that all conclusions above
are true if we ®x input rates kE � 100 Hz, kI � 100 Hz
and NE � 100 and replace kI by NI as a parameter. In
recent years there has been much research devoted to
answering the following question (see [8] and references
therein): whether there is a region of NI, in agreement
with anatomical data, in which the model generates CV
greater than 0.5. We note here that in the model with
reversal potentials, CV is greater than 0.5 for most
values of NI, and similar phenomena have been observed
in the literature [18, 23, 33]. For example, when
c � 20:2 ms and Vth � ÿ30 mV, as soon as
NI > Nd

I � 25, i.e. NI=NE > 0:25, CV is greater than
0.5. In our analysis we have considered the case kI � kE.
A more e�cient IPSP input will reduce Nd

I further,
remembering that the typical composition of cortical
tissue is about NI=NE � 1=6 � 0:17 [1]. Therefore, in
terms of simple statistical quantities like CV, there is no
contradiction between the output of theoretical models
and experimental data [28]. Furthermore, to produce a
CV greater than 0.5, it is not necessary to go to the
extreme case: an exact balance between excitatory and
inhibitory inputs as discussed in [30, 36] is not needed.

Fig 5. Position of attractor z de®ned by (13) vs IPSP rate kI,
NE � 100 � NI, kE � 100 Hz and �a�VE ÿ Vrest� � a � 0:5mV �
�b�Vrest ÿ VI� � b. kI at which the position of attractor is the same as
the threshold is indicated by arrows for c � 5:6; 10:1; 20:2 and
34:8 ms (from left to right)

Fig. 6. CV vs IPSP rate kI, kE � 100 Hz, and �a�VE ÿ Vrest� � a �
0:5mV � �b�Vrest ÿ VI� � b. kI at which CV equals 0.5 is indicated by
arrows for di�erent c � 5:6; 10:1; 20:2 and 34:8 ms (from left to right),
for comparison with Fig. 5
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Many analytical, numerical and simulation studies
have attempted to predict how CV of e�erent spike
trains greater than 0.5 might arise for the integrate-and-
®re model [11, 18, 19, 28, 30, 32, 33, 35]. Some of these
studies are particularly concerned with the accuracy and
utility of di�usion approximations (see Sect. 2.3). None,
so far as we are aware, relate CV to the position of the
attractor of the deterministic part of the dynamics as we
have done here. In this paper based upon the simplest
model of a single neurone (Stein's model) and the
equivalent model with reversal potentials, we ®nd that
when the position of the attractor of the deterministic
part is below the threshold, CV is greater than 0.5; and
vice versa when the attractor is above the threshold. In
other words, in the former case, neuronal ®ring is then
due to purely stochastic forces. There has been much
research concerned with the role of noise in neurody-
namics [3±5, 10, 16]. Here for the ®rst time, by analysing
the mechanisms of neuronal activity in a very simple
canonical model, we clarify another role played by sto-
chastic forces. A separate question of course is why
neurones employ stochastic forces rather than the more
reliable deterministic forces to cross the threshold and
hence to process information. The question may only be
clearly answered when we more fully understand the
brain.
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