
Distrib. Comput. (2007) 19:387–402
DOI 10.1007/s00446-006-0018-5

Timestamping messages and events in a distributed system using
synchronous communication

Vijay K. Garg · Chakarat Skawratananond ·
Neeraj Mittal

Received: 20 December 2005 / Accepted: 18 October 2006 / Published online: 8 December 2006
© Springer-Verlag 2006

Abstract Determining order relationship between
events of a distributed computation is a fundamental
problem in distributed systems which has applications
in many areas including debugging, visualization, check-
pointing and recovery. Fidge/Mattern’s vector-clock
mechanism captures the order relationship using a vec-
tor of size N in a system consisting of N processes.
As a result, it incurs message and space overhead of
N integers. Many distributed applications use synchro-
nous messages for communication. It is therefore natural
to ask whether it is possible to reduce the timestamping
overhead for such applications. In this paper, we present
a new approach for timestamping messages and events
of a synchronously ordered computation, that is, when
processes communicate using synchronous messages.

An earlier version of this paper appeared in 2002 Proceedings of
the IEEE International Conference on Distributed Computing
Systems (ICDCS).
The author V. K. Garg was supported in part by the NSF Grants
ECS-9907213, CCR-9988225, an Engineering Foundation
Fellowship.
This work was done while the author C. Skawratananond was a
Ph.D. student at the University of Texas at Austin.

V. K. Garg (B)
Department of Electrical and Computer Engineering,
The University of Texas at Austin, Austin, TX 78712, USA
e-mail: garg@ece.utexas.edu

C. Skawratananond
eServer Solutions, IBM Austin, Inc., Austin, TX 78758, USA
e-mail: chakarat@us.ibm.com

N. Mittal
Department of Computer Science,
The University of Texas at Dallas,
Richardson, TX 75083, USA
e-mail: neerajm@utdallas.edu

Our approach depends on decomposing edges in the
communication topology into mutually disjoint edge
groups such that each edge group either forms a star or
a triangle. We show that, to accurately capture the order
relationship between synchronous messages, it is suffi-
cient to use one component per edge group in the vector
instead of one component per process. Timestamps for
events are only slightly bigger than timestamps for mes-
sages. Many common communication topologies such as
ring, grid and hypercube can be decomposed into �N/2�
edge groups, resulting in almost 50% improvement in
both space and communication overheads. We prove
that the problem of computing an optimal edge decom-
position of a communication topology is NP-complete in
general. We also present a heuristic algorithm for com-
puting an edge decomposition whose size is within a
factor of two of the optimal. We prove that, in the worst
case, it is not possible to timestamp messages of a syn-
chronously ordered computation using a vector contain-
ing fewer than 2�N/6� components when N ≥ 2. Finally,
we show that messages in a synchronously ordered com-
putation can always be timestamped in an offline man-
ner using a vector of size at most �N/2�.

Keywords Synchronous communication ·
Timestamping messages and events · Vector clocks ·
Edge decomposition · Vertex cover

1 Introduction

A fundamental problem in distributed systems is to
determine the order relationship between events of a
distributed computation as defined by Lamport’s
happened-before relation [22]. The problem arises in

388 V. K. Garg et al.

many areas including debugging and visualization of
distributed programs and fault-tolerance of distributed
systems. It arises in visualization of a computation when
debugging distributed programs (e.g., XPVM [20],
POET [21], and Object-Level Trace [5]). It also arises
when evaluating a global property in a distributed com-
putation [2,10,16]. An important problem in rollback
recovery is to determine whether a message has become
orphan and rollback its receiver to undo the effect of
the message [6,29].

Vector clocks, which were introduced independently
by Fidge [9–11] and Mattern [24], and their variants [23]
are widely used to capture the causality between events
in distributed systems. To capture the causality, each
event is timestamped with the current value of the local
vector clock at the time the event is generated. The order
relationship between two events can then be determined
by comparing their timestamps. A vector clock contains
one component for every process in the system. This
results in message and space overhead of N integers in
a distributed system consisting of N processes.

Charron-Bost [4] shows that, for every N ≥ 2, there
exists a distributed computation involving N processes
such that any algorithm has to use a vector containing at
least N components to faithfully capture the happened-
before relation between events in the computation. We
prove in [15] that Fidge/Mattern’s (FM’s) vector clock is
equivalent to a string realizer of the poset correspond-
ing to the distributed computation. Further, a vector of
size equal to the string dimension of the poset [8,15]
is necessary and sufficient for timestamping events. In
general, timestamps computed using dimension theory
cannot be used in an online manner because the knowl-
edge of the entire poset is typically required to com-
pute a realizer. Further, the problem of determining
the size of a smallest realizer is NP-complete in gen-
eral [35]. Although these results indicate that, in the
worst case, an N-dimensional vector clock is required
to timestamp events, they do not exclude timestamps
which use fewer than N components for interesting sub-
classes of computations on N processes. From a practical
point of view, a natural question to ask is whether there
exists an efficient timestamping algorithm for a class of
applications in which a timestamp contains fewer than
N integers.

In this paper, we show that timestamping of events
can be done more efficiently for a distributed computa-
tion that uses synchronous messages. Informally, a mes-
sage is said to be synchronous when the send is blocking,
that is, the sender waits for the message to be delivered
at the receiver before executing further. We refer to a
computation in which all messages are synchronous as
synchronously ordered computation.

Synchronous communication is widely supported in
many programming languages (e.g., Occam and Ada
Rendezvous) and programming paradigms [e.g., Syn-
chronous Remote Procedure Calls (RPCs)]. While pro-
gramming using asynchronous communication allows
potentially higher degree of parallelism because compu-
tation and communication can overlap, programs that
use synchronous message-passing are easier to under-
stand and develop [28].

It is well known that a computation using synchro-
nous communication is logically equivalent to a com-
putation in which all message exchanges are logically
instantaneous. In other words, it is always possible to
draw the time diagram for a synchronously ordered com-
putation such that arrows for messages appear vertically
(assuming time progresses from left to right) [4,25]. If
we ignore internal events in a synchronously ordered
computation, then the problem of timestamping events
of the computation reduces to that of timestamping its
messages. (Note that, in a distributed system using syn-
chronous communication, timestamping messages is
equivalent to timestamping communication events. This
is an important problem in itself, especially when com-
munication events are the only relevant events in a
computation.) Using the Lamport’s happened-before
relation, we define a partial order on messages and
describe an online algorithm for timestamping messages
that accurately capture the partial order. Instead of asso-
ciating a component in the vector with each process in
the system, we exploit the structure of the communi-
cation topology to reduce the size of the vector. Spe-
cifically, we decompose the edges in the communication
topology into mutually disjoint edge groups such that
each edge group either forms a star or a triangle.Intu-
itively, when the communication is synchronous, mes-
sages exchanged along the edges of an edge group (star
or triangle) are totally ordered and their relationship
can be captured using a single integer [17,31]. There-
fore it is sufficient to use one integer in the vector for
each edge group in the decomposition. We show how
timestamps assigned to messages can be used to time-
stamp internal events by employing only few additional
integers. Further, we demonstrate that, like Fidge/Mat-
tern’s timestamps [9–11,24], our timestamps can be used
to test for precedence between two events in O(1) time.

Note that our technique requires that the decompo-
sition of edges into edge groups be known to all pro-
cesses. Many common topologies including ring, grid
and hypercube can be easily decomposed into at most
�N/2� edge groups. This immediately implies that, with
our timestamping approach, space and communication
overheads improve by almost 50% for these topologies.
For general topologies, however, computing an optimal

Timestamping messages and events using synchronous communication 389

edge decomposition is an NP-complete problem. We
present a heuristic algorithm that can be used for com-
puting an edge decomposition whose size is within a
factor of two of the optimal.

We show that, using an offline algorithm, synchro-
nous messages can be timestamped with vectors contain-
ing at most �N/2� integers. This result is derived using
dimension theory of posets. We also show that, for every
N ≥ 2, there exists a synchronously ordered computa-
tion on N processes such that any vector-based time-
stamping mechanism with component-wise comparison
requires at least 2�N/6� components to accurately cap-
ture the partial order on messages. This holds even when
the communication topology is sparse in the sense that
the number of edges in the topology is within a small
constant factor of the number of processes.

To summarize, the paper makes the following contri-
butions:

1. We define a causal relationship between synchro-
nous messages based on the Lamport’s happened-
before relation on events. We present an online
algorithm to timestamp messages using a vector of
size less than N. We prove that these vector time-
stamps accurately capture the order relationship
between messages.

2. Using timestamps assigned to messages, we assign
timestamps to all events in the computation. Our
timestamps for events use only few additional inte-
gers than timestamps for messages. We also show
that, similar to Fidge/Mattern’s timestamps, our
timestamps can be used to test for precedence
between any two events in O(1) time.

3. We prove that the problem of computing an optimal
edge decomposition is NP-complete in general. We
present a heuristic algorithm for computing edge
decomposition such that the size of the decompo-
sition is at most twice the size of an optimal edge
decomposition.

4. We show that the vector of size �N/2� is sufficient
to capture relationship between synchronous mes-
sages using an offline algorithm.

5. We show that, for every N ≥ 2, there exists a syn-
chronously ordered computation on N processes
such that any vector-based timestamping mecha-
nism for messages requires at least 2�N/6� entries
in the vector.

The remainder of this paper is organized as follows.
Section 2 provides background for the problem dis-
cussed in this paper. An online algorithm for timestam-
ping messages is given in Sect. 3. We also demonstrate
how timestamps for messages can be used to generate

timestamps for events using only few additional integers.
We show that the problem of edge decomposition is
NP-complete in Sect. 4 and also present an approx-
imation algorithm for solving the problem. Section 5
describes an offline algorithm. Section 6 compares our
work with others.

2 Model and notations

We assume a loosely-coupled message-passing system
without any shared memory or a global clock. A dis-
tributed program consists of N processes, denoted by
{P1, P2, . . . , PN}, communicating via messages. In this
paper, we assume that all messages are synchronous.
A computation that uses only synchronous messages
is called a synchronously ordered computation. It can
be shown that a computation is synchronously ordered
if it is possible to timestamp send and receive events
with integers in such a way that (1) timestamps increase
within each process and (2) the send and the receive
events associated with each message have the same time-
stamp. Therefore, the space–time diagram of the com-
putation can be drawn such that all messages arrows are
vertical, assuming that time progresses from left to right
[4] (see Fig. 1).

Determining the order of messages is crucial in
observing distributed systems. We write e ≺ f when
event e occurs before f in a process. Here, we define
the order among synchronous messages. The set of mes-
sages M in a given synchronously ordered computation
forms a poset M = (M, �→), where �→ is the transitive
closure of � defined as follows:

mi � mj ⇐⇒

⎧
⎪⎪⎨

⎪⎪⎩

mi.send ≺ mj.send or
mi.send ≺ mj.receive or
mi.receive ≺ mj.send or
mi.receive ≺ mj.receive

We say that mi synchronously precedes mj when mi �→
mj. Also, when we have mi1 � mi2 � · · · � mik , we say
that there is a synchronous chain of size k from mi1 to

Fig. 1 A synchronously ordered computation with four processes

390 V. K. Garg et al.

Table 1 Various relations on messages and events used in this
paper

Symbol Domain Meaning

≺ Events Relation on events executed on
the same process

→ Events Lamport’s happened-before relation
on events

� Messages Relation on messages involving a
common process

�→ Messages Transitive closure of �

�→ Messages Reflexive closure of �→

mik . Finally, when mi �= mj and neither mi � �→ mj nor
mj � �→ mi holds, we write mi‖mj.

In the example given in Fig. 1, m1‖m3, m1 � m2,
m2 �→ m6, and m3 �→ m5. There is a synchronous chain
between m1 and m5 of size 4.

To perform precedence-test based on synchronously-
precede relation, we devise a timestamping mechanism
that assigns a vector to each message m (or, equiva-
lently, to send and receive events of the message). Let
m.v denote the vector assigned to message m. Our goal is
to assign timestamps that satisfy the following property,

mi �→ mj ⇐⇒ mi.v < mj.v (1)

Given any two vectors u and v of size t, we define the
less-than relation, denoted by <, as follows.

u < v ⇐⇒
{∀k : 1 ≤ k ≤ t : u[k] ≤ v[k] ∧

∃l : 1 ≤ l ≤ t : u[l] < v[l] (2)

We call the relation given in Eq. (2) vector order.
From Eqs. (1) and (2), one can determine if mi �→ mj

by checking whether mi.v < mj.v. If mi.v is not less than
mj.v and mj.v is not less than mi.v, then we know that
mi‖mj (assuming mi �= mj).

For convenience, Table 1 lists various relations that
we use in this paper.

3 An online algorithm

In this section, we describe an algorithm for assigning
timestamps to messages and events in a synchronously
ordered computation to accurately capture their order
relationship. Note that, in a distributed system using
synchronous communication, timestamping messages is
equivalent to timestamping communication events. This
is an important problem in itself, especially when com-
munication events are the only relevant events in a
computation.

(b)(a)

Fig. 2 Examples of the communication topologies. a A topology
where every pair of processes can communicate directly with each
other. b A topology where not every pair of processes communi-
cate directly with each other

As opposed to Fidge/Mattern’s approach which is
based on using one component for each process, our
algorithm uses one component for each edge group. We
first define the notion of edge decomposition and edge
group.

3.1 Edge decomposition

The communication topology of a system that consists
of N processes, P1, . . . , PN , can be viewed as an undi-
rected graph G = (V, E) where V = {P1, . . . , PN}, and
(Pi, Pj) ∈ E when Pi and Pj can communicate directly.
Figure 2a gives the communication topology of a system
in which every process can communicate directly with
each other. Figure 2b gives the communication topology
of another system in which not every pair of processes
communicates directly with each other.

Some particular topologies that will be useful to us
are the star and the triangle topologies. An undirected
graph G = (V, E) is a star if there exists a vertex x ∈ V
such that all edges in E are incident to x. We call such a
star as rooted at node x. An undirected graph G = (V, E)

is a triangle if |E| = 3, and these three edges form a tri-
angle. We denote a triangle by a triple such as (x, y, z)

denoting its endpoints.
The star and triangle topologies are useful because

messages in a synchronously ordered computation with
these topologies are always totally ordered. In fact, we
have the following:

Lemma 1 The message sets for all synchronously
ordered computations in a system with G = (V, E) as
the communication topology are totally ordered if and
only if G is a star or a triangle.

Proof Given any two messages in a star topology, there
is always one process (the center of the star) which is a
participant (a sender or a receiver) in both the mes-
sages. Since all message events within a process are
totally ordered it follows that both these messages are
comparable. The similar argument holds for the triangle
topology.

Timestamping messages and events using synchronous communication 391

Conversely, assume that the graph is not a star or a
triangle. This implies that there exists two distinct edges
(Pi, Pj) and (Pk, Pl) such that none of their endpoints
is common. Consider a synchronously ordered compu-
tation in which Pi sends a synchronous message to Pj
and Pk sends a synchronous message to Pl concurrently.
These messages are concurrent and therefore the mes-
sage set is not totally ordered. ��

Note that the above Lemma does not claim that mes-
sage set cannot be totally ordered for a topology that is
neither a star nor a triangle. It only claims that for every
such topology there exists a synchronously ordered com-
putation in which messages do not form a total order.
Now based on the definitions of star and triangle graphs,
we are ready to define the edge decomposition of G.

Definition 2 (Edge Decomposition) Let G = (V, E)

be communication topology of a system using synchro-
nous communication. A partition of the edge set, {E1,
E2, . . . , Ed}, is called an edge decomposition of G if
E = E1 ∪ E2 ∪ · · · ∪ Ed such that:

1. ∀ i, j : i �= j : Ei ∩ Ej = ∅, and
2. ∀ i : (V, Ei) is either a star or a triangle.

We refer to each Ei in the edge decomposition as an
edge group. In our algorithm, we will assign one compo-
nent of the vector for every edge group. Note that there
is possibly more than one decomposition for a topology.
Our goal is to get the smallest possible decomposition.
Consider a fully-connected system consisting of N pro-
cesses. The first decomposition consists of N − 3 stars
and one triangle. The second decomposition consists of
N − 1 stars. Figure 3 presents the two decompositions of
a fully-connected system with five processes.

The complete graph is the worst case for edge decom-
position, resulting in N−3 stars and one triangle. In gen-
eral, the number of edge groups may be much smaller
than N − 2. Given a tree-based communication topol-
ogy consisting of 20 processes, Figure 4 shows how to
decompose edges into three edge groups E1, E2, and E3
where each group is a star.

(a) (b)

Fig. 3 Edge decompositions of the fully-connected topology with
five processes. a The first decomposition consisting of two stars and
one triangle. b The second decomposition consisting of four stars

Fig. 4 A tree-based topology with 20 processes

We will discuss techniques for edge decomposition
that minimize the number of edge groups in Sect. 4.

3.2 Timestamping messages (communication events)

Each process maintains a vector of size d, where d is the
size of the edge decomposition. We assume that informa-
tion about edge decomposition is known to all processes
in the system.

The online algorithm is presented in Fig. 5. Due to
the implementation of synchronous message ordering
[25,14], we assume that for each message sent from Pi

to Pj, there exists an acknowledgment sent from Pj to Pi.
Essentially, to timestamp each message, the sender and
the receiver must first exchange their local vector clocks.
Then, each process computes the component-wise max-
imum between its vector and the vector received [lines
(5) and (9)]. Finally, both the sender and the receiver
increment the gth element of their vectors where the
channel along which the message is sent belongs to the

Fig. 5 An online algorithm for timestamping messages

392 V. K. Garg et al.

Fig. 6 A synchronously
ordered computation with
five processes, and its edge
decomposition

gth group in the edge decomposition [lines (6) and (10)].
The resulting vector clock is the timestamp of this mes-
sage. Intuitively, the gth entry of the local vector clock
at process Pi captures the number of messages that have
been exchanged along the gth edge group so far as per Pi.

Figure 6 shows a sample execution of the proposed
algorithm on a fully-connected system with five pro-
cesses. Edge decomposition consists of two stars (E1
and E2) and one triangle (E3). For example, message
sent from P2 to P3 is timestamped (1, 1, 1) because the
channel between P2 and P3 is in edge group E2, and
the local vector on P2 and P3 before transmission are
(1, 0, 0) and (0, 0, 1), respectively.

Next, we prove that our online algorithm assigns vec-
tor timestamps to synchronous messages such that these
timestamps encode poset (M, �→). The channel along
which a message mx is sent must be a member of a group
in the edge decomposition. We use mx.g to denote the
index of the group to which this channel belongs in the
edge decomposition. Clearly,

Lemma 3 mi‖mj ⇒ mi.g �= mj.g

Proof Let ci (resp. cj) be an edge in the topology graph
G that corresponds to the channel along which mi (resp.
mj) is sent. Since mi‖mj, from Lemma 1, all messages
in an edge group are totally ordered, we get that ci

and cj must belong to different edge groups. Therefore,
mi.g �= mj.g. ��
Theorem 4 Given an edge decomposition of a system in
which processes communicate using synchronous mes-
sages, the algorithm in Fig. 5 assigns timestamps to mes-
sages such that mi �→ mj ⇐⇒ mi.v < mj.v.

Proof (⇒) First, we show that mi �→ mj ⇒ mi.v < mj.v.
Since the sender and the receiver of a message exchange
their local vector clocks and compute the component-
wise maximum of the two vector clocks, it is easy to see
that if mi�mj, then mi.v ≤ mj.v. This in turn implies that

if mi �→ mj then mi.v ≤ mj.v because �→ is the transitive
closure of �. We now claim that

mi �→ mj ⇒ mi.v[mj.g] < mj.v[mj.g] (3)

This is true because before the timestamp is assigned
to mj, mj.v[mj.g] is incremented. Thus, we have mi �→
mj ⇒ mi.v < mj.v.
(⇐) We now show the converse, mi � �→ mj ⇒ ¬(mi.v <

mj.v). Due to the definition of vector order, it is sufficient
to show that:

mi � �→ mj ⇒ mj.v[mi.g] < mi.v[mi.g] (4)

We do a case analysis.

Case 1 mj �→ mi From Equation (3), by changing roles
of mi and mj, we get that mj.v[mi.g] < mi.v[mi.g].
Case 2 mi‖mj We prove by induction on k, the size of the
longest synchronous chain from a minimal message in
the poset (M, �→) to mj. A message m is minimal if there
is no message m′ in the computation such that m′ �→ m.

(Base: l = 1) mj is a minimal message
From Lemma 3 and mi‖mj, mi.g �= mj.g. Since mj is
a minimal message by the initial assignment of the
vector clock, both sender and the receiver have 0
as the component for mi.g and the component-wise
maximum also results in 0 for mi.g. Further, since
mi.g �= mj.g the component for mi.g is not incre-
mented. Hence, mj.v[mi.g] = 0.
We now claim that mi.v[mi.g] ≥ 1. This is true
because we increment the component for mi.g before
assigning the timestamp for mi. Since the value of all
entries are at least 0, it will be at least 1 after the
increment operation.
From, mj.v[mi.g] = 0 and mi.v[mi.g] ≥ 1, we get that
mj.v[mi.g] < mi.v[mi.g].

Timestamping messages and events using synchronous communication 393

(Induction: l > 1)
Let mk be any message such that mk � mj. We know
that mi � �→ mk, otherwise mi �→ mj. By induction
hypothesis,

mi � �→ mk ⇒ mk.v[mi.g] < mi.v[mi.g]

To obtain mj.v, the sender and receiver of mj
exchange timestamps of any immediately preced-
ing message (if any). From induction hypothesis, we
know that the mi.gth component of vectors from
both the sender and receiver are less than mi.v[mi.g].
Hence, it stays less after the component-wise max-
imum. Further, since mi.g �= mj.g, the component
for mi.g is not incremented. Therefore, mj.v[mi.g] <

mi.v[mi.g].

This establishes the theorem. ��

Given an edge decomposition of size d, our online
timestamping algorithm uses a vector of size d at each
process. Further, each message carries a vector of size
d. It may appear that, with our timestamping approach,
as many as d comparisons may have to be made in the
worst case to determine the exact relationship between
two messages, In the next section, we show that this time
can actually be reduced to O(1).

3.3 Reducing time for precedence testing

One of the advantages of Fidge/Mattern’s timestamps
is that they can be used to test for precedence in O(1)

time. It turns out that our timestamps also satisfy the
same desirable property. To reduce the time for prece-
dence testing, we prove the following two Lemmas. The
proof of both Lemmas uses the contrapositive of Eq. (4),
which was established while proving Theorem 4:

mi.v[mi.g] ≤ mj.v[mi.g] ⇒ mi �→ mj (5)

The first Lemma deals with the case when two mes-
sages are exchanged along channels that belong to the
same edge group.

Lemma 5 Assume mi.g = mj.g. Then,

(mi �→ mj) ⇐⇒ mi.v[mi.g] < mj.v[mi.g]

Proof Assume that mi.g = mj.g.
(⇒) We need to show that mi �→ mj ⇒ mi.v[mi.g] <

mj.v[mi.g]. The implication follows from Eq. (3),
which was established while proving Theorem 4.

(⇐) Now, we show the converse, that is, mi.v[mi.g] <

mj.v[mi.g] ⇒ mi �→ mj. The implication follows
from Eq. (5) and the observation that mi.v[mi.g] <

mj.v[mi.g] ⇒ mi.v[mi.g] ≤ mj.v[mi.g]. ��

The second lemma deals with the case when two
messages are exchanged along channels that belong to
different edge groups.

Lemma 6 Assume mi.g �= mj.g. Then,

(mi �→ mj) ⇐⇒ mi.v[mi.g] ≤ mj.v[mi.g]

Proof Assume that mi.g �= mj.g.
(⇒) We need to show that mi �→ mj ⇒ mi.v[mi.g] ≤
mj.v[mi.g]. Clearly, from Theorem 4, mi �→ mj ⇒
mi.v < mj.v. From the definition of vector order, it
follows that mi.v < mj.v ⇒ mi.v[mi.g] ≤ mj.v[mi.g].
Combining the two, we get the result.
(⇐) The converse follows from Eq. (5). ��

Lemmas 5 and 6 enable us to determine the order
relationship between two messages in O(1) time pro-
vided we know the edge groups to which the two mes-
sages belong. Intuitively, edge groups play the same
role in our approach as processes in Fidge/Mattern’s
approach.

3.4 Timestamping internal (non-communication)
events

In this section, we show how internal events can be time-
stamped so that Lamport’s happened-before relation
between events [22] can be inferred from timestamps
assigned to messages. Lamport’s happened-before rela-
tion, denoted by →, is defined as the smallest transitive
relation satisfying the following properties [22]:

1. if events e and f occur on the same process, and
e occurred before f in real time then e happened-
before f , and

2. if events e and f correspond to the send and receive,
respectively, of a message then e happened-before f .

Recall that for each synchronous message m sent from
a process Pi to another process Pj, there is an acknowl-
edgment sent from Pj to Pi. It is important to note that
happened-before relation between events uses messages
as well as their acknowledgments.

For an internal event e, let e.p denote the process on
which e is executed. Also, let e.b denote the last message
exchanged by e.p before it executes e. If no such message

394 V. K. Garg et al.

exists, then e.b is defined to be ⊥. Finally, let e.a denote
the first message exchanged by e.p after it executes e. If
no such message exists, then e.a is defined to be �. We
use �→ to denote the reflexive closure of �→. Further,
expressions m �→ ⊥ and � �→ m evaluate to false for all
messages m.

Theorem 7 e → f ⇐⇒ (e ≺ f) ∨ (e.a �→ f .b)

Proof (⇒) First, we have to prove that e → f ⇒
(e ≺ f) ∨ (e.a �→ f .b). If e and f are on the same
process, then e ≺ f and the implication trivially holds.
Otherwise, since e → f , there must be a causal chain
of messages starting from e and ending at f . This in
turn implies that either e.a = f .b or there exists a syn-
chronous chain of messages starting from e.a and end-
ing at f .b. (⇐) Conversely, we have to prove that
(e ≺ f) ∨ (e.a �→ f .b) ⇒ e → f . Clearly, when e ≺ f ,
e → f . Therefore assume that e.a �→ f .b. From the
definition of ⊥ and �, e.a �= � and f .b �= ⊥. Since e is
executed before e.a is exchanged and f is executed after
f .b is exchanged, there exists a causal chain of messages
from e to f involving application messages and/or their
acknowledgments. As a result, e → f . ��

From Theorem 7, timestamp for an internal event
consists of two parts. The first part enables us to eval-
uate the first disjunct (whether e ≺ f holds) and the
second part enables us to evaluate the second disjunct
(whether e.a �→ f .b holds). For an event e, the first
part can be realized using two integers: (1) identifier of
the process on which e is executed, given by e.p, and
(2) counter indicating the number of events that have
been executed on e.p before e, denoted by e.c. The sec-
ond part can be realized using two vector timestamps:
(1) vector timestamp for e.b and (2) vector timestamp
for e.a. This means that the timestamp for an internal
event consists of 2d + 2 integers. The size of the time-
stamp can be further reduced to only d+4 integers using
the following Lemma.

Theorem 8 e.a �→ f .b ⇐⇒ (e.a �= �) ∧ (f .b �=
⊥) ∧ (e.a.v[e.a.g] ≤ f .b.v[e.a.g])
Proof (⇒) Assume that e.a �→ f .b holds. From the
definition of e.a and f .b, we can infer that e.a �= � and
f .b �= ⊥. It remains to be shown that e.a.v[e.a.g] ≤
f .b.v[e.a.g]. In case e.a = f .b, the result clearly holds.
Therefore assume that e.a �→ f .b. From Lemmas 5
and 6, either e.a.v[e.a.g] < f .b.v[e.a.g] or e.a.v[e.a.g] ≤
f .b.v[e.a.g] holds. In either case, e.a.v[e.a.g] ≤ f .b.v[e.a.g]
holds.
(⇐) Assume that (e.a �= �) ∧ (f .b �= ⊥) ∧
(e.a.v[e.a.g] ≤ f .b.v[e.a.g]) holds. In case e.a.g = e.b.g,
from Lemma 5, we can infer that e.a �→ f .b holds. On

the other hand, if e.a.g �= f .b.g, then, from Lemma 6,
we can deduce that e.a �→ f .b holds. This in turn implies
that e.a �→ f .b holds. ��

Theorem 8 implies that the timestamp for e does not
need to carry the vector timestamp of e.a. Rather it is
sufficient to store two integers to be able to conduct
the precedence test involving e: e.a.g and e.a.v[e.a.g]. To
summarize, the timestamp for e is given by five compo-
nents: (1) e.p, (2) e.c, (3) e.b.v, (4) e.a.g and (5) e.a.v
[e.a.g]. The third component is defined only if f .b �= ⊥.
The fourth and fifth components are defined only if e.a �=
�. Theorem 8 also allows us to conduct the precedence
test involving internal events in O(1) time.

Observe that the timestamp for an internal event is
not completely defined until the process to which the
event belongs exchanges a message. This, however, does
not create any problem as far as testing for precedence is
concerned. It can be verified that the precedence test still
produces correct result. Moreover, no other process in
the system except the process to which it belongs would
know about such an event (because it is an “internal”
event). Therefore when a process exchanges a message,
only timestamps stored locally may have to be updated.
The change does not need to be propagated to other
processes.

Remark 1 For a communication event e, we can define
both e.b and e.a to be the message involved in the com-
munication. It can be verified that Theorem 7 is still
applicable as long as not both events are communication
events of the same message. Therefore the precedence
test described above can be used to compare any pair of
events except when the two events are communication
events of the same message. ��

4 Decomposing edges of a communication topology

As discussed in Sect. 3.2, the overhead of our algorithm
is crucially dependent upon the size of the edge decom-
position. Let α(G) denote the size of a smallest edge
decomposition (note that there may be multiple edge
decomposition of the same size). In our edge decompo-
sition, we decompose the graph into stars and triangles.
If we restricted ourselves to decomposing the edge set
only in stars then the problem is identical to that of
vertex cover. A vertex cover of an undirected graph
G = (V, E) is a subset V′ ⊆ V such that if (u, v) is an
edge of G, then either u ∈ V′ or v ∈ V′ (or both)

We can now provide a bound for the size of the vector
clocks based on the vertex cover.

Theorem 9 Let G = (V, E) be communication topol-
ogy of a system using synchronous communication. Let

Timestamping messages and events using synchronous communication 395

β(G) be the size of the optimal vertex cover of G. Then,
for N ≥ 3, vectors of size min(β(G), N − 2) are sufficient
to timestamp messages.

Proof From the definition of vertex cover, every edge
is incident on some vertex in the vertex cover. For every
edge we assign some vertex to the vertex cover. If some
edge has both the endpoints in the vertex cover, then
we arbitrarily choose one. By the definition of vertex
cover problem, all edges are partitioned in this manner
into stars. When β(G) = N − 1, we can simply use triv-
ial edge decomposition of N − 3 stars and one triangle.
Thus, there exists an edge decomposition of size at most
min(β(G), N − 2). ��

Since vertex cover does not use triangles in edge
decomposition, it is natural to ask how bad can a pure
star decomposition be compared to star and triangle
decomposition. We claim that β(G) ≤ 2 α(G). This
bound holds because any decomposition of the graph
into stars and triangles can be converted into a decompo-
sition purely of stars by decomposing every triangle into
two stars. The above bound is tight in general because
if the graph consisted of just t disjoint triangles, then
α(G) = t and β(G) = 2t.

Even for a connected topology, the ratio β(G)/α(G)

can be made arbitrarily closed to two. Consider a com-
munication topology of the form shown in Fig. 7 con-
sisting of t triangles. Any vertex cover of the topology
has to contain at at least two vertices from each trian-
gle. Therefore β(G) ≥ 2t. However, the optimal edge
decomposition of the topology consists of t triangles
and 1 star. Therefore α(G) = t + 1. As a result, the
ratio β(G)/α(G) ≥ 2t/(t + 1) = 2 − 2/(t + 1), which can
be made arbitrarily close to 2 by choosing large enough
value for t.

4.1 Complexity of edge decomposition problem

It can be shown that the problem of optimal edge decom-
position of a general graph is NP-hard. The proof of the
following result was communicated to us in an email by

t

Fig. 7 A communication topology for which the ratio β(G)/α(G)

is close to 2

Nirman Kumar who attributed it to Sariel Har-Peled.
We have included the proof here for completeness sake.

Theorem 10 Given an undirected graph G, and an inte-
ger k, determining whether there exists an edge decompo-
sition of G of size at most k, is NP-complete in general.

Proof The problem is clearly in NP because given a par-
tition of the edge set into stars and triangles it is easy to
verify that it is a proper edge decomposition and its size
is at most k.

To prove that the problem is NP-hard, we use the
transformation from the vertex cover problem which
is known to be NP-hard [13]. Given a graph G and a
positive integer k, to determine whether there is a ver-
tex cover of size k we transform it into the edge decom-
position problem as follows. We construct a new graph
H from G by replacing every edge e = (x, y) in G with
three edges: (x, xe), (xe, ye) and (ye, y) where xe and ye

are new vertices added for this edge. Thus if the original
graph G has n vertices and m edges, then H has n + 2m
vertices and 3m edges. Further, H does not have any
triangles. We now claim that G has a vertex cover of size
at most k if and only if H has an edge decomposition of
size at most k + m.

First assume that G has a vertex cover of size k. For
any edge e = (x, y) either x or y is in the vertex cover.
If only x is in the vertex cover for G, then we include x
and ye in the vertex cover for H. Similarly, if only y is
in the vertex cover for G, then we include y and xe in
the vertex cover for H. If both x and y are in the vertex
cover for G, then we include x, y and ye in the vertex
cover for H. It can be verified that the vertex cover for
H has size at most k + m. Since a vertex cover is also an
edge decomposition, it follows that there exists an edge
decomposition of size at most k + m.

Now assume that H has an edge decomposition of
size at most k+m. Because H has no triangles, any edge
decomposition of H is equivalent to a vertex cover of
H. By the construction of H any vertex cover of H must
include at least one of the vertices from {xe, ye} for all
edges e. If the vertex cover has both xe and ye, then we
remove ye from the vertex cover and add y to the vertex
cover. This change ensures that there is a vertex cover
with exactly m vertices from

⋃

e
{xe, ye}. The remaining

vertices in the vertex cover of H forms a vertex cover of
G. This set is of size at most k. ��

4.2 An approximation algorithm for edge
decomposition

We now present an algorithm that returns an edge
decomposition which is at most twice the size of the

396 V. K. Garg et al.

Fig. 8 An approximation
algorithm for edge
decomposition

optimal edge decomposition. Further, our algorithm
returns an optimal edge decomposition when the graph
is acyclic.

The algorithm is shown in Fig. 8. It works by repeat-
edly deleting stars and triangles from the graph. The
main while loop in line (02) has three steps inside. The
first step chooses any node which has degree 1, say x
which is connected to node y. It outputs a star rooted
at y. When no nodes of degree 1 are left, the algorithm
goes to the second step.

In the second step, the algorithm checks if there is a
triangle (x, y, z) such that there are no edges in F which
are incident to x or y other than those in the triangle.
There may be other edges incident to z, but the degree
of nodes x and y is exactly 2. Once all such triangles have
been output, the algorithm goes to step three.

In the third step, the algorithm chooses an edge (x, y)

with the largest number of adjacent edges. If there is
more than one such edge, it chooses any one of them.
Now it outputs two stars one rooted at x and the other
rooted at y. After the third step, the algorithm goes
back to the while loop to check if all edges have been
accounted for.

Figure 9 shows the operation of our edge decompo-
sition algorithm on the communication topology shown
in Fig. 2b. Figure 9b–d shows the first, second, and third
step, respectively, of the algorithm, respectively. In
Fig. 9e, the execution loops back to the first step, edge
(j, k) is output, and the program exits. Figure 9f shows

the resulting edge decomposition consists of 4 stars and
1 triangle.

The algorithm has time complexity of O(|V||E|)
because in every step, the identification of the edge
[lines (4), (8), and (12)] can be done in O(|E|) time,
which results in deletion of all edges incident on at least
one vertex.

The following theorem shows that the algorithm pro-
duces an edge decomposition with a ratio bound of 2.
The ratio bound is the ratio between the size of the edge
decomposition produced by the algorithm and the size
of an optimal edge decomposition.

Theorem 11 The algorithm in Fig. 8 produces an edge
decomposition with the approximation ratio bound of 2.

Proof The algorithm creates edge groups in the first
step [lines (3)–(7)], the second step [lines (8)–(11)] or
the third step [lines (12)–(15)]. For every creation of an
edge group, we identify an edge and include it in a set
H. In the first step, we use the edge (x, y) the lone edge
incident to x and put in the set H. In the second step,
we use the edge (x, y) from the triangle and put it in H.
Finally, for step 3, we put the edge chosen in line 12 in
H. It is easy to verify that no two edges in H are inci-
dent to a common vertex. This is because any time we
choose an edge in any of the steps, all adjacent edges are
deleted from F. Since no two edges have any vertex in
common, edges in H must all be in distinct edge groups
in the optimal edge decomposition. However, the size

Timestamping messages and events using synchronous communication 397

Fig. 9 A sample run of the
proposed decomposition
algorithm. a The input
topology. b In the first step,
the algorithm outputs two
stars. There are seven edges
remaining. c In the second
step, the algorithm outputs a
triangle (c, d, e). There are
four edges remaining. d In the
third step, two stars are
output. Edge (j, k) is
remaining. e The execution
loops back to the first step
again and edge (j, k) is output.
The algorithm terminates.
f The resulting edge
decomposition consists of
four stars and one triangle

(a)

(c)

(e)

(b)

(d)

(f)

of edge decomposition produced is at most twice the
size of H. ��

Note that in the above proof we have not used the
fact that in Step 3, we choose an edge with the larg-
est number of adjacent edges. The correctness and the
approximation ratio is independent of that choice. How-
ever, by deleting as large number of edges as possible
in each step, one would expect to have a smaller edge
decomposition.

We now show that the above algorithm outputs opti-
mal edge decomposition for acyclic graphs.

Theorem 12 The algorithm in Fig. 8 produces an optimal
edge decomposition for acyclic graphs.

Proof First note that an acyclic graph can have only stars
as edge groups. Further, when the algorithm is applied
to an acyclic graph all the edges will be deleted in the
while loop of the first step. In other words, if we take
a forest (an acyclic graph is equivalent to a forest or a
collection of trees) and repeatedly delete all edges that
are adjacent or one hop away from the leaves then we
will eventually delete all the edges.

Thus, the set H constructed in the proof of
Theorem 11 consists of edges added only in Step 1. Since
we add exactly one edge group for every edge added to
H, the optimality follows. ��

4.3 Edge decomposition for common topologies

Some of the common topologies that are used for com-
munication in a distributed system are tree, ring, grid and
hypercube. It can be shown that, for all these topologies,
there exists a vertex cover of size at most �N/2�. This
implies that it is possible to timestamp messages and
events of any synchronously ordered computation gen-
erated on these topologies using at most �N/2�+ 4 inte-
gers. For the sake of completeness, we briefly describe
how to construct a vertex cover of size at most �N/2�
for these topologies.

Tree topology A possible vertex cover consists of
all vertices on even levels of the tree. Another ver-
tex cover consists of all vertices on odd levels of the
tree. Clearly, the size of one of these vertex covers is at
most �N/2�.

Ring topology Assume that the vertices in the ring
are numbered sequentially in clockwise fashion start-
ing from 1. Then the set of all odd-numbered vertices
constitutes a vertex cover of the ring.

Grid topology Assume that vertices in each row are
numbered sequentially from left to right starting from
1. A possible vertex cover for the topology can be con-
structed as follows. From every odd numbered row, pick
all odd-numbered vertices. From every even numbered
row, pick all even-numbered vertices. It can be shown
that the size of the vertex cover thus obtained is at
most �N/2�.

398 V. K. Garg et al.

Hypercube topology A vertex cover of a hypercube
of size N/2 can be constructed by including all vertices
with even parity in the bit representation of their labels.
Since every edge in a hypercube connects vertices that
differ in exactly one bit, one of the vertices adjacent to
the edge has even parity. Hence this set covers all edges
and contains exactly N/2 vertices.

5 An offline algorithm

We present an offline timestamping algorithm which
takes a completed computation as an input and assigns a
vector timestamp to each message in the given computa-
tion. Our offline algorithm is based on applying dimen-
sion theory to the poset formed by messages in the
synchronously ordered computation. We first provide
the technical background for dimension theory.

5.1 Background: dimension theory

A pair (X, P) is called an irreflexive partially ordered set
or a poset if X is a set and P is an irreflexive, and transi-
tive binary relation on X. A poset (X, P) is called chain
if every distinct pair of points from X is comparable in
P. Similarly, we call a poset an antichain if every distinct
pair of points from X is incomparable in P. The width of
poset (X, P), denoted by width(X, P), is the size of the
longest antichain of P.

A family of linear extensions of (X, P) denoted by
R = {L1, L2, . . . , Lt} is called a realizer of (X, P) if
P = ∩ R. For any poset (X, P), the dimension of (X, P),
denoted by dim(X, P), is the least positive integer t for
which there exists a family R = {L1, L2, . . . , Lt} of linear

extensions of P so that P = ∩ R =
t⋂

i=1
Li.

5.2 Offline algorithm for timestamping messages

The offline algorithm is based on the result of the
following theorem.

Theorem 13 Given a poset (M, �→) formed by messages
in a synchronously ordered computation with N

processes, vector clocks of size �N/2� can be used to
encode poset (M, �→).

Proof For any subset L ⊆ M such that |L| > �N/2�,
there exists mi, mj ∈ L : mi �→ mj or mj �→ mi. This
is because each message involves two processes. From
a set of �N/2� + 1 messages, there must be at least two
messages that share a common process. Hence, the size
of the longest antichain of (M, �→) (or width(M, �→)) is at
most �N/2�. From Dilworth’s theorem [7], for any poset
P, dim(P) ≤ width(P). Hence, dim(M, �→) ≤ �N/2�.

��
As a result from Theorem 13, we get the offline algo-

rithm as shown in Fig. 10.
As an example, if we use offline algorithm to

timestamp messages in the computation shown in Fig. 6,
two-dimensional vectors are sufficient to capture con-
currency as shown in Fig. 11.

5.3 Lower bound on size of message timestamps

In this section, we show that every vector-based
timestamping algorithm, in which vector timestamps are
compared component-wise, has to use at least 2�N/6�
components for timestamping messages in a synchro-
nously ordered computation on N processes, in the
worst case.

Our proof uses a well-known poset in dimension the-
ory known as the standard example. The standard exam-
ple Sn for n ≥ 2 consists of 2n elements {a1, a2, . . . , an}∪
{b1, b2, . . . , bn}. The precedence relation is given by
ai < bj if and only if i �= j, for i, j = 1, 2, . . . , n.
Figure 12 shows the diagram for S5.

Dushnik and Miller [8] have shown that dim(Sn) = n.
We construct a synchronously ordered computation
involving N processes such that the poset on messages
contains the standard example Sn with n ≥ 2�N/6� as a
subposet.

Our construction is recursive in nature. The result
trivially holds for N ≤ 3. For 4 ≤ N ≤ 12, it is easy
to construct a synchronously ordered computation that
contains S2 as a subposet. An example of such a compu-
tation is shown in Fig. 13. We next show how to construct

Fig. 10 An offline algorithm
for timestamping messages

Timestamping messages and events using synchronous communication 399

P

P

P

P

P

1

2

3

4

5

2
0

3
2

0
1

1
3

4
5

5
4

Fig. 11 A sample run of the offline algorithm

Fig. 12 The standard example S5

a1 b2

b1a2

Fig. 13 An example of a synchronously ordered computation
that contains S2 as a poset

a synchronously ordered computation containing Sn+2
as a subposet given a synchronously ordered computa-
tion containing Sn as a subposet by using only six addi-
tional processes. The construction is shown in Fig. 14.

Besides messages an+1, an+2, bn+1 and bn+2, we use
fourteen additional messages to obtain the desired com-
putation. The main idea behind the construction is as
follows. Let Cn refer to the given computation and Cn+2
refer to the resulting computation. For a message m,
let m.ps denote the set of processes involved in the
exchange of m. Further, let An denote the set {a1, a2, . . . ,
an}. The set Bn can be similarly defined. Observe that
an−1 �→ bi already holds for each bi ∈ Bn−2 in Cn. This
implies that there is a chain of messages (possibly empty)
starting from an−1 and ending at bi for each bi ∈ Bn−2
in Cn. Each chain starts from one of the processes in
an−1.ps. Therefore, to ensure that an+1 �→ bi holds for
each bi ∈ Bn−2 in Cn+2, we proceed as follows. We add
messages sn+1 and tn+1 between one of the processes in
an+1.ps and both processes in an−1.ps as shown in Fig. 14.
Each of the two messages is added after an−1 but before

any other message is exchanged by the respective pro-
cess (of an−1.ps) in Cn. By the way of construction, it
is easy to see that an+1 �→ bi for each bi ∈ Bn−2 in
Cn+2. We now summarize the function of all fourteen
messages.

• Messages sn+1 and tn+1 ensure that an+1 �→ bi for
each bi ∈ Bn−2 and an+1 �→ bn. Messages xn+1 and
yn+1 ensure that an+1 �→ bn−1.

• Messages sn+2 and tn+2 ensure that an+2 �→ bi for
each bi ∈ Bn−1. Messages xn+2 and yn+2 ensure that
an+2 �→ bn.

• Messages un+1 and vn+1 ensure that ai �→ bn+2 for
each ai ∈ An−1. Messages wn+1 and xn+1 ensure
that an �→ bn+2.

• Messages un+2 and vn+2 ensure that ai �→ bn+1 for
each ai ∈ An−2 and an �→ bn+1. Messages wn+2 and
xn+2 ensure that an−1 �→ bn+1.

It can be verified that, even after adding the fourteen
messages, ai‖bi still holds for each i = 1, 2, . . . , n + 2.
Therefore the poset induced on messages in An+2∪Bn+2
by the synchronously precedes relation �→ actually cor-
responds to the standard example Sn+2. We have

Theorem 14 For every N ≥ 2, there exists a synchro-
nously ordered computation on N processes such that
the poset (M, �→) has a dimension of at least 2�N/6�.

Observe that, in our construction, no process exchan-
ges messages with more than six processes. Therefore
the lower bound holds even if the communication topol-
ogy is sparse and contains only �(N) edges.

6 Related work

Fidge, in his paper on timestamping events in a dis-
tributed computation [9,11], also describes a method
for timestamping synchronous communication events
(which is equivalent to timestamping synchronous mes-
sages) using traditional vector clocks. As opposed to
processes in our model, processes in [11] are allowed to
communication using both asynchronous and synchro-
nous messages. We, on the other hand, assume that all
messages are synchronous and our focus is on timestam-
ping messages and events efficiently for such a
computation.

Several techniques have been proposed to reduce
the overhead imposed by Fidge/Mattern’s vector clocks
[9–11,24]. Singhal and Kshemkalyani [27] present a tech-
nique to reduce the amount of data piggybacked on each
message. The main idea is to only send those entries of

400 V. K. Garg et al.

Fig. 14 Constructing Sn+2
from Sn using six additional
processes

Previously

Added Messages

the vector along with a message that have changed since
a message was last sent to that process. Hélary et al. [18]
further improve upon Singhal and Kshemkalyani tech-
nique and describe a suite of algorithms that provide
different trade offs between space overhead and com-
munication overhead. The ideas described in the two
papers are actually orthogonal to the ideas presented in
this paper and, therefore, can also benefit our timestam-
ping algorithm by reducing its overhead.

Fowler and Zwaenepoel [12] propose a variant of vec-
tor clocks in which each process only keeps direct depen-
dencies on others. Although each process maintains a
vector of size equal to the number of processes, only
one integer is piggybacked on a message. For capturing
transitive causal relations, however, it is necessary to
recursively trace causal dependencies. This technique is
therefore more suitable for applications where prece-
dence test can be performed offline. Jard and Jourdan
[19] propose an algorithm that allows only relevant
events to be tracked using a variation of direct depend-
ing mechanism, which they refer to as adaptive timestam-
ping. Torres-Rojas and Ahamad [30] introduce another
variant of vector clocks called plausible clocks. Unlike

traditional vector clocks, plausible clocks are scalable
because they can be implemented using fixed-length
vectors independent of the number of processes. How-
ever, plausible clocks do not characterize causality com-
pletely because two events may be ordered even if they
are concurrent. As a result, plausible clocks are use-
ful only when imposing ordering on some pairs of con-
current events has no effect on the correctness of the
application.

In [3], Basten et al. introduce the notion of an abstract
event. An abstract event is a non-empty subset of primi-
tive events. Basten et al. define two precedence relations
on abstract events, namely strong precedence and weak
precedence [3]. They also present techniques for time-
stamping abstract events to accurately capture the two
precedence relations.

Several centralized algorithms for timestamping
events have also been proposed [32–34]. They are mainly
used for visualizing a distributed computation. An
important objective of these algorithms is to reduce
the amount of space required to store timestamps for
all events in a computation while maintaining the time
required for comparing two events (to determine their

Timestamping messages and events using synchronous communication 401

relationship) at an acceptable level. whose size can be
as small as the dimension of the partial order of exe-
cution [32,33]. The second algorithm is an online ver-
sion of the first one. The main idea is to incrementally
build a realizer using Rabinovitch and Rival’s Theorem
[26], and then create timestamp vectors based on that
realizer. In the online algorithm, the vector timestamps
that have already been assigned to events may have
to be changed later on arrival of a new event. In fact,
timestamp of an event may be changed multiple times.
Further, all timestamps may not be of the same length.
This leads to a somewhat complicated precedence test.
Ward and Taylor present an offline algorithm for time-
stamping events based on decomposing processes into
a hierarchy of clusters [34]. The algorithm exploits the
observation that events within a cluster can only be caus-
ally dependent on events outside the cluster through
receive events from transmissions that occurred outside
the cluster. As a result, non-cluster receive events can be
timestamped much more efficiently than cluster receive
events.

Recently, Agarwal and Garg [1] have proposed a class
of logical clock algorithms based on the notion of chain
clocks. Chain clocks can be used for tracking depen-
dencies between relevant events based on generalizing
a process to any chain in the computation poset. Their
approach reduces the number of components required
in the vector clock when the set of relevant events is
a small fraction of the total events. The algorithm in
this paper is not dependent on any notion of relevance.
Moreover, the algorithm by Agarwal and Garg [1] is
centralized whereas the algorithm in this paper is com-
pletely distributed.

7 Conclusion

In this paper, we have shown that, when communication
is synchronous, messages and events can be assigned
timestamps using fewer than N components for a dis-
tributed system consisting of N processes. The main idea
is to decompose the communication topology into edge
groups and to use one component in the vector for each
edge group. If the size of the edge decomposition is d,
then our timestamps for messages contain d integers and
timestamps for events contain d + 4 integers. For many
common topologies including tree, ring, grid and hyper-
cube, d ≤ �N/2�. As a result, for these topologies, our
timestamping approach significantly outperforms tradi-
tional vector clocks. We have also shown that the pre-
cedence test for our timestamping mechanism requires
only O(1) time.

When messages can be timestamped in an offline
manner, we have proved that timestamping can be done
using at most �N/2� integers. Moreover, we have shown
that any vector-based timestamping algorithm requires
at least 2�N/6� integers in the worst case.

References

1. Agarwal, A., Garg, V.K.: Efficient dependency tracking for
relevant events in shared-memory systems. In: Proceedings
of the ACM Symposium on Principles of Distributed Com-
puting (PODC), pp. 19–28 (2005)

2. Alagar, S., Venkatesan, S.: Techniques to tackle state explo-
sion in global predicate detection. IEEE Trans. Softw. Eng.
27(8), 704–714 (2001)

3. Basten, T., Kunz, T., Black, J.P., Coffin, M.H., Taylor, D.J.:
Vector time and causality among abstract events in distrib-
uted computations. Distrib. Comput. 11, 21–39 (1997)

4. Charron-Bost, B., Mattern, F., Tel, G.: Synchronous and
asynchronous communication in distributed computations.
Distrib. Comput. 9, 173–191 (1996)

5. IBM Corporation. IBM distributed debugger for worksta-
tions. Available at http://www.ibm.com/software/webservers/
appserv/doc/v35/ae/infocenter/olt/ind ex.html

6. Damani, O.P., Garg, V.K.: How to recover efficiently and asyn-
chronously when optimism fails. In: Proceedings of the IEEE
International Conference on Distributed Computing Systems
(ICDCS), pp. 108–115, Hong Kong (1996)

7. Dilworth, R.P.: A decomposition theorem for partially
ordered sets. Ann. Math. 51, 161–166 (1950)

8. Dushnik, B., Miller, E.W.: Partially ordered sets. Am. J. Math.
63, 600–610 (1941)

9. Fidge, C.J.: Timestamps in message-passing systems that pre-
serve the partial-ordering. In: Raymond, K. (ed.) Proceed-
ings of the 11th Australian Computer Science Conference
(ACSC), pp. 56–66 (1988)

10. Fidge, C.J.: Partial orders for parallel debugging. In: Proceed-
ings of the ACM/ONR Workshop on Parallel and Distributed
Debugging, pp. 183–194 (1989)

11. Fidge, C.J.: Logical time in distributed computing systems.
IEEE Comput. 24(8), 28–33 (1991)

12. Fowler, J., Zwaenepoel, W.: Causal distributed breakpoints.
In: Proceedings of the 10th IEEE International Conference
on Distributed Computing Systems (ICDCS), pp. 131–141.
IEEE Computer Society (1990)

13. Garey, M.R., Johnson, D.S.: Computer and intractability: a
guide to the theory of NP-completeness. W. H. Freeman and
Company, New York (1991)

14. Garg, V.K.: Elements of distributed computing. J Wiley,
New York (2002, Incorporated)

15. Garg, V.K., Skawratananond, C.: String realizers of posets
with applications to distributed computing. In: Proceedings
of the 20th ACM Symposium on Principles of Distributed
Computing (PODC), pp. 72–80 Newport (2001)

16. Garg, V.K., Waldecker, B.: Detection of weak unstable pred-
icates in distributed programs. IEEE Trans. Parallel Distrib.
Syst. (TPDS) 5(3), 299–307 (1994)

17. Haban, D., Weigel, W.: Global events and global breakpoints
in distributed systems. In: Proceedings of the 21st Hawaii
International Conference on Systems Sciences, pp. 166–175
(1988)

18. Hélary, J.-M., Raynal, M., Melideo, G., Baldoni, R.: Efficient
causality-tracking timestamping. IEEE Trans. Knowl. Data
Eng. 15(5), 1239–1250 (2003)

402 V. K. Garg et al.

19. Jard, C., Jourdan, G.-V.: Dependency tracking and filtering
in distributed computations. Technical Report 851, IRISA,
Campus de Beaulieu, 35042 Rennes Cedex (1994)

20. Kohl, J.A., Geist, G.A.: The PVM3.4 tracing facility and
XPVM 1.1. Technical report, Computer Science and Math-
ematics Division Oak Ridge National Lab, Tennesse (1995)

21. Kunz, T., Black, J.P., Taylor, D.J., Basten, T.: POET: target-
system independent visualizations of complex distributed-
applications executions. Comput. J. 40(8), 499–512 (1997)

22. Lamport, L.: Time, clocks, and the ordering of events in a
distributed system. Commun ACM (CACM), 21(7), 558–565
(1978)

23. Marzullo, K., Sabel, L.: Efficient detection of a class of stable
properties. Distrib. Comput. 8(2), 81–91 (1994)

24. Mattern, F.: Virtual time and global states of distributed
systems. In: Parallel and Distributed Algorithms: Proceed-
ings of the Workshop on Distributed Algorithms (WDAG),
pp. 215–226. Elsevier, North-Holland (1989)

25. Murty, V.V., Garg, V.K.: Synchronous message passing. In:
Proceedings of the International Symposium on Autono-
mous Decentralized Systems, pp. 208–214. Phoenix, Arizona
(1995)

26. Rabinovitch, I., Rival, I.: The rank of distributive lattice.
Discrete Math. 25, 275–279 (1979)

27. Singhal, M., Kshemkalyani, A.: An efficient implementation
of vector clocks. Inf. Process. Lett. (IPL) 43, 47–52 (1992)

28. Singhal, M., Shivaratri, N.G.: Advanced Concepts in Operat-
ing Systems. McGraw-Hill and The MIT Press (1994)

29. Strom, R.E., Yemeni, S.: Optimistic recovery in distributed
systems. ACM Trans. Comput. Syst. 3(3), 204–226 (1985)

30. Torres-Rojas, F.J., Ahamad, M.: Plausible clocks: constant
size logical clocks for distributed systems. In: Proceedings
of the 10th Workshop on Distributed Algorithms (WDAG),
pp. 71–88. Springer, Berlin Heidelberg New York (1996)

31. Trotter, W.T.: Combinatorics and partially ordered sets:
dimension theory. The Johns Hopkins University Press,
Baltimore (1992)

32. Ward, P.A.S.: An offline algorithm for dimension-bound anal-
ysis. In: Panda, D., Shiratori, N. (eds.) Proceedings of the
International Conference on Parallel Processing, pp. 128–136.
IEEE Computer Society (1999)

33. Ward, P.A.S.: An online algorithm for dimension-bound anal-
ysis. In: Amestoy P., et al. (ed.) Proceedings of the Euro-Par.
Lecture Notes in Computer Science (LNCS), pp. 144–153.
Springer, Berlin Heidelberg New York (1999)

34. Ward, P.A.S., Taylor, D.T.: A hierarchical cluster algorithm
for dynamic, centralized timestamps. In: Proceedings of the
IEEE International Conference on Distributed Computing
Systems (ICDCS), pp. 585–593 (2001)

35. Yannakakis, M.: The complexity of the partial order dimen-
sion problem. SIAM J. Algeb. Discrete Methods 3, 351–358
(1982)

	Timestamping messages and events in a distributed system using synchronous communication
	Abstract
	Introduction
	Model and notations
	An online algorithm
	Edge decomposition
	Timestamping messages (communication events)
	Reducing time for precedence testing
	Timestamping internal (non-communication) events
	Decomposing edges of a communication topology
	Complexity of edge decomposition problem
	An approximation algorithm for edge decomposition
	Edge decomposition for common topologies
	An offline algorithm
	Background: dimension theory
	Offline algorithm for timestamping messages
	Lower bound on size of message timestamps
	Related work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

