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Abstract

We consider deterministic distributed broadcasting on multiple access channels in the frame-
work of adversarial queuing. Packets are injected dynamically by an adversary that is con-
strained by the injection rate and the number of packets that may be injected simultaneously;
the latter we call burstiness. An algorithm is stable when the number of packets in queues at
the stations stays bounded. The maximum injection rate that an algorithm can handle in a
stable manner is called the throughput of the algorithm. We consider adversaries of injection
rate 1, that is, of one packet per round, to address the question if the maximum throughput 1
can be achieved, and if so then with what quality of service. We develop an algorithm that
achieves throughput 1 for any number of stations against leaky-bucket adversaries. The algo-
rithm has O(n2 +burstiness) packets queued simultaneously at any time, where n is the number
of stations; this upper bound is proved to be best possible. An algorithm is called fair when
each packet is eventually broadcast. We show that no algorithm can be both stable and fair
for a system of at least two stations against leaky-bucket adversaries. We study in detail small
systems of exactly two and three stations against window adversaries to exhibit differences in
quality of broadcast among classes of algorithms. An algorithm is said to have fair latency if
the waiting time of packets is O(burstiness). For two stations, we show that fair latency can be
achieved by a full sensing algorithm, while there is no stable acknowledgment based algorithm.
For three stations, we show that fair latency can be achieved by a general algorithm, while no
full sensing algorithm can be stable. Finally, we show that algorithms that either are fair or do
not have the queue sizes affect the order of transmissions cannot be stable in systems of at least
four stations against window adversaries.
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1 Introduction

Multiple access channels model distributed communication environments supporting instantaneous

broadcasting. The properties of a system consisting of a number of stations attached to a trans-

mission medium that make it a multiple access channel are twofold: 1) a packet transmitted by

a station reaches all the stations instantaneously; and 2) a packet is successfully received if its

transmission does not overlap with any other transmissions.

We restrict attention to synchronous“slotted” model in which stations use local clocks ticking at

the same rate and indicating the same round numbers. A station transmits at a round determined

by its clock, with a transmission filling the whole round. This means that if at least two stations

transmit at a round, then no messages are received at this round, otherwise the sole transmission

reaches every station instantaneously.

We consider deterministic distributed broadcasting on multiple access channels in the framework

of adversarial queuing. Packets are injected dynamically by an adversary that is constrained by

two parameters: the injection rate and the number of packets that can be injected simultaneously,

which we call burstiness. Adversaries have injection rate 1, that is, of up to one packet per round.

An algorithm is stable when the number of packets stays bounded at all times. The maximum

injection rate that an algorithm can handle in a stable manner is called the throughput of the

algorithm. We address the question if maximum throughput 1 can be achieved, and if so then what

can be the quality of service.

Fairness of an algorithm denotes the property that each packet is eventually successfully broad-

cast. We say that an algorithm is of fair latency, for injection rate 1, when the packet latency is

O(burstiness). We study the issue of the quality of service with throughput 1 depending on the

following parameters: the class of adversaries, the subclass of algorithms, and the number n of sta-

tions attached to the channel. We consider two standard adversarial models: window adversaries

and leaky-bucket adversaries, all adversaries with injection rate 1 only. We study two subclasses of

algorithms: acknowledgment based and full sensing.

For leaky-bucket adversaries, achieving throughput 1 and fairness is impossible, except for the

trivial case of a single station. Stability alone, with respect to leaky-bucket adversaries, is not

achievable by full sensing algorithms but is achievable by general algorithms. A stable algorithm of

throughput 1 we develop has stations store O(n2 + burstiness) packets in queues; this upper bound

is shown to be asymptotically best possible.

For window adversaries, the situation is more complex. If there are only two stations, then fair

latency is achievable by full sensing algorithms, but no acknowledgment based algorithm can be

stable. For three stations, fair latency is achievable, but no algorithm that is either full sensing nor

that withholds the channel for a sequence of exclusive broadcasts after a successful transmission

can be stable against leaky-bucket adversaries. We show that algorithms that are stable against

window adversaries in systems of at least four stations should be sufficiently liberal in their design.

In particular, it is impossible for an algorithm to be stable when it simultaneously is either fair or

does not have stations use the queue sizes in an effective way or finally has stations behave greedily

by withholding the channel after a successful transmission.

Related work. Most of the previous work on dynamic broadcasting on multiple access channels

has concentrated on scenarios when packets are injected subject to statistical constraints. When a
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broadcast environment is of such nature, the behavior of the system can be modeled as a Markov

chain and stability can be captured by ergodicity, see [23] for a probabilistic background. The well

known algorithms like Aloha [1] and binary exponential backoff [22] have been investigated with

respect to their ability to handle broadcast with stochastic injection rates; Gallager [14] gives an

overview of the early research in this direction. For recent work, see the papers by Goldberg et

al. [16, 17], H̊astad et al. [18], and Raghavan and Upfal [24].

Adversarial queuing was proposed by Borodin et al. [7] as an approach to study stability of

contention-resolution algorithms in store-and-forward routing. They showed, among other things,

that a directed acyclic network is stable with injection rate 1, for any greedy contention-resolution

algorithm. Universal stability of an algorithm denotes stability in any network, and universal sta-

bility of a network denotes stability of an arbitrary algorithm in the network, both under injections

at a constant rate less than 1. These notions were introduced by Andrews et al. [4]; they were later

studied by Gamarnick [15] and Alvarez et al. [3]. Bhattacharjee et al. [6] showed that the natural

FIFO algorithm can be unstable at arbitrarily low injection rates. Lotker et al. [20] showed that ev-

ery work-preserving contention-resolution algorithm is stable if injection rate is less than 1/(D+1),

where D is an upper bound on the length of any path that a packet needs to traverse. Koukopou-

los et al. [19] addressed the question of how structural properties of networks affect stability of

contention-resolution algorithms. Adaptive algorithms have packets carry only their destination

addresses, rather than complete routing paths; the stability of such algorithms was considered by

Aiello et al. [2].

Bender et al. [5] studied stability of randomized backoff on multiple access channels in an

adversarial setting, where stability meant that throughput was as large as injection rate. They

showed, among other things, that the exponential backoff is unstable for rates ρ ≥ c lg lg n/ lg n, for

a sufficiently large constant c. Stability of deterministic broadcast algorithms for multiple access

channels in the framework of adversarial queueing was first considered by Chlebus et al. [13]. They

defined fair latency to hold when the packet latency was O(burstiness/rate). Fair latency implies

strong stability, which holds when the number of queued packets is of the order of burstiness. They

showed that no algorithm can be strongly stable for injection rates that are ω( 1
logn) and gave a

full sensing algorithm for a channel with collision detection that is both universally stable and of

fair latency for injection rates at most 1
2(⌈lg n⌉+1) . For a channel without collision detection, they

developed a full sensing algorithm that is both universally stable and of fair latency for injection

rates at most 1
c lg2 n

, for some c > 0. They showed the existence of an acknowledgment based

algorithm that has fair latency for injection rates at most 1
cn lg2 n

, for some c > 0, and developed an

explicit acknowledgment based algorithm that has fair latency for injection rates at most 1
27n2 lnn

.

Finally, they showed that no acknowledgement-based algorithm is stable for injection rates larger

than 3
1+lgn .

Algorithmic problems not regarding pure communication issues in distributed environments

relying on multiple access channels have been also studied in the literature. Such work included

broadcasting spanning forests when the edges of an input graph are stored in the stations [8] and

performing a set of independent unit-cost tasks [9].

Summary of the results. We have arranged the main possibility and impossibility facts in two

Tables 1 and 2, which correspond to the two adversarial models. The categorization of these facts is

with respect to two subclasses of general algorithms: acknowledgment based and full sensing ones,

and the number n of stations in a system. The entries that are not empty represent theorems in
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n = 2 n = 3 n ≥ 4

ack based stable : impossible

full sensing fair latency : possible stable : impossible

general fair latency : possible
stable : possible

stable and fair : impossible

Table 1: Window adversaries: some possibility and impossibility facts regarding the
quality of service of algorithms, depending on a number n of stations and a subclass
of algorithms.

this paper.

Questions regarding existence of algorithms of suitable quality in environments represented by

empty entries in Tables 1 and 2 can be settled by inferring answers from the non-empty entries

of the tables. The following implications about dependencies among the entries of the two tables

hold true a fortiori: Impossibility for window adversaries implies the same result for leaky-bucket

ones. An existence of an algorithm of some quality of service for leaky-bucket adversaries implies

the same existence for window ones. Impossibility for n stations implies the same result for more

than n stations. An existence of an algorithm of some quality of service for n stations implies the

same existence for less than n stations. An existence of an acknowledgement-based algorithm with

some properties implies the existence of a full sensing one with the same properties, and existence

of a full sensing algorithm with some properties implies existence of a general one with the same

properties. An impossibility result for general algorithms implies the corresponding result for full

sensing ones, and impossibility result for full sensing algorithms implies the corresponding result

for acknowledgement-based ones.

Our main positive contribution is discovery of a stable algorithm that maintains O(n2 +

burstiness) packets in queues at any round against leaky-bucket adversaries, for any number n

of stations. We next show that any broadcast algorithm for a system of n stations can be forced by

a leaky-bucket adversary of burstiness 2 to eventually have Ω(n2) packets in queues, thus proving

the optimality of our algorithm with respect to the asymptotic number of queued packets. Except

for the impossibility facts given in Tables 1 and 2, we show other ones. We prove that no algorithm

that withholds the channel can be stable for even three stations against leaky-bucket adversaries.

The other impossibility facts hold for algorithms we call “retaining” and “queue-size oblivious,”

they are defined in Section 2. We show that no retaining algorithm can be stable in a system of at

least four stations against the window adversary of burstiness 2, which implies that no queue-size

oblivious algorithm is stable in such environments. By way of preparing a background for the main

results of this paper, we show two preliminary facts: one is that centralized algorithms can achieve

fair latency in systems of arbitrary size, the other is that fairness alone can be achieved by an

acknowledgment based algorithm.

The possibility-type contributions of this paper hold for channels without collision detection

while the impossibility results hold for channels with collision detection, unless indicated otherwise.
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n = 1 n ≥ 2

ack based fair latency : possible

full sensing stable : impossible

general
stable : possible

stable and fair : impossible

Table 2: Leaky-bucket adversaries: some possibility and impossibility facts regarding
the quality of service of algorithms, depending on a number n of stations and a
subclass of algorithms.

Structure of the document. This paper is organized as follows. We review the methodology

and technical notions in Section 2. The remaining three sections correspond to sizes of systems.

The smallest system of two stations is considered in Section 3. The system of three stations is

discussed in Section 4. Finally, arbitrarily large systems are considered in Section 5. We conclude

in Section 6.

2 Technical Preliminaries

A multiple access channel is a broadcast system with specific properties that we discuss in this

section. We also define adversarial models, broadcast algorithms and their subclasses, and mea-

sures of quality of service. We use the letter n to denote the number of stations attached to a

communication medium. Each of the n stations has a unique name assigned to it. We assume that

each station’s name is an integer in the range [1, n]. We also assume that every station knows n, in

the sense that n can be a part of code of a broadcast algorithm. We use the letters p, q, r, and s

for stations. More precisely, when there are at least two stations in a system, then some two of

them are denoted by p and q; a third station, if available, is referred to as r; and a fourth one, if

available, if denoted by s.

Multiple access channel. What makes a broadcast system multiple access channel is the prop-

erty that a transmission by a station is instantaneously and successfully received by all the stations

if and only if the transmission does not overlap with transmissions by other stations. A message

successfully broadcast is said to be heard on the channel.

We consider a synchronous channel in which executions of algorithms are structured as sequences

of events occurring at consecutive rounds so that overlapping transmission occur at the same round.

Each station is equipped with a clock. The clocks are synchronized so that clock cycles begin

simultaneously and are of the same duration. A round is defined to be the minimum number of

clock cycles needed to transmit a message, with the local computation at a station considered to

be of negligible duration. The length of a round is the same across all the stations. This allows

to consider time as “slotted” into rounds so that every station performs a transmission to fit in a

round.

Multiple transmissions at the same round result in conflict for access to the channel, which is
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called a collision. When no stations transmit at a round, then the feedback that the stations receive

from the channel is called silence; we may also say about such a round that the channel or the

round is silent. A channel may be equipped with a collision detection mechanism, which makes

the stations able to distinguish between silence and collision at a round. If no collision detection

mechanism is available, then stations perceive collisions as silences.

Adversaries. We consider the worst-case performance of algorithms that handle traffic deter-

mined by an adversarial setting. The rate of packet injection of an adversary means an upper

bound on the average number of packets injected into all the stations. The maximum number

of packets that an adversary may inject into all the stations at a round is called the burstiness.

An adversary is defined by these two parameters: injection rate and burstiness. An injection rate

can be defined in various ways depending on the class of time segments over which we average.

We consider two kinds of adversaries: window adversaries and leaky-bucket ones. In the context

of adversarial queuing, window adversaries were first used by Borodin, et al. [7] and leaky-bucket

adversaries by Andrews, et al. [4].

We will use the letter ρ to denote injection rate; we require the inequalities 0 < ρ ≤ 1 to hold.

Let ρ be an injection rate and w a positive integer: the window adversary of type (ρ,w) may inject

at most ρw packets in each contiguous segment of w rounds into any set of stations; the number w

is called the window size in such a context. Let ρ be an injection rate and b a non-negative integer:

the leaky-bucket adversary of type (ρ, b) may inject at most ρt + b packets in every contiguous

segment of t > 0 rounds into any set of stations. An adversary is said to be of injection rate ρ when

it is either of window type (ρ,w) or of leaky-bucket-type (ρ, b), for some w and b, respectively. The

window adversary of type (ρ,w) has burstiness ⌊ρw⌋. The leaky-bucket adversary of type (ρ, b) has

burstiness ⌊ρ + b⌋.

Observe that injection rate larger than 1 would allow the adversary to make the number of

packets queued at stations grow unbounded, as at most one packet can be heard per round. In

this paper, we consider only adversaries of injection rates exactly 1. Such adversaries differ among

themselves by their burstiness, which is either the window size w for a window adversary, or the

number b+1 for a leaky-bucket adversary. The models of window adversaries and leaky-bucket ones

are equivalent for injection rates strictly less than 1, while the leaky-bucket adversary of injection

rate 1 can generate sequences of injections not captured by any window adversary of rate 1, as was

showed by Rosén [26]. It follows that a possibility-type of a result for leaky-bucket adversaries holds

automatically for window adversaries, while an impossibility result showed for window adversaries

holds automatically for leaky-bucket adversaries.

Distributed deterministic broadcasting. We consider broadcasting algorithms for a system of

stations attached to a multiple access channel. The algorithms are restricted to be both distributed

and deterministic. Further requirements for broadcast algorithms may stem from additional as-

sumptions about channels. For instance, when a channel is equipped with a collision detection

mechanism then algorithms need to be able to react differently to collisions as opposed to silent

rounds. The “slotted” model of full synchrony does not impose any restrictions on specifications

of algorithms: stations simply act driven by their local clocks. On the other hand, the quality of

broadcasting, for instance as measured by the maximum throughput achievable for a given number

of stations, may be affected by the level of synchrony among the clocks at stations.

Any definition of algorithms needs to reflect general expectations of what algorithms are to

accomplish. We simply want algorithms to facilitate hearing packets on a channel, in a distributed
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and deterministic manner, while packets are injected into stations. There are numerous tacit

assumptions in such expectations, let us next discuss the key ones.

We want a station to have private memory to store incoming packets while waiting for access

to the channel, as there may be a contention for access while packets are injected. Such memory is

called a buffer or a queue. The following operations on a queue are always available: enqueuing a

packet and dequeuing the queue. An algorithm may use other operations on the queues, for instance

to verify if the queue is empty or obtain the number of packets in the queue. As the name “queue”

suggests, a queuing discipline is used to prioritize packets in the buffer. Queuing disciplines do

not affect some measures of quality of service, like the maximum number of packets in queue, but

may affect others, for instance, the time spent by packets in queues. The first-in-first-out (FIFO)

queuing organization appears to be most natural to optimize for packet latency; we assume that

algorithms use FIFO queues to store packets.

The packet a station is processing to have it transmitted first among all its packets is called

pending. Once a station starts processing a packet we want the station to continue working on this

very packet until a successful transmission, rather than possibly abandon the packet temporarily

and switch to some other packet, as if expecting luck to be associated with packets. We do not want

a pending packet to be discarded without a prior successful transmission and we want each packet

to be heard on the channel precisely once rather than multiple times. After a pending packet has

been heard, we do not care what happens to it, but it is natural to expect that such a packet is

discarded to economize on space. When a pending packet is discarded and the queue is non-empty,

the next pending packet is obtained by dequeuing the queue. It is possible for a station to have a

pending packet and an empty queue, as the pending packet was obtained by dequeuing the queue

so it is stored outside of the queue. All of the above expectations have been incorporated in the

definition of deterministic distributed broadcast algorithms used in this paper.

Algorithms as automata. It is advantageous to formally model broadcast algorithms as au-

tomata, in a way that is now standard in representing distributed systems [21]. The notion of

automaton is especially helpful in formalizing impossibility proofs. Our presentation of algorithms

is above the level of automaton specification: we describe algorithms precisely enough to convince

a reader that a full specification as an automaton is a matter of filling in details.

A state of a station executing an algorithm is determined by the values of its private variables

specified in a code of the algorithm and the number of packets that have been injected and still

need to be transmitted. One read-only variable is reserved to store the name of a station, while

another one is used to store the number n of stations in the system. There is an initial state for

each station in which the station starts an execution, the queue is empty at such a state.

A message sent to the channel consists of a transmitted packet and possibly additional control

bits. The contents of transmitted packets do not affect state transitions, in the sense that every

packet is treated as an abstract token, while control bits may affect state transitions. A round

during which no packet is heard as transmitted on the channel is said to be void. It is merely either

a silence or a detection of collision or a message consisting of only control bits that is obtained by

a station from the channel during a void round.

An execution of an algorithm is a sequence of events occurring at consecutive rounds. An

execution starts with all the stations in their initial states.

An event at a round is represented by the following sequence of actions at each station:
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(i) The station either transmits a message or pauses, accordingly to its state.

(ii) The station receives a feedback from the channel in the form of either hearing a message or

collision signal or silence.

(iii) New packets are injected into the station.

(iv) A state transition occurs at the station.

A state transition referred to at (iv) above is based on the state at the end of the previous

round, the feedback from the channel at this round, and the packets injected at this round. It

includes the following operations. If new packets have been injected at this round then they are

all enqueued. If the station has just transmitted successfully at this round, then the transmitted

packet is discarded and new pending packet is obtained by dequeuing the queue, which produces a

packet that has been waiting longest in the queue, unless the queue is empty. A message for the

next round is prepared, if any will be attempted to be transmitted.

Such a general representation of algorithms as automata requires stations to listen to the channel

at all rounds. Some weak algorithms we consider, namely acknowledgment based ones, can be

interpreted as having a station “ignore” the feedback from the channel when the station has no

packets to transmit. The modeling of algorithms by automata we assume does not exclude such

algorithms, because “ignoring” the feedback from the channel can be represented by cycling in the

same state. Listening to the channel at all rounds has often been referred in the literature as “full

sensing” to indicate that stations without packets do not ignore the feedback from the channel and

undergo state transitions at every round.

Properties of algorithms. When a general broadcast algorithm is executed, a feedback received

by the stations from the channel at a round is of the following five kinds: (1) packet with control

bits piggybacked on it, (2) packet without control bits attached to it, (3) control bits without any

packet, (4) silence, or (5) collision. An algorithm designed to have stations actually send control

bits in some messages is called adaptive. This term is to express the property that stations may

adapt their behavior to “instructions” encoded by control bits in a message. For instance, a station

may announce that it is reserving the channel for a sequence of consecutive transmissions, which is

to make other stations postpone any transmissions and instead merely wait until the reservation is

recalled.

We consider two subclasses of general algorithms: full sensing algorithms and acknowledgment

based ones. A broadcasting algorithm is full sensing if no control bits are used in messages, neither

attached to packets nor transmitted as separate messages. For such algorithms, a feedback received

from the channel is of the following three forms: (1) packet, (2) silence, or (3) collision. By the

definitions of adaptive and full sensing algorithms, an algorithm is adaptive when it is not full

sensing, and any algorithm is either adaptive or full sensing.

A broadcasting algorithm is defined to be acknowledgment based when a state transition at a

station depends only on which consecutive round it is being spent to process a currently handled

packet, where the numbering of rounds starts from the first round when the packet started to be

processed. A feedback received from the channel, that matters for a station running an acknowl-

edgment based algorithm, is of two possible forms: (1) the packet just transmitted by the station

or (2) anything else. Once a packet transmitted by a station is heard on the channel, then this is
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considered to be “acknowledgment”of the broadcast, which results in the station starting to process

the next packet.

Acknowledgment based algorithms are full sensing in that they do not use control bits in mes-

sages. A station p running an acknowledgment-based algorithm is oblivious to the actions of other

stations except for the rounds when p transmits. An acknowledgment based algorithm can be con-

sidered as determined completely by an unbounded binary sequence assigned to each station, which

we call the transmission sequence of the station; a separate sequence assigned for each station. A

transmission sequence is to be interpreted as follows: if the ith entry is a 1, then the station trans-

mits the currently processed packet at the ith round, counting from the first round when the packet

was started to be processed, and a 0 means that the station pauses at the ith round of processing

the packet.

We show that the three categories of algorithms just introduced are different in terms of their

capability to achieve desirable properties by algorithms. This occurs already in systems of small

sizes. In particular, we show that no acknowledgment based algorithm can be stable in a system

of two stations, while there is a full sensing algorithm of fair latency against window adversaries

for such systems; see Section 3. Similarly, we show that no full sensing algorithm can be stable

in a system of three stations, while there is an adaptive algorithm of fair latency against window

adversaries for such systems; see Section 4.

A natural paradigm to organize a broadcast algorithm is for stations to be greedy by withholding

the channel: once a station p transmits successfully at a round, then p keeps transmitting as long as

there are packets waiting in p. A broadcast algorithm withholds the channel when stations behave

in this way in the course of an execution of the algorithm.

Given an algorithm, we say that the decision if to transmit the currently pending packet at the

next round does not depend on the size of the queue at a round when the following holds for any

station running the algorithm: whenever the station has a pending packet and the queue at the

station is nonempty and the pending packet is to be transmitted at the next round, then if a packet

were removed from the queue at the end of the previous round then the pending packet would be

transmitted at the next round nonetheless. An algorithm P is queue-size oblivious if it has the

following two properties:

(1) the decision if to transmit the current pending packet at the next round does not depend on

the size of the queue at a round;

(2) if an execution of P is stable, for a sequence of injections of packets performed by some

adversary, then the execution for the same injections is stable if allowed to be additionally

disturbed by the adversary by removing a packet already in a queue at a round to inject it

at the next round, a packet per round.

A definition capturing the property that an algorithm is indifferent to the sizes of queues needs to

be somewhat technical. This is because of the model of algorithms we work with: a station enqueues

and dequeues packets itself, so the tally of the number of packets in the queue is implicitly known

by a station, being the difference between the numbers of enqueued packets and dequeued ones.

The property of being queue-size oblivious is not related to adaptability of algorithms. Suppose a

system is running a queue-size oblivious algorithm: when a station dequeues the queue to obtain a

new pending packet and then computes the number x > 0 of packets remaining in the queue and
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finally decides to transmit a message, then the message may include control bits representing this

number x, but the decision to transmit a message with the pending packet at the next round would

be the same if the number of packets in the queue were x− 1 and this were achieved by removing

a packet from the queue at the end of the previous round. Any acknowledgment based algorithm

is queue-size oblivious. All the algorithms given in [13] are queue-size oblivious; these algorithms

were analyzed in [13] for injection rates less than 1. We call an algorithm queue-size sensitive if

it is not queue-size oblivious. Among the algorithms described in this paper, some are queue-size

oblivious, in particular such is algorithm 2-Adaptive, while others are queue-size sensitive, for

instance 2-Full-Sensing, 3-Adaptive and Move-Big-To-Front.

The quality of broadcasting. The performance measures we consider express the quality of

broadcasting. Fairness and stability are the most general properties we want to achieve. An

algorithm P is said to be fair against an adversary A if, for any execution of algorithm P against

this adversary, every packet injected by A is eventually heard on the channel. An algorithm P

is said to be stable against an adversary A if, for any execution of algorithm P in a system of n

stations against this adversary, there is a number s(n) such that the number of packets stored in

the queues is at most s(n) at any round.

As we show in Section 3, achieving both stability and fairness against leaky-bucket adversaries

is impossible, except for a trivial case of a system of a single station. Achieving fairness alone

against any adversary is straightforward in a full sensing way: Round-Robin algorithm, which

makes station i transmit at any round k such that k ≡ i (mod n), does the job. This is because

when a packet is injected into a station, then it is of some rank, say, j in the queue: during the

following jth cycle of the execution the station hosting the packet transmits the packet successfully.

Proposition 1 Fairness can be achieved by an acknowledgment based algorithm against leaky-

bucket adversaries.

Proof: We may assume that n > 20, since for n ≤ 20 stations we can use the construction for

21 stations in which 21 − n dummy stations have no packets injected. A station p uses the pth

prime number xp from the range [n lnn, 3n lnn). There are at least n primes in this range, by

properties of the distribution of primes in intervals [25], therefore numbers xp are well defined. A

transmission sequence of station p has an occurrence of 1 at every position 3n2 lnn + i · xp, for a

non-negative integer i, and the remaining positions are all 0’s.

We argue that each station p with a pending packet at round t transmits successfully in the

interval [t, t + 6n2 lnn) against any leaky-bucket adversary. Suppose that this is not the case, to

arrive at a contradiction. Consider the interval I = [t + 3n2 lnn, t + 6n2 lnn), which consists of

3n2 lnn rounds. Station p transmits at least 3n2 lnn
xp

≥ n times in I, exactly once in a subinterval

of xp rounds.

It is sufficient to show that any other station can transmit simultaneously with p at most once

in I, since n−1 other stations compete with p for a slot to transmit. To this end, consider a station q

distinct from p and assume that q transmits simultaneously with p at least twice during I. Note that

these transmissions must happen while station q processes the same packet. This is because when

a station starts working on a new packet, it does not perform a transmission in the first 3n2 lnn

rounds of this operation. Therefore these two simultaneous transmissions of p and q occurring at

some rounds t1 < t2 must have the property that t2 − t1 is divisible by both xp and xq. This
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however may happen only if t2 − t1 is divisible by xp · xq, because the numbers xp and xq are both

primes: thus the inequalities t2 − t1 ≥ xp · xq ≥ n2 ln2 n hold. On the other hand, 3n2 lnn ≥ t2 − t1
and hence we obtain the inequality 3n2 lnn ≥ n2 ln2 n, which is false for n > 20. This means that

the points t1 and t2 cannot be both in I, because otherwise we obtain a contradiction. �

An algorithm P is said to have bounded latency against an adversary A if, in any execution

of the algorithm in a system of n stations against adversary A, there is a number ℓ(n) > 0 such

that, for each injected packet, the time interval from the injection of the packet until the packet

is heard on the channel is of length at most ℓ(n). If a station stores some x packets in its queue

at a round of an execution of an algorithm, then the latency of the algorithm is at least x in this

execution. It follows that a bounded-latency algorithm is both fair and stable. An algorithm of

bounded latency, for a given adversary of injection rate 1, has fair latency if the bound ℓ(n) satisfies

the estimate ℓ(n) = O(burstiness). An algorithm of fair latency is also strongly stable, in the sense

that the number of packets queue at stations is O(burstiness). Any distributed algorithm given in

this paper, that is both fair and stable against some adversary, happens also to be of fair latency

against this adversary.

There is a fundamental difference in quality of service between deterministic broadcast sched-

ules implemented by distributed algorithms versus centralized ones: distributed algorithms cannot

achieve both stability and fairness while centralized ones can achieve fair latency. By a centralized

algorithm we mean one controlled by a central processing unit (CPU) that can communicate with

the stations instantaneously to both collect information from them about injected packets and give

them instructions about which station is to transmit at a given round.

Proposition 2 Fair latency can be achieved by a centralized algorithm against leaky-bucket adver-

saries in a system of n stations, for any n > 0.

Proof: Take a system of n stations and a leaky bucket adversary of type (1, b). The adversary

injects packets into stations subject to the constraints of its type. Each station maintains its private

FIFO queue. An injected packet is immediately enqueued into the respective private queue. When

a station is to transmit at a round, it dequeues a packet from the private queue and transmits the

packet. Each station keeps a record of the number of packets injected at a round through the next

round.

We specify an algorithm by a sequence of actions that occur at a round. The CPU controls

which station transmits at a round by notifying the designated station at the immediately preceding

round. The CPU maintains a FIFO queue to store tokens. Each token is labelled with a name of

station.

A round begins with a station designated to transmit at this round performing a transmission,

if there is such a station. After the stations received a transmission or detected a lack thereof,

each station p notifies the CPU about the number kp of packets that were injected into p at the

previous round. The CPU creates kp tokens each labelled with p and enqueues them in arbitrary

order. Next the CPU dequeues a token from the queue, unless the queue is empty. If the queue

is nonempty and a token g has been obtained by dequeuing the queue, let q be the name of the

station with which the token g is labelled. The CPU notifies the station q to transmit at the next

round. This concludes the round. Observe the invariant that when a station r is notified by the

CPU to transmit, then the private queue of packets at r is nonempty.
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Next we estimate the maximum packet delay. We consider the round of injection and the round

of transmission as not contributing to delay. Observe that when the adversary injects a packet at

round t, then the station notifies the CPU at round t + 1 about the packet and at the same round

the CPU notifies some station to transmit at round t + 2: this incurs a delay of at least 1 for the

packet and the round t + 2 will not be silent.

We claim that a packet cannot be delayed by more than b + 1 rounds. Suppose that this is not

the case, to arrive at a contradiction. Take the first round t1 in which a packet u is transmitted that

was delayed by at least b+2 rounds. Let t0 be the last silent round before round t1. Round t0 exists,

as the first round in any execution is silent. The queue at the CPU was empty at round t0 − 1,

so all the packets injected into stations by round t0 − 2 have been heard on the channel. The

adversary could not inject any packet at round t0−2, as otherwise the queue at the CPU could not

be empty at round t0 − 1. Packet u was delayed by more than b + 1 rounds so it was injected by

round t1 − b− 3. Therefore packet u was injected in the time interval I starting from round t0 − 1

through round t1 − 3 − b.

Now observe two facts. One is that the adversary could inject at most (t1−3−b)−(t0−1)+1+b =

t1 − t0 − 1 packets in this interval I. The other is that the number of packets heard on the channel

starting from round t0 + 1 through round t1 is t1− (t0 + 1) + 1 = t1− t0. These two facts contradict

one another. �

3 Just Two Stations

In this section we consider two stations attached to a multiple access channel. More precisely,

the algorithms presented in this section are developed for a system of exactly two stations, while

impossibility results hold for any system with at least two stations. We consider both window and

leaky-bucket adversaries. For leaky-bucket adversaries, there is an algorithm that can handle traffic

in a stable way, while achieving both stability and fairness is impossible. The situation is different

with respect to window adversaries: there exists a full sensing fair-latency algorithm, which is a

fortiori stable and fair, while no acknowledgment based algorithm can merely be stable.

Leaky-bucket adversaries for two stations. We begin by showing that stability can be

achieved for two stations. Consider the following queue-size oblivious algorithm that we call 2-

Adaptive. The two stations p and q use a conceptual “token.” The initial state is such that the

queues are empty and the token is with p. The token gives the privilege to transmit packets: a

station with the token keeps transmitting for as long as it has a pending packet. The token elimi-

nates a possibility of collisions. When a station with a token has only one packet at the beginning

of a round, which means it is a pending packet while the queue is empty, then the message to carry

the pending packet contains an “over” bit. The other station takes over after receiving the “over”

bit in the message and considers itself to be holding the token. When a station receives the token

at round i and does not have a pending packet, then the station does not transmit at the next

round i + 1. A station, say p, that does not hold a token at a round does not transmit at this

round, but when this round is silent, then p considers itself holding the token at the next round.

This allows to exchange the token without any transmissions when no station has a pending packet.

Next we argue why algorithm 2-Adaptive is stable but not fair in a system of two stations against

leaky-bucket adversaries.

11



Consider an adversary of some burstiness b + 1 and a segment of contiguous transmissions in

an execution. For this segment, the sum of the sizes of the queues is not more than the number of

packets during the first transmission of this segment plus burstiness, because a packet per round

is transmitted. We may assume without loss of generality that the adversary exercises its power

to use burstiness as early as possible for the considered segment of contiguous transmissions. We

examine the number of packets in the queues at a round when a packet is transmitted by referring

to what happened at the most recent preceding silent round. Such a silent round exists, as the first

round in any execution is silent.

For any round t at which some station transmits a packet, a transmission of a message will

occur at the next round t+ 1 unless two things occur: the transmitting station has only one packet

at the beginning of round t, and the other station does not have any packet at the end of round t.

Therefore a silent round t + 1 after a transmission at round t indicates that at the point in time

that is simultaneously the end of round t and the beginning of round t+ 1 the number of packets in

the stations equals at most the burstiness of the adversary, as these many packets could be injected

at round t into the station that transmitted its solitary packet at round t while the other station

did not have any packets to transmit at round t + 1. Such a scenario leads to up to b + 1 packets

in the queues. Consider now a scenario in which a silent round t is not preceded by a round with

transmission. Suppose station p is scheduled to transmit at round t. The adversary can inject up to

b+2 packets in rounds t and t+1. There is a possibility that these many packets are simultaneously

in the queues: this occurs when b + 1 packets are injected into p at round t and next one packet

again at round t + 1. These two cases show that there are never more than b + 2 packets in the

queues against this adversary, which means that the algorithm is stable.

To show that algorithm 2-Adaptive is not fair if b > 0, consider the following scenario. Let

the adversary of burstiness 2 keep injecting one packet per round into station q, starting from the

first round, while initially no packets are injected into p. Station p does not transmit at the first

round as it does not have any packet at the beginning of the round. This results in q obtaining the

token. Station q prepares a message at the end of the first round to be transmitted at the second

round: the message contains the pending packet and the “over” bit as the queue at q is empty. The

message gets transmitted at the second round and station p obtains the token. Station p does not

transmit at round three, as it has no packets, so station q receives the token back. At the end of

round three, station q has two packets: those injected at rounds two and three. Hence the message

prepared by q at the end of round three contains a packet but not the “over” bit, as the queue

still contains one packet. The message gets transmitted at round four and a new packet is injected

into q at this round.

The transmissions of q will continue forever, as the queue at q will always contain at least

one packet. Let the adversary inject one packet into p at round four. This is consistent with

burstiness 2. This packet will never be transmitted, as station p will never receive the token, which

means that the algorithm is not fair.

Algorithm 2-Adaptive withholds the channel and is queue-size oblivious. We will show that no

algorithm that withholds the channel can be stable for a system of three stations, see Theorem 7,

and that no algorithm that is queue-size oblivious can be stable in a system of four stations, see

Corollary 3. The following question is natural to ask now: is there an algorithm with a bounded

packet latency for a system of two stations? The answer depends on the kind of adversary. We

answer this question in the negative for leaky-bucket adversaries:
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Theorem 1 No algorithm can be both stable and fair for a system of at least two stations against

the leaky-bucket adversary with burstiness 2.

Proof: Consider a system with at least two stations p and q. Suppose, to arrive at a contradiction,

that some algorithm P for this system is both stable and fair. We construct an execution E of P

that contains infinitely many void rounds while simultaneously the adversary injects one packet per

round on the average. Once such an execution E is shown to be possible, a contradiction with the

stability of P will have been established.

We determine an execution E by specifying two components. One is a sequence t0, t1, t2, . . . of

void milestone rounds, where ti < ti+1 for any i ≥ 0. The other is how packets are injected to

enforce the occurrence of milestone rounds. The construction is by induction on round numbers.

Define t0 to be the first round of the execution. Let the adversary inject one packet into p at the

first round. Round t0 is void in E because no packets have been injected before the round. Suppose

the execution E and injections have been defined by a milestone round ti, for some i ≥ 0. Next we

define the milestone round ti+1 > ti and how packets are injected in the interval starting from ti +1

through ti+1 in E .

Consider a conceptual scenario S1 in which the adversary keeps injecting one packet per round

into p, starting from round ti + 1, such injections occurring forever. If there is a void round x > ti
under S1 then we extend E to round x as follows. Set ti+1 = x and let the adversary inject one

packet into p at any round after ti and up to round ti+1 = x. This behavior of the adversary

in scenario S1 is consistent with type (1, 1) of adversary, in that exactly one packet per round is

injected in the newly added segment of the execution. Otherwise, when x does not exist under

scenario S1, then this means that a packet is heard at every round after ti. Since the algorithm is

fair, eventually station q will have an empty queue; let y be the first such a round after round ti.

Observe that p will transmit a packet at every round after y under scenario S1: there are no packets

in q and a packet is heard at every round.

Consider next a scenario S2 that differs from S1 only in that the adversary injects a packet

into q at round y. Observe that p will transmit at every round after y under scenario S2, because

these two scenarios do not differ with respect to injections into p. Under scenario S2, station q has

a pending packet starting from round y+1. Station q needs to transmit the pending packet at least

once, because otherwise the algorithm would not be fair under scenario S2. Let q transmit this

packet for the first time at some round z > y. Since p also transmits at z, a collision occurs, which

makes round z void. We extend E as follows. Define ti+1 to be this round z. Let the adversary

inject packets according to scenario S2 starting from the next round after ti and ending just before

round ti+1 = z, and no packets at round ti+1 = z.

Continuing this construction defines an execution E . The adversary injects either no packet or

one packet or two ones at a round of E . When the rounds of one packet injected are removed from

the execution, then what remains are alternating rounds with respect to the number of injected

packets: two packets injected followed immediately by no packets injected, and no packets followed

immediately by two packets. This pattern of injections in E is consistent with the definition of the

leaky-bucket adversary of burstiness 2.

All the milestone rounds ti are void. Moreover, the average number of packets injected between

the rounds ti and ti+1 is precisely one packet per round, by the specification of the behavior of the

adversary. It follows that the number of packets at the queues of the two stations at round ti is
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at least i + 1, for i ≥ 0, and thus grows unbounded. The existence of execution E contradicts the

stability of algorithm P. �

The impossibility of Theorem 1, which is about deterministic distributed algorithms, could be

compared to the possibility of Proposition 2. We pause now to revisit the definition of an algorithm

we work with to capture the notion of a “broadcast schedule” for multiple access channels. For

the proof of Theorem 1 to be valid, the following property of such broadcast schedules needs to be

satisfied: for any round t, the action of each station p at this round is uniquely determined by what

has been heard on the channel prior to round t and how the adversary has been injecting packets

into p prior to round t. In particular, if there are two scenarios S1 and S2 such that the behavior

of an adversary is the same prior to some round t in both S1 and S2 but the behavior differs at

round t in precisely that (1) the adversary injects the same number of packets into a station p at t

in both S1 and S2 while (2) the numbers of packets injected into some other station q differ in the

scenarios S1 and S2, then the actions taken by the station p at round t+ 1 are the same under both

scenarios, while only the actions of q may differ. The property that the actions of stations at a

round are uniquely determined by the history prior to the round follows from the assumption that

algorithms are deterministic. The property that the actions of stations at a round are affected by

other stations only through what has been heard on the channel prior to the round holds because

algorithms are assumed to be distributed.

The sequence t0, t1, t2, . . . of milestone rounds, as considered in the proof of Theorem 1, may

have the property that there is no upper bound on the differences ti+1 − ti, for i ≥ 0. If such

an upper bound, say w, existed, then the behavior of the adversary would be consistent with the

definition of type (1, w) window adversary. It follows from Theorem 3, given in the part of this

section devoted to window adversaries, that one cannot strengthen the proof above to show existence

of such a bound, as otherwise impossibility would hold for window adversaries. Regarding window

adversaries, possibility is shown for three stations in Theorem 5 of Section 4, while impossibility

holds for four stations, as shown in Corollary 1 of Section 5.

When algorithms are restricted to be full sensing, then even stability is not possible to be

achieved in a system of two stations, as we show next. The proof of Theorem 2 relies on the property

that messages cannot carry control bits to redirect the course of action of listening stations. This

property can be formally abstracted as follows: Consider a full sensing algorithm and two scenarios

S1 and S2 for a system of two stations. If station p has the same injections up to round t under the

two scenarios, while station q transmits at the same rounds up to round t under the two scenarios,

then p cannot detect any difference between the injections into q under the two scenarios up to

round t, so p is at the same state at the beginning of round t under both S1 and S2.

Theorem 2 No full sensing algorithm can be stable for a system of at least two stations against

the leaky-bucket adversary with burstiness 2.

Proof: We show that the adversary can enforce an execution E of P with infinitely many void

rounds, while maintaining the average injection rate 1. Similarly as in the proof of Theorem 1,

we identify consecutive milestone rounds t0, t1, t2, . . ., where ti < ti+1 for any i ≥ 0, and specify

how packets are injected at every round. If a void round occurs before the end of the described

construction, then this gives a milestone round and we are done. Thus we will always consider a

scenario in which the current round is not a void one, whenever logically possible.
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Let the adversary inject one packet into q at the first round, and define t0 to be the first round

of execution E of P. Round t0 is void in E because no packets have been injected before the

round. Suppose the execution E and injections have been defined by a milestone round ti, for some

i ≥ 0, we define the milestone round ti+1 > ti and how packets are injected in the interval starting

from ti + 1 through ti+1 in E .

We consider a sequence of conceptual scenarios. In the first scenario S1, the adversary continu-

ously injects one packet per round into station q, starting from round ti+1, such injections occurring

forever. If there is a void round x > ti, then we extend E to round x as follows. Set ti+1 = x and let

the adversary inject one packet into q at any round after ti and up to round ti+1 = x. Otherwise,

when x does not exist under scenario S1, then this means that a packet is heard at every round

after ti. Since the algorithm is stable, station p pauses at some round y1 > ti while station q

successfully transmits at round y1. Let the second scenario S2 differ from S1 in that the adversary

injects additionally one packet into p at round ti + 1. Station q again transmits at round y1 in

scenario S2, since there is no difference between the pattern of injections into this station. There-

fore p pauses at round y1 in scenario S2 to avoid collision. The third scenario S3 is a modification

of S2 in only that the adversary does not inject a packet into q at round ti + 1. Again station p

pauses at round y1 in scenario S3, since there is no difference between the injection pattern into p

in scenarios S2 and S3, and because p pauses in S2. Suppose station q transmits at round y1 in

scenario S3, similarly as in S2, which is the case unless there are no packets in q at the round.

The forth scenario S4 is a modification of S3 in only that the adversary injects a packet into p at

round ti + 2. The fifth scenario S5 is a modification of S4 in only that the adversary does not inject

a packet into q at round ti + 2.

We continue along these lines to define a sequence of scenarios. The applied pattern is such

that first an injection into p is added at a round t > ti in a scenario, followed by a scenario in which

an injection into q at the same round t is omitted. Next round t + 1 is processed in the same way,

and so on. Since the modification of injections occurs in only one station at a time, there is no

difference between the new scenario and the immediately preceding one from the point of view of

the other station that is not affected, so the pattern of transmissions is preserved.

Define such a sequence of scenarios that is sufficiently long to redefine injections up to round y1:

in a new pattern packets are injected into p only up to round y1, while afterwards the adversary

injects only into q and a packet is heard at every round. Since the algorithm is stable, station p

pauses at some round y2 > y1 while station q successfully transmits at round y2. We continue to

redefine injections up to round y2 in such a way that packets are injected only into p up to round y2
while afterwards packets are injected only into q.

This pattern is repeated through a sequence of rounds yi, for 1 ≤ i ≤ k, in which q transmits,

while packets are injected only into p up to round yk, for arbitrarily large integer k. Take k larger

than the number of packets in q at round ti: this results in a contradiction since q transmits more

packets by round yk then there are in its queue while no new packets have been injected into q.

This means that a void round occurs by round yk. Define ti+1 to be the first such a void round

after ti in the first scenario S in which a void round occurs after ti. We extend E beyond ti up

to round ti+1 as follows. The adversary injects packets exactly as in S after ti but before ti+1. If

the adversary injected two packets at some round in S after ti but before ti+1 then the adversary

pauses at round ti+1, otherwise the adversary injects one packet into some station at round ti+1.

All the milestone rounds ti are void while the average number of packets injected between ti
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and ti+1 is precisely one packet per round, by the specification of the behavior of the adversary

that is of burstiness 2. It follows that the number of packets at the queues of the two stations at

round ti is at least i+ 1, for i ≥ 0. The existence of an execution E in which the number of packets

in queues grows unbounded means instability of algorithm P. �

Window adversaries for two stations. Next we show that fair latency can be achieved in a

system of two stations by a full sensing algorithm against any window adversary. We start with a

full sensing algorithm that has a positive integer number i in its code interpreted as a window; the

algorithm is called 2-Full-Sensing(i).

An execution of the algorithm is structured as a sequence of consecutive phases. A phase consists

of exactly i rounds. Packets injected in the course of a phase are considered to be available during

the next phase. A phase is used to broadcast precisely the packets injected in the immediately

preceding phase and thus available during the phase.

All stations simply wait in the first phase. Consider the first round of one of the next phases. If

one of the stations realizes that it contains exactly i available packets, then the station spends the

whole phase of i rounds transmitting these packets. Suppose that none of the stations contains ex-

actly i available packets. In this case p starts transmitting at the first round of the phase. Station q

counts the number of packets transmitted by p and starts transmitting packets immediately after

silence or when q realizes at a round that its number of available packets is equal to the number of

the remaining rounds of the phase. Each station needs to maintain two counters: one is the size of

the queue and the other is the consecutive round in a phase. The count of rounds is updated by

incrementing the value by 1 modulo i, while the count of the queued packets is updated following

insertions and successful transmissions.

Next we define an algorithm 2-Full-Sensing to handle an adversary of arbitrary window. If

we knew the adversary and began an execution by invoking 2-Full-Sensing(i) where the window i

implicit in 2-Full-Sensing(i) were the same as that of the adversary, then no collisions would

occur, by the properties of 2-Full-Sensing(i) discussed above. As we do not know the adversary,

the algorithm works by trying to run algorithms 2-Full-Sensing(i) to test window sizes i for

consecutive values of i, starting from 2-Full-Sensing(1) to test w = 1. A collision can possibly

occur at an event: it can be detected by all the stations, since both of them transmit while none

can hear a packet. If a collision occurs in the course of executing 2-Full-Sensing(i), then both

stations invoke 2-Full-Sensing(i+1). The packets that are already in the queues when algorithm

2-Full-Sensing(i+1) is invoked are called old. A transition from 2-Full-Sensing(i) to algorithm

2-Full-Sensing(i + 1) starts by handling such old packets. Consider the beginning of executing

2-Full-Sensing(i+1) just after a transition has been made. The stations p and q begin by taking

care of their old packets: first station p transmits all its old packets, and after a silent round station q

does the same. While old packets are being unloaded, the actions of the adversary performed at

consecutive rounds for a station are not immediately acted upon by the station but instead are

enqueued in an additional private queue DELAY operating in a FIFO manner. The queue DELAY

stores an entry for each round of which a record of the adversary’s actions needs to be kept. An

entry is a record of the number of packets injected at the respective round. The injected packets

themselves are enqueued into the only queue at a station used to store waiting packets. After the

station q has completed transmitting its old packets, which is indicated by a silent round, both

stations start executing instructions of 2-Full-Sensing(i + 1). To this end they would dequeue

DELAY while simultaneously enqueueing the current actions of the adversary if needed. Recall that
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an invocation of 2-Full-Sensing(i + 1) starts with the first phase of i + 1 rounds during which

the stations pause while storing packets available for the next phase. When multiple invocations

of 2-Full-Sensing(k) are performed back-to-back, for consecutive values of k, we may modify

the action performed during a transition from i to i + 1 to save on void rounds. Namely, let the

stations begin 2-Full-Sensing(i+ 1) by dequeuing either i + 1 entries from the queue DELAY or

all of them, whichever is smaller, and let this contribute towards the beginning of the first phase of

2-Full-Sensing(i + 1). Afterwards they dequeue one entry per round, unless DELAY is empty,

in which case it is not used.

Theorem 3 Algorithm 2-Full-Sensing is full sensing and has fair latency in a system of two

stations against any window adversary.

Proof: The property of being full sensing follows directly by examining the design of the algorithm.

For instance, station q may take over from q within a phase after hearing silence, which does not

require the power of adaptive algorithms to send control bits.

Consider an adversary of some type (1, w). We claim that the set of numbers i such that 2-

Full-Sensing(i) is invoked in an execution makes a bounded interval. This follows from two facts.

One is that starting from some invocation of 2-Full-Sensing(k), for k ≤ w, the behavior of the

adversary during the remaining part of the execution is consistent with the type (1, k) adversary;

let k be such an integer. The other is the property that all the packets available at a phase of 2-

Full-Sensing(k) are scheduled to be transmitted in this phase. To see this, consider the following

cases. If there are k available packets at a station at the start of a phase, then they are transmitted

throughout the phase. Otherwise either the number of available packets in both stations is k or it

is less than k. In the former case, the stations transmit back to back, starting with p, otherwise

there is exactly one silent round when p is already done but q has not started transmitting yet. We

can afford the silent round since the number of available packets is less than the length k of the

phase. It follows that once 2-Full-Sensing(k) has been invoked, no collision ever occurs in the

execution and so 2-Full-Sensing(k + 1) is never invoked.

There can be at most w−1 collisions because once 2-Full-Sensing(w) is invoked there will be

no collisions. A collision results in unloading the old packets, which requires two additional silent

rounds. This contributes up to 3(w−1) void rounds. Additional packet delay may occur due to the

cumulative effect of the first phases consisting of void rounds of the procedures 2-Full-Sensing(k)

for consecutive values of k. That effect contributes a delay of at most w. This is because a transition

to 2-Full-Sensing(k) from 2-Full-Sensing(k−1), for k > 1, begins by dequeuing up to k entries

form DELAY: when there are less than k entries in DELAY in such a situation then up to k void

rounds are generated, but when there are at least k of them then no extra void round occurs. Thus

the delay of a packet from injection to transmission is at most 4w. �

Next we show that an acknowledgment based algorithm for a system of two stations cannot be

even stable.

Theorem 4 No acknowledgment based algorithm is stable in a system of two stations against the

window adversary of burstiness 2.

Proof: Take an acknowledgment based algorithm P. We specify an execution E of P in which an

infinite set of void milestone rounds occurs while the adversary of burstiness 2 injects a packet per

round on the average.
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Consider the first action performed when a new packet is started to be processed, determined

by the first binary digit in a transmission sequence. If there is a station that pauses at such a first

round of processing a packet, which means that the transmission sequence begins with a 0, then

the adversary may inject all the packets into this station only, which results in an infinite sequence

of silent milestone rounds. Otherwise each of the stations p and q transmits immediately, which

means that the transmission sequences of each station start with an occurrence of 1. From now on

we consider this case only. Observe that if a station transmits successfully and still has a packet,

then the station will continue transmitting its packets until either a collision occurs or there is

no pending packet, because these are all transmissions that have to occur at the first rounds of

processing these packets, respectively.

Let the adversary inject a packet into each station at the first round of the execution, which

results in both stations transmitting at the second round and so a collision. Define the second

round to be the first milestone void round in E . Let the adversary pause at the second round.

Suppose we have defined a prefix of execution E that ends in a void milestone round t, and such

that each station has a pending packet at the end of round t. If there is a collision or silence at

round t + 1, then let t + 1 be the next milestone round, and let the adversary inject a packet at

round t+1 into an arbitrary station. Otherwise only one station transmits at round t+1, let it be p.

Let the adversary keep inserting packets into both p and q starting from round t + 1, according to

the pattern 2, 0, 2, 0, . . ., that is, two packets at round t + 1, then none at t + 2, then two at t + 3,

then none at t + 4, and so on. Station p will still have a packet available after the transmission at

round t+ 1, as a packet is injected at round t+ 1 and therefore p will immediately transmit again.

Transmissions of p will continue for as long as station p has packets available, for a minimum of

two consecutive rounds. Such transmissions of p cannot continue forever, as a packet gets injected

into p at every other round while p keeps transmitting continuously. Therefore eventually either

a collision occurs at some round t1 > t + 1 or station p does not have a pending packet after a

transmission of the only remaining packet at some round t2 > t + 1.

In the former case we can define round t1 to be the next void milestone round. We need to

suitably adjust the behavior of the adversary: if the adversary injects two packets at round t1 − 1,

then let no packets be injected at t1, but if no packets are injected at round t1 − 1 then let the

adversary inject one packet at round t1 into an arbitrary station.

Next consider the latter case in which p transmits a packet at round t2 > t + 1 and there are

no more packets available at p. If q does not transmit at round t2 + 1 then the silent round t2 + 1

can become the next milestone round, with a suitably adjusted behavior of the adversary. What

remains is a case when q does transmit at round t2 + 1. Observe that t2 + 1 is a round when the

adversary injects two packets, one per station, as otherwise p would transmit at round t2 +1 having

a packet available that was injected at round t2. Station q gets one packet injected at round t2 + 1,

so q has a pending packet at the end of round t2 + 1. Consider round t2 + 2. Station q transmitted

at round t2 + 1 and it has a pending packet, so q transmits at round t2 + 2. Simultaneously p

transmits at this round, having just obtained a new packet at the preceding round t2 + 1. This

results in a collision at round t2 + 2, and this round is declared to be the next milestone round of

execution E . Let the adversary do not inject any packets at this round, having injected two packets

at round t2 + 1. The behavior of the adversary throughout the execution is consistent with the

injection rate 1 for the window of size w = 2. �
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4 Three Stations

The algorithms presented in this section are developed for a system of exactly three stations, while

impossibility results hold for any system with at least three stations. We show that for window

adversaries, there is an adaptive algorithm that handles injections of a packet per round with fair

latency while no full sensing algorithm can provide even just stability.

The three stations are named p, q and r. The stations are ordered 〈p, q, r〉 in a cyclic fashion;

when we refer to the next station after a given one, we mean this cyclic ordering. If g is any station,

then the station immediately following g in this order is denoted by g′, and the station immediately

following g′ is denoted by g′′.

Adaptive algorithm of fair latency. We start with an adaptive algorithm designed for a specific

window adversary. The algorithm is called 3-Adaptive-Window(i), where i is interpreted as the

window of the adversary. An execution of the algorithm is structured as a sequence of consecutive

phases. A phase consists of i consecutive rounds, except for the first phase which takes i + 1

rounds. Packets injected during the i rounds preceding the last round of the previous phase are

called available during the phase; such packets are determined for any phase after the first one. A

phase, starting from the second one, is used to transmit the available packets. Stations may attach

control information to be transmitted with packets, so the algorithm is adaptive. In particular,

when a station transmits the last available packet, then an “over” bit is attached to the message

when needed to indicate this fact. The“over”bit is sometimes needed to allow some other station to

take over without a delay, as we will see next, so that the three stations can transmit back-to-back

without intervening void rounds.

For each phase, there is a station designated to be the last one for the phase. The algorithm is

structured such that the last station of the phase transmits at the last round of the phase. If the

last station still has a pending packet to transmit at the last round of the phase, then the packet is

transmitted and a control bit is attached to the packet, otherwise only a control bit is sent. This

particular control bit is to indicate whether the last station has packets available for the next phase

or not. In the first phase, all the stations pause through the first i rounds. Station p is designated

to be the last one for the first phase so that it transmits at the last round i + 1 of the first phase.

Consider an arbitrary phase, called simply current, and let g be the last station of this phase. We

consider two cases, depending on whether g has any packets available to be transmitted in the next

phase.

If g has packets available for the next phase, then g starts the next phase with a sequence of

transmissions of all its available packets. If g has exactly i such packets, then g is also the last

station for the next phase. Otherwise, when g transmits its last available packet in the next phase,

g attaches the “over” control bit to the last packet. After hearing the “over” signal, the stations g′

and g′′ know how many rounds have remained in the next phase; let k be this number. If any

station among g′ or g′′ has k packets available for the next phase, then this station unloads all its

k available packets in the remaining rounds of the next phase, and also gains the status to be the

last station for the next phase. Otherwise station g′ starts unloading its available packets, if any,

while g′′ gains the status to be the last station for the next phase. If g′ does not have any available

packets, then g′ simply pauses, otherwise g′ attaches the “over” bit to the last transmitted packet.

When g′′ hears either silence or the “over” signal, then g′′ starts unloading its available packets, if

any. Finally, g′′ transmits at the last round of the phase.
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Next consider the case when g has not received any packets to be available for the next phase.

Station g has informed the remaining stations about this fact by the transmission at the last round

of the current phase. Now the situation is similar as in the previous case after g sent the “over”

signal, with k = i. If any among g′ or g′′ has received i packets to be available for the next phase,

then this station unloads all its i available packets in the remaining rounds of the next phase, and

also gains the status to be the last station for the next phase. Otherwise station g′ starts unloading

its available packets, if any, while g′′ gains the status to be the last station for the next phase.

Station g′′ takes over as soon as either silence or the “over” signal is heard.

Lemma 1 Algorithm 3-Adaptive-Window(w) provides packet latency at most 2w + 1 against

the adversary with window size w in a system of three stations.

Proof: It is sufficient to show that all the packets available at the end of a phase are transmitted

in the next phase. This is because there are w rounds during which packets are injected to be

available for the next phase, followed by the last round of the current phase, and w rounds of the

next phase.

The proof is by induction on the numbers of phases. No packets are injected before the first

phase, therefore the base of induction holds for the first phase by default. Next we show the

inductive step. Consider some current phase and suppose that when the next phase starts, then

there are no packets available for the current phase still in queues. Consider a packet u available

for the next phase.

If u was injected into a station g that is the last one for the current phase, then station g

indicates in the transmission at the last round of the current phase that it holds packets available

for the next phase. This allows g to unload all its packets, including u, starting from the first round

of the next phase.

Next suppose that packet u resides at g′. If g has no packets available for the next phase, then

g′ knows this after the last round of the current phase and so g′ may start unloading all its available

packets, including u, starting from the first round of the next phase. Otherwise station g unloads

its available packets first, and then station g′ takes over without a delay after station g is done,

and unloads all its available packets including u.

Finally, suppose that u was injected into g′′. If g′′ has w packets available for the next phase,

then g has no such packets and g′′ begins unloading its packets starting from the first round of the

next phase, by the specification of the algorithm. Suppose that g′′ has k packets available for the

next phase, where k < w. If g has w − k available packets, then after w − k rounds of the next

phase, station g′′ knows that it needs to transmit in the remaining k rounds of this phase, which

g′′ does. Otherwise, when g has some ℓ < w − k available packets, possibly ℓ = 0, then eventually

all these packets have been heard and g′ is to take over. Station g′ has at most w − k − ℓ packets

available for the next phase, so after the packets of g and g′ have been heard and station g′′ takes

over, there are at least k rounds in the phase, so packet u is transmitted in one of them. These

cases exhaust all the possibilities, which shows that u is transmitted eventually in the next phase.

This completes the proof of the inductive step. �

We show next that there is a stable and fair algorithm for three stations that does not rely

on the knowledge of the window but but resorts to the mechanism of collision detection. The

algorithm is called 3-Adaptive-Col-Det. It is obtained by modifying algorithm 3-Adaptive-
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Window(i) as follow. Initially algorithm 3-Adaptive-Col-Det runs 3-Adaptive-Window(1)

to try the window w = 1. When a collision occurs while running 3-Adaptive-Window(i), then 3-

Adaptive-Window(i+1) is invoked. We apply a similar approach as in Section 3 by using a queue

called DELAY. Packets stored already in the queues at a round when 3-Adaptive-Window(i+1) is

invoked are called old. First the old packets are transmitted, by the stations p, q and r, in this order,

while records of actions of the adversary are enqueued, with an entry for each round. A transition to

the next station is indicated either by a control bit “over”attached to the last old packet of a station

or by only this bit transmitted when the station does not have any old packets. After all the old

packets have been heard, the stations start executing 3-Adaptive-Window(i + 1). To this end,

they keep dequeuing DELAY, if it is nonempty, while simultaneously enqueueing the current actions

of the adversary. Details are as follows. An invocation of 3-Adaptive-Window(i+ 1) starts with

the first phase of i+1 rounds. During the i initial rounds the stations pause storing up to i packets

to be available for the next phase. When multiple invocations of 3-Adaptive-Window(i) are

performed back-to-back, for consecutive values of i, we can modify the action performed during a

transition from i to i+1 to save on void rounds: let the stations begin 3-Adaptive-Window(i+1)

by dequeuing either i + 1 entries from the queue DELAY or all of them, whichever is smaller, and

let this contribute towards the beginning of the first phase of 3-Adaptive-Window(i + 1). Next

the stations dequeue one entry per round, unless DELAY is empty, in which case it is not used.

Lemma 2 Algorithm 3-Adaptive-Col-Det is of fair latency in a system of three stations with

a channel with collision detection.

Proof: The proof is similar to that of Theorem 3, with some arguments provided by Lemma 1.

There are at most w− 1 collisions before the correct window size is reached. Each collision triggers

unloading old packets. Each such an instance of transmitting old packets may cause at most one void

round because at most one station holds no packets. The cumulative effect of first phases consisting

of void rounds of procedures 3-Adaptive-Window(i), for consecutive values of i, contributes an

additional delay of at most w. This is because transition to i from i − 1, for i > 1, begins by

dequeuing up to i entries form DELAY: when there are less than i entries in DELAY, then up to i

void rounds are generated, but when there are at least i of them then no extra void round occurs.

By Lemma 1, after the size of the window has been set correctly, packet delay is at most 2w + 1.

Thus the total delay of a packet is at most w − 1 + w − 1 + w + 2w + 1 < 5w. �

Next we present the ultimate algorithm for three stations for the channel without collision

detection, it is called 3-Adaptive. We simulate algorithm 3-Adaptive-Col-Det by detecting

collisions by silences. Consider a phase that is at least second after an invocation of 3-Adaptive-

Window(i) in 3-Adaptive-Col-Det, for i ≥ 1. If a collision occurs at a round of such a phase

that is not the last one in the phase, then there are only two stations involved, say, g and g′, by

the design of 3-Adaptive-Col-Det. In such a case, the station g stops transmissions in this

phase while station g′ continues by repeating the last transmission. At this point the station g′′

may not know about the collision. To allow g′′ learn this, we use the property of 3-Adaptive-

Col-Det that some station transmits at the last round of every phase. Let every station that

knows about a collision in a phase transmit at the last round of the phase, the contents being

a dummy message for a station that is not designated to be the last one for the phase. All the

stations hear silence at this round, so all of them learn of collision, which triggers an invocation of

3-Adaptive-Window(i+ 1). If the first collision in a phase occurs at the last round of the phase,
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then this automatically makes every station learn about the collision by the silence heard, which

immediately triggers an invocation of 3-Adaptive-Window(i + 1).

Theorem 5 Algorithm 3-Adaptive is of fair latency for a system of three stations against window

adversaries.

Proof: A proof similar to that of Lemma 2 applies. The difference is in the number of void rounds

in a phase of 3-Adaptive-Window(i), for a suitable i. This is because algorithm 3-Adaptive

has stations complete each phase during which a collision occurs. This contributes one extra void

round in a phase, namely the one occurring at the last round of the phase. Thus the delay of a

packet is at most w more than the bound of Lemma 2. �

Impossibilities for at least three stations. Next we show that there is no stable full sensing

algorithm for a system of three stations.

Theorem 6 No full sensing algorithm can be stable for three stations against the window adversary

of burstiness 2.

Proof: Consider a full sensing algorithm P for a system of three stations p, q and r. We argue

similarly as in the proof of Theorem 2 by identifying milestone rounds t0, t1, t2, . . . in an execution

of P, where ti < ti+1 for any i ≥ 0, while maintaining the average injection rate 1.

Define t0 to be the first round of execution E of P. Let the adversary inject one packet into p

at the first round. Round t0 is void in E because no packets have been injected before the round.

Suppose the execution E and injections have been defined by a milestone round ti, for some i ≥ 0:

we determine the milestone round ti+1 > ti and specify how packets are injected in the interval

starting from ti + 1 through ti+1 in E .

We consider a sequence of conceptual scenarios beyond round ti. The adversary injects packets

according to the pattern 2, 0, 2, 0, 2, . . . in each of the scenarios. This means that two packets are

injected at round ti +1, then no packets at all at round ti +2, then two packets at round ti +3, and

so on. The adversary always uses the same two stations to inject a packet per station according to

this pattern. We consider three scenarios corresponding to three pairs of stations possible to select

out of p, q and r. The adversary injects packets into stations p and q only in scenario S1, into

stations p and r only in scenario S2, and into stations q and r only in scenario S3. Let t′ ≥ ti be

the first round such that station r does not transmit after round t′ under scenario S1, and q does

not transmit after t′ under S2, and p does not transmit after t′ under S3. Such a t′ exists as we

refer to a station that the adversary does not inject into after ti under the respective scenario.

We show that a void round is bound to occur in one of the scenarios. Suppose that it is not

the case to arrive at a contradiction. Consider the first scenario S1 in which the adversary injects

packets only into stations p and q. Station q transmits at some round t′′ > t′, due to the stability

of the algorithm, while station p pauses at round t′′. Consider the second scenario S2 in which the

adversary injects packets only into the stations p and r. Station p does not transmit at round t′′

under scenario S2, since p paused at round t′′ in scenario S1 and scenario S2 is perceived by p as

identical with S1 up to round t′′ in both the feedback from the channel and the pattern of packet

injections, as there are no void rounds. Therefore station r transmits at round t′′ under scenario S2.

Finally consider scenario S3 in which the adversary injects only into stations q and r. Station q
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behaves in the same way up to round t′′ under this scenario as under scenario S1 as it cannot detect

any difference in both the feedback from the channel and the pattern of packet injections, as there

are no void rounds. Similarly, station r behaves in the same way up to round t′′ under this scenario

as under scenario S2. It follows that both stations q and r transmit at round t′′ which results in a

collision. This creates a void round.

Take one scenario S, from among the scenarios Si, for 1 ≤ i ≤ 3, that produces a void round t >

ti the soonest. Define ti+1 = t and extend the execution E starting from the round ti + 1 through

t = ti+1 as follows. Let the adversary inject packets according to scenario S up to round t− 1. If

two packets are injected at round t− 1 then let the adversary pause and not inject any packet at

round t, otherwise when no packets are injected at round t − 1 then let the adversary inject one

packet into any station at round ti+1 = t.

It follows from the construction that all the milestone rounds ti are void while the average

number of packets injected between ti and ti+1 is one packet per round. We obtain that the number

of packets at the queues of the three stations at round ti is at least i + 1, for i ≥ 0. This yields

the existence of an execution E of P in which the number of packets in queues grows unbounded,

so the algorithm is unstable. The way packets are injected is consistent with the definition of an

adversary of burstiness 2. �

We show next that no algorithm that withholds the channel can be stable for a system with at

least three stations.

Theorem 7 No algorithm that withholds the channel can be stable for three stations against the

leaky-bucket adversary of burstiness 2.

Proof: Consider an algorithm P that withholds the channel for a system of three stations p, q

and r. We argue by identifying void milestone rounds t0, t1, t2, . . . in an execution of P, where

ti < ti+1 for any i ≥ 0, while maintaining the average injection rate 1.

Define t0 to be the first round of execution E of P. Let the adversary inject one packet into

any station at the first round; round t0 is void in E . Suppose the execution E and injections have

been defined by a milestone round ti, for some i ≥ 0: we define the milestone round ti+1 > ti and

how packets are injected in the interval of E starting from ti + 1 through ti+1. If a void round

occurs in the course of the described construction, then this gives a milestone round and we stop

to determine ti+1 and injections up to this round. In what follows we consider cases in which the

current round is not a void one, whenever logically possible.

We first make the queues at two stations empty in the following way. Let the adversary keep

injecting packets into p only, a packet per round, starting from round ti+1. Eventually p broadcasts,

because algorithm P is stable. At a round when p transmits for the first time, switch injecting

to q and keep injecting packets into q only, a packet per round. Eventually q broadcasts, because

algorithm P is stable. At a round when q transmits for the first time, switch injecting to r and keep

injecting packets into r only, a packet per round. Eventually r broadcasts, because algorithm P is

stable. At the round when r takes over, let the adversary inject only into either p or q, a packet

per round. Consider the round t when r transmits its last packet and its queue becomes empty.

At this point there are a number of packets in the queues of p and q. We consider a sequence of

conceptual scenarios beyond that round, depending on the partitioning of the packets between p

and q.
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The first scenario S0 is such that all the recently injected packets are in the queue of p while

the queue of q is empty. This means that p needs to take over from r after hearing its last packet

at round t, since otherwise there would be a void round.

Consider another scenario S1, with the only difference with respect to S0 being in that q has one

packet. This is possible because of burstiness 2 of the adversary. These two scenarios are identical

for p at the round t when r transmits the last packet, so in such a scenario p also transmits at

round t + 1 just after r.

Consider a scenario S2 which differs from S1 only in that the number of packets at p is one less

than in S1 while q has also just one packet. The adversary does not need to use burstiness to obtain

such a scenario as this requires injecting precisely one packet per round while r is transmitting.

Since q cannot see any difference between S2 and S1 at the round t of the last transmission of r,

again q pauses while p broadcasts at round t + 1 just after station r, or otherwise there would be

a void round.

Consider a scenario S3 which differs from S2 only in this that q has two packets rather than

only one at the last round t when r broadcasts. This is possible to achieve due to the burstiness 2

of the adversary.

These two scenarios S2 and S3 are identical for p at the round t, so in such a scenario p also

transmits at round t + 1, or otherwise the round would be void.

We continue through a sequence of scenarios to obtain a scenario S4 such that station p has

just one packet while q has all the remaining packets. Again station p transmits for the first time

at round t + 1 immediately after r while q pauses at this round.

The next scenario S5 has the adversary not inject the one packet into p but only the packets

injected into q in scenario S4. Station q cannot notice a difference between S5 and S4 at the last

round t of r transmitting, so it pauses at round t+ 1 as in S4. This results in both p and q pausing

at round t+1, which results in round t+1 being silent. We have thus shown that there is a scenario

for the adversary to enforce a void round.

Take one scenario S of injections of the adversary, from among the scenarios discussed above,

that produces a void round t′ the soonest. The remaining part of the argument is similar to the

conclusion of the proof of Theorem 6. �

5 Many Stations

We develop an adaptive algorithm that is stable against leaky-bucket adversaries for any number n

of stations. The queues at stations can grow up to Ω(n2 + burstiness), which we show to be

unavoidable. The algorithm uses the queue sizes at stations in an essential way, in that they affect

state transitions. Next we show that stability cannot be achieved for certain restricted algorithms,

against window adversaries in systems with at least four stations, in particular for algorithms that

are queue-size oblivious.

Stable algorithm. We call Move-Big-To-Front(n) an adaptive algorithm to be presented

next. The number of stations n affects the course of action each time a station transmits, we

emphasize this by including n as a parameter in the name of the algorithm. The algorithm schedules

exactly one station to transmit at each round, so collisions never occur. This is implemented by
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using a conceptual “token” giving the right to transmit, which is assigned in such a way that at

each round exactly one station holds the token.

Every station maintains a list of all the stations in its private memory. The list is initialized as

sorted in the increasing order by the names of the stations. The operations performed on the lists

are determined uniquely by what has been heard on the channel. Hence all these lists at stations

are manipulated in exactly the same way. This guarantees that the lists are identical in all stations

at all rounds. Because of this property, we refer to all these lists as copies of the list. Initially the

first station in the list holds the token.

The algorithm is executed at a given round as follows. A station p with the token broadcasts a

packet, if it has any. If the station with the token does not have a pending packet, then the station

does not transmit, which results in a silent round. A station considers itself big at a round when it

has at least n packets available. A big station attaches a control bit to indicate this status to each

packet it transmits while big. After a station announces itself to be big, it is moved to the front

of the list and keeps the token for the next round. After a station with a token broadcasts while

it is not big or when it does not transmit at all, then the token is moved immediately to the next

station in the list. Here being “next” is understood in the cyclic ordering of the list of stations, in

that the token from the last station in the list is moved directly to the first one.

Algorithm Move-Big-To-Front resembles Round-Robin in that when queues are small then

the token traverses the list in a cyclic fashion: when a station p is followed immediately by q in the

list and p holds less than n packets at a round of transmission, then q obtains the token immediately

after the transmission by p. A difference with Round-Robin is in the possibility to have the token

hop to the front of the list: when a station p is big at the time of its transmission, then p still holds

the token after being moved to the front of the list, so that when p eventually releases the token,

it is the second station in the list, the one directly following the station p at the front of the list,

that transmits after p.

Consider a scenario in which, starting from some round, the adversary injects packets into one

station only. Such a station is eventually detected to be big and then this station keeps transmitting

throughout the remaining part of the execution, while the other stations are neglected. It is a

scenario in which some packets are never transmitted, so the algorithm is not fair.

The design of this algorithm is based on the following intuitions how to provide stability. Define

a pass of the token to be a traversal of the token starting at the front of the list and ending either at

a new big station or again at the front station of the list after traversing the whole list, whichever

occurs first. Define a life cycle of a station to be a time period which starts either at the first round

of the execution or at a round when the station is discovered to be big, and which ends just before

the station is discovered to be big again, when this happens. Suppose there are at least n2 packets

in queues of stations at the beginning of a pass of the token. Some station has at least n packets,

by the pigeonhole principle. It follows that a new big station is discovered during this pass of the

token. Because it takes at least n− 1 token passes for a former big station to have its queue empty,

a former big station either maintains a nonempty queue during its life cycle, or it drifts towards the

end of the list so that eventually it will not be visited by the token at all, unless the adversary is

lazy and does not inject as many packets as possible. It follows that if the adversary keeps injecting

at full power of one packet per round, then eventually a round occurs such that afterwards packets

are heard at all rounds. We make these ideas precise in the proof of the next theorem.
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Theorem 8 If algorithm Move-Big-To-Front(n) is executed against the leaky-bucket adversary

of burstiness b + 1, then the number of packets stored in queues is at most 2(n2 + b) at any round.

Proof: Suppose, to the contrary, that there is a round with at least 2n2 + 2b+ 1 packets in queues.

There is a time segment T with the following properties:

(i) there are at least n2 and at most n2 + b packets in queues at the beginning of T ,

(ii) there are at least n2 packets in queues at each round of T , and

(iii) there are at least 2n2 + 2b + 1 packets in queues at the end of T .

In the remaining part of the proof we restrict our attention only to the rounds in T . The notions

of a pass of the token and of a life cycle of a station are relativized to T .

Consider a pass of the token. A new big station is eventually found during this pass, because

at least one station has at least n packets in its queue, by the pigeonhole principle combined with

property (ii) of T .

Let C denote the set of all the stations that are discovered at least once to be big during a round

in T . If a station p is not in C, then p will eventually drift through the list to be located behind all

the stations in C. When a token passes through p and there are no packets in p, then this results

in a silent round. We assume the worst case when each event of receiving the token by p results

in a silent round. Let q be the station discovered to be big in this pass of the token. Station q is

moved to the front of the list and q will never again be behind p, so that q can be associated with

exactly one silent round of each such a station p not in C. Since there are |C| such stations q and

n − |C| such stations p, the total contribution of the stations that are not in C to the number of

silent rounds is at most (n− |C|) · |C|.

We claim that once a station q is discovered to be big, then q transmits a packet each time q

holds a token. To show that this is the case, consider a life cycle of q. During a pass of the token,

either q is discovered to be big again, which starts a new life cycle for q with at least n− 1 packets

still remaining in the queue, or one station in C located behind q is discovered as big. The latter

event results in the number of stations in C behind q in the list decreasing by one. Since there are

at most |C| − 1 < n stations in C behind q in the list, station q is visited at most |C| − 1 < n times

by the token during the life cycle of q. It follows that after each station in C has been discovered

at least once to be big, no station in C ever has an empty queue.

It remains to estimate the number of silent rounds before a station q in C becomes big for the

first time in T . Notice that q could obtain the token with an empty queue at most |C| − 1 times

before this happens. This is because each time q has the token with an empty queue, there is some

station p from C behind q on the list such that p is discovered as big in this pass of the token. The

discovery results in moving p to the front of the list, so that p stays before q until q becomes big

for the first time. There are |C| such stations q and |C| − 1 such stations p. Therefore the number

of silent rounds contributed by all the stations in C is at most |C| · (|C| − 1).

To sum up, the total number of silent rounds in T is at most

(n− |C|) · |C| + (|C| − 1) · |C| < n · |C| ≤ n2 . (1)

The difference between the number of injected packets and the number of transmitted packets

equals the number of void rounds plus burstiness, which is at most n2 + b by (1). Combine this fact
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with property (i) of T to obtain (n2 + b) + (n2 + b) = 2n2 + 2b as an upper bound on the number

of packets in the system at the end of T . This contradicts property (iii) defining T . �

Next we show, for any broadcast algorithm for n stations, that the system may be forced into

a configuration with Ω(n2) packets in queues.

Theorem 9 For any algorithm for n stations, the leaky-bucket adversary of burstiness 2 can enforce

an execution such that eventually there are at least
(

n
2 − 1

)2
packets in the queues at the stations.

Proof: Let us take an arbitrary algorithm P for n stations and fix it for the remaining part of the

proof. We determine an execution E of algorithm P by identifying milestone rounds. Similarly as in

such previous constructions, the underlying principle is to maintain a property that each milestone

round is void while the average injection rate of the adversary is 1. The difference with previous

impossibility proofs is that the sequence of milestone rounds may be either finite or infinite. We

denote by ti the ith milestone round, when it exists for this i. Milestone rounds will have the

property that the number of packets in queues at the beginning of round ti that exists is at least

i, for i ≥ 0. It follows that if algorithm P is stable, then the sequence of milestone rounds will be

finite.

If the algorithm is unstable, then it is sufficient to take an execution in which the queues grow

unbounded. Therefore we assume that the algorithm is stable in the remaining part of the proof.

We will construct an execution E of this algorithm by specifying a behavior of the adversary and a

resulting sequence of milestone rounds. Set the first round of the execution E to be the milestone

round t0 = 1. Let the adversary inject one packet into some station at round t0. Suppose that

a milestone round ti has been determined, for some i ≥ 0, together with injections up to this

round. We assume the invariant that the number of packets injected by round ti is at most one

packet per round when averaged over all the intervals ending at ti. We show how packets are to

be injected so that either the next milestone round ti+1 becomes defined or the whole execution

becomes completely defined at a stretch.

The injections of the adversary are to be considered as conceptual only in that we search for

possible extensions of execution E after ti. As soon as a next milestone round ti+1 has been

determined, we extend the execution E until this round ti+1 by having the adversary actually inject

packets at rounds from ti + 1 through ti+1−1 according to the pattern that determined round ti+1,

and the number of packets injected at the new milestone round ti+1 is to be maximum to provide

the invariant. The simplest case is when round t = ti + 1 is void: then let the adversary inject one

packet into any station at round t which becomes the next milestone round ti+1. When the above is

not the case, meaning a packet is heard on the channel at round t = ti + 1, then we systematically

explore other scenarios.

Let us begin with the segment [t, t + 1] of two consecutive rounds. If there is a station p such

that injecting into p at round t would result in round t + 1 being void, then let the adversary

perform such an injection so that t + 1 becomes the next milestone round ti+1. Otherwise, if there

are two stations p and q such that injecting a packet into each of them at round t results in both of

them transmitting at round t+ 1, then let the adversary perform these two injections so that t+ 1

becomes the next milestone round ti+1. Otherwise, if none of the above cases holds, then we have

a situation that a unique station would transmit at round t + 1 if the adversary injected a packet

into any station at round t. Suppose this is the case and let v1 be the unique station that would
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transmit at round t + 1 as determined above. Identifying a station v1 is conceptual only at this

point.

Next consider the segment [t, t+1, t+2] of three consecutive rounds. For any stations p, q and r,

different from v1, including the cases of repetitions among these three names of stations, consider

injecting a packet into p at round t and a packet per station into both q and r at round t + 1.

If this results in either a void round t + 1 or t + 2, for some such stations p, q and r, then let

the adversary perform these injections up to the first void round so that this round becomes the

next milestone one ti+1. Otherwise the station into which a packet is injected at round t uniquely

determines the station that transmits at round t + 2, as long as we also inject a single packet at

round t + 1. Suppose that a packet per round is injected at rounds t and t + 1 into the smallest

station p different from v1: let v2 be the only station that would transmit at round t + 2. It may

be the case that stations v1 and v2 are actually the same station. Identifying stations v1 and v2 is

conceptual only at this point.

We consider yet another initial segment [t, t+ 1, t+ 2, t+ 3] of four consecutive rounds, in order

to clearly see a pattern emerging in such constructions. For any stations p, q, r and s, different

from v1 and v2, including repetitions among these four names p, q, r and s of stations, consider

injecting a packet into p at round t, next a packet into q at round t + 1, and finally a packet per

station into both r and s at round t+ 2. If this results in a void round up to round t + 3, for some

such stations p, q, r and s, then let the adversary perform these injections so that the first such

a void round becomes the next milestone round ti+1. Otherwise the stations into which packets

are injected at rounds t and t + 1 uniquely determine the station that transmits at round t + 3, as

long as we also inject a single packet at round t + 2. Suppose a packet per round is injected into

the smallest station different from v1 and v2 at rounds t, t + 1, and t + 2, and let v3 be the only

station that transmits at round t+ 3. The sequence 〈v1, v2, v3〉 of stations may include repetitions.

Identifying stations v1, v2 and v3 is conceptual only at this point.

We continue in this way, which results in determining either a milestone round and extending

the execution E through this round or a sequence 〈vi〉 of stations for a segment of indices i ≥ 1.

Next we consider only the case of sequence 〈vi〉 of stations. Such a sequence has the property that

the stations occurring as entries of the sequence transmit at consecutive rounds in the order in

which they occur in the sequence, that is, station v1 transmits at round t + 1, station v2 transmits

at round t + 2, station v3 transmits at round t + 3, and so on. Moreover, this sequence of stations

is defined in such a way that as soon as the stations vi become determined for all 1 ≤ i ≤ j, then

we conceptually inject into a station different from any among these vi for 1 ≤ i ≤ j in order to

determine the next station vj+1.

Can the sequence 〈vi〉 of stations be extended indefinitely with a void round never occurring?

This is impossible for a stable algorithm, by the following argument. Suppose, to arrive at a

contradiction, that U and W are two disjoint and nonempty sets of stations such that any station vi
in the sequence belongs to U , while the set W contains the remaining stations. Let j be the largest

index of a station vj in U such that vi 6= vj for i < j. The stations vk in the sequence 〈vi〉 for k > j

are determined in such a way that packets are conceptually injected only into a station v ∈ W of

the smallest name among the stations in W. If this could be continued forever, then we could keep

injecting only into a station v that would never transmit after round t− 1, as w is not in U , so the

queue would grow unbounded at v.

Therefore eventually either a milestone round manifests itself or a sequence 〈vi〉1≤i≤j cannot be
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extended, for some positive integer j. The latter occurs when every station already occurs at least

once as some vi, for 1 ≤ i ≤ j. As soon as such a sequence 〈vi〉1≤i≤j is determined that includes the

names of all stations, then we say that a stage has been completed. Observe that the sequence 〈vi〉,

for 1 ≤ i ≤ j is defined in such a way that if the adversary injected j times into vj a packet per

round starting from round t, then the stations vi would transmit in the order of their indices in the

sequence, for 1 ≤ i ≤ j. The station vj is said to be the pivot station of the stage.

After completing the first stage, we proceed in the same manner to complete next stages, starting

a new stage with an empty sequence 〈vi〉. Let us stop after we have completed ⌊n2 ⌋ stages, unless a

void round occurs earlier. The following properties of a stage are relevant: every station transmits

at least once during a stage, while the adversary injects packets only into the pivot station of the

stage. There are at least n
2 − 1 stations that are not pivot for any stage. Each one among these

stations transmits at least once during any stage, which means transmitting for a total of at least
n
2 − 1 times during all these stages. Since the adversary does not inject any packets into non-pivot

stations during these stages, the packets the non-pivot stations would transmit must already reside

in their queues when the first stage starts. It follows that the number of packets in queues of

the stations at the round t is at least
(

n
2 − 1

)2
. Once there are these many packets in queues at

round t, milestone rounds are not needed at all after round t, as a trailing part of the execution

can be determined at a stretch. Namely, the adversary may inject a packet per round at arbitrary

stations starting from round t and the number of packets in queues will remain at least
(

n
2 − 1

)2

at all rounds after t. �

Retaining algorithms. We know that no algorithm can be both stable and fair against leaky-

bucket adversaries in systems of at least two stations, but fair latency is achievable in systems of up

to three stations against window adversaries. A question if achieving fair latency against window

adversaries in systems of more than three stations is not settled by these facts. We answer this

question in the negative next. Our approach is to show that achieving stability against window

adversaries in systems of more than three stations is impossible for a class of algorithms that have

a property that generalizes fairness and withholding the channel.

An algorithm is called retaining if at any round when a station, say, p transmits a packet

successfully and when starting from this round the adversary injects packets only at other stations,

then eventually station p does not have a pending packet. Observe that an algorithm that is either

fair or that withholds the channel is retaining.

Theorem 10 No retaining algorithm is stable in a system of at least four stations against the

window adversary of burstiness 2.

Proof: Consider a retaining broadcast algorithm P. Choose some four stations p, q, r, and s.

The adversary will inject packets only into these four stations. The other stations cannot transmit

packets so their transmissions may be ignored. We define an execution in which the adversary

injects one packet per round on the average while a certain sequence t0, t1, t2, . . . of void milestone

rounds is unbounded.

Let the adversary inject a packet into some station at the first round. Define t0 to be the

first round, which is void. Suppose we have defined the execution and the injections up to a void

milestone round ti. We need to specify what happens starting from the next round t = ti + 1. If

round t is void then define ti+1 = t and let the adversary inject a packet at some station at this
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round. Otherwise exactly one station, say p, is to transmit at round t. We consider the consecutive

rounds starting from t one by one, determining the injections. There are the following two cases

that help to structure the argument. The meaning of t will sometimes be of a round number larger

than ti + 1 when we need to repeat the construction of a segment of an execution.

Case 1: At least two stations have pending packets at the beginning of round t.

The adversary chooses a station q different from p but also with a pending packet. The adversary

keeps injecting a packet per round into q starting from round t. This continues until a round t′ > t

occurs that is either void or at which station p does not have a pending packet. One of these cases

has to occur because the algorithm is retaining. In the former case we define the round t′ to be

milestone round ti+1 and the adversary injects a packet into any station at that round. In the latter

case we may need to go through the same case, but with fewer nonempty queues; it is here that t

may acquire the meaning of a certain round number larger than ti + 1. Eventually we will proceed

as in the next case.

Case 2: Only station p has a pending packet at the beginning of round t.

We consider a number of conceptual scenarios to identify a void round t′ > t. In the first one

the adversary keeps injecting one packet into station q and another into station r at every other

round. This means the pattern 2, 0, 2, 0, . . ., in terms of the numbers of packets injected, starting

from round t. Eventually station p does not have a pending packet, as the algorithm is retaining

and p transmitted at round t. If a void round t′ > t does not occur under this scenario, then either

station q or station r makes the first successful transmission at some round t′ > t. This round t′ > t

is the first one after t at which p does not transmit. Suppose it is station r that transmits while

station q pauses. None among the stations p and s transmits at round t′ as the transmission of r

is heard.

Consider the second conceptual scenario in which station r is replaced by s, that is, we consider

the pair of q and s rather than q and r. Eventually station p does not have a pending packet, as the

algorithm is retaining. If a void round t′ > t does not occur under this scenario then either station q

or station s makes the first successful transmission at some round t′ > t. This round t′ > t is the

first one after t at which p does not transmit so neither station p nor q can distinguish between

the two scenarios up to round t′. Therefore both p and q pause at round t′ in both scenarios while

station s transmits successfully under the second scenario.

The third scenario has the stations r and s play the role of the stations q and r in the first

scenario. Eventually station p does not have a pending packet, as the algorithm is retaining. Let t′

be the first round after t at which p does not transmit. This is the same round t′ with this property as

under the first and second scenarios, since p cannot distinguish between these three scenarios up to

round t′, being the only transmitting station from round t through round t′−1. Similarly, station r

cannot distinguish between the first and the third scenario, while station s cannot distinguish

between the second and the third scenario up to round t′. Therefore the behavior of r at round t′

is the same as under the first scenario while the behavior of s is the same as under the second

scenario: each of the stations r and s transmits at round t′ under the third scenario. This creates

a collision at round t′ making it void.

We have exhausted all the possible cases and showed that a void round t′ after round t has to

occur under some scenario. The behavior of the adversary is as follows. Let the injections from

round t up to round t′ − 1 be such that they create a void round t′ after t the soonest. Define ti+1
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to be this void round t′. If no packets are injected at round t′ − 1 then let the adversary inject one

packet into some station at round t′, otherwise, with two packets injected at round t′ − 1, let the

adversary does not inject any packet at round t′. This pattern of injections is consistent with the

definition of an adversary of burstiness 2. �

Theorem 10 is immediately applicable to algorithms that are fair or that withhold the channel,

as they are retaining:

Corollary 1 No algorithm that is fair can also be stable in a system of at least four stations against

the window adversary of burstiness 2.

We showed in Theorem 7 that no algorithm that withholds the channel can be stable for three

stations against the leaky-bucket adversary of burstiness 2. Now we can strengthen this to window

adversaries, as long as there are at least four stations in the system:

Corollary 2 No algorithm that withholds the channel can be stable in a system of at least four

stations against the window adversary of burstiness 2.

Queue-size oblivious algorithms. We show now that queue-size oblivious algorithms cannot

be stable. The idea of proof is to reduce the question of stability of such algorithms to that of

stability of retaining algorithms. Let us recall that an algorithm is queue-size oblivious if it has two

properties: the size of the queue at a node does not affect the decision if to transmit the pending

packet at the next round and stability is not affected when an adversary can additionally disturb a

stable execution by repeatedly removing a packet from some queue to inject it anywhere at the next

round. Queue-size oblivious algorithms may use the queue size encoded by control bits attached

to packets to inform other stations about it, but, unlike algorithm Move-Big-To-Front, cannot

have that size affect deciding whether to transmit the currently pending packet at the next round.

In what follows we describe a reduction of stability of queue-size oblivious algorithms to stability

for retaining algorithms.

We define a transformation among queue-size oblivious algorithms which, for a given queue-size

oblivious algorithm P, determines an algorithm Ph that mostly behaves like P and is retaining.

The idea is to simulate P except for some “reserved” rounds when P comes to rest while packets

are transmitted independently of P. A station p that is heard on the channel at a round t reserves

the channel for round t′ > t when the message of p carries control bits that are interpreted by all

the stations so that p will be the only station transmitting at round t′.

Round reservations are performed as follows. When a station p transmits a packet at a round t

and p has more packets in its queue, then p attaches control bits to the transmitted packet to

reserve a round. The first available round for such a round t is defined to be the first round after t

that is currently not reserved. The second available round is defined similarly as the earliest round

after the first available round that is currently not reserved. The idea is to reserve the second

available round. When a station p attempts to transmit at a round, then simultaneously p wants

to perform one of the following possible actions, which is encoded by control bits attached to the

transmitted packet:

(1) if p has at least one packet in its queue then p reserves the second available round;
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(2) if p has an empty queue and p has a round reserved already, then p cancels the reservation;

(3) if p has an empty queue and p does not have a round reserved yet, then p does not reserve

nor cancel any round while transmitting its pending packet.

A reservation by a station replaces a previous reservation by the station that is on record. An

action among the three stipulated above is considered to be performed when the transmission is

heard, otherwise no reservation is made nor canceled by colliding transmissions. Observe that each

station has at most one round reserved at all times.

To record reservations, each station maintains an array of future rounds reserved by all the

stations. These arrays are identical at all the stations, as updates of entries are performed in the

same way by all the stations. The array is indexed by the names of the stations: an entry indicates

how many rounds still remain to have the round reserved by the corresponding station. At the

end of a round the entries are updated in a self-evident manner, depending on the contents of the

message heard at the round, if any.

A round that has been reserved is simply called reserved and otherwise it is called regular.

Reservations can be made at any rounds, whether reserved or regular. The simulation of P by Ph

proceeds at regular rounds, in the sense that decisions inherent to P about broadcasting are made at

those rounds. The states of Ph are augmented by additional information related to the mechanism

of simulation. In particular, a station maintains an array for round reservations and an additional

buffer space distinct from its queue to temporarily store some of the injected packets. A station

may sometimes use a “dummy” packet as pending when no real packet is available at the station.

On the abstract level, the states of Ph can be visualized as pairs (a, b), where the P-state

component a is the state of P at the current round and the reservation component b is used to

represent reservations of rounds and the related additional activity. The state transitions of Ph

on the P-state components are to implement the functionality of P. Next we describe the lower

level of simulation in terms of actions performed by stations. These actions depend on whether the

round is regular or reserved.

The case of a regular round t:

If a message is to be transmitted by some station p running P at round t, then this message

is structured according to the specification of P, possibly including control bits as required by P,

and additionally may carry control bits for round reservations. A station hearing the message uses

the control bits used by P for the state transition: the new P-state is obtained by performing a

state transition of P. The packets stored at this point in the additional buffer are enqueued in the

queue, as if injected by the adversary at round t, followed by enqueueing the packets that were

actually injected at round t.

The case of a round t reserved by some station p:

The message transmitted by p at this round consists of the pending packet and control bits for

round reservation. A station hearing the message uses the control bits to update round reservation

by p. Packets injected at this round are stored in the additional buffer. Station p discards the

transmitted packet and replaces the pending packet by another one obtained as follows. If the queue

is nonempty, then a packet is obtained by dequeueing the queue and made pending, otherwise, if

the additional buffer in non-empty, then a packet is removed from it and made pending, otherwise,

if there is no packet available at p, then p creates a “dummy”packet and it is considered as pending.
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Whether the new pending packet is real or dummy will not affect the state transitions of P, as a

pending packet itself does not contribute to the state but rather it is the information whether a

pending packet exists or not at a round. A dummy packet is a temporary device, it is to be replaced

by a real packet as soon as one becomes injected. When a dummy packet is transmitted by p and

heard on the channel, it is discarded and not immediately replaced by another dummy packet by p,

as no round reservation is made with such a transmission. Next let us clarify the state transition at

a reserved round on the higher level. The state at a round contains the P-state component, which

we want to stay the same through the round, except for the queue of the transmitting station p.

When a new pending packet of p is obtained by dequeuing the queue, then the queue contains one

element less afterwards. What is modified in all the stations occurs on the reservation component,

which includes reserving rounds, injections of new packets along with the needed manipulations of

the additional buffer, and creating a dummy packet if needed.

This completes the specification of the simulating algorithm Ph.

Lemma 3 There are infinitely many regular rounds in any execution of Ph, for any input algo-

rithm P.

Proof: A station always reserves the second available round, the first available one left as the

next expected regular round. A change in reservation depends on if it is a new reservation or a

cancellation. A new reservation keeps the first available round intact. A cancellation of a reservation

may release a round before the current first available round, with the effect of making a regular

round happen earlier. �

Lemma 4 Let P be a queue-size oblivious algorithm that is stable in a given system of n stations

against the window adversary of burstiness 2. Then Ph is stable in the same system of n stations

against the window adversary of burstiness 2.

Proof: Consider an execution Eh of Ph with injections determined by the window adversary of

burstiness 2. We will prune this execution of the reserved rounds to obtain an execution E of P.

While pruning Eh of reserved rounds, we specify the behavior of the adversary that injects packets

only during the regular rounds and this determines execution E . By Lemma 3, there are infinitely

many regular rounds in Eh that allow for E we define next to be unbounded and so legitimate.

We proceed through all the reserved rounds t, one by one in the order of time. Let some station p

transmit a packet at a reserved round t of Eh. When the round is removed from the execution,

then station p has one packet less. This does not affect the decision of the transmitting station p

to transmit its currently pending packet, if any, at the next round, by the definition of a queue-size

oblivious algorithm. If some x > 0 packets are injected at this round t by the adversary, then let

the adversary inject these x packets into the same stations at the round after the just removed one

along with the packets to be injected at the round t + 1 of execution Eh. One of these injected

packets, if any are injected, may be interpreted as corresponding to the packet removed from the

queue of p just before the round numbered t + 1 in Eh starts in E , while the burstiness accounts

for the remaining packets. This does not affect stability by the definition of a queue-size oblivious

algorithm.

After removing all the reserved rounds in this way, what is obtained is an execution E of P

against a window adversary of the same burstiness. The execution can be interpreted as resulting
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from the injections of the adversary that created execution Eh of Ph, while the adversary can

additionally remove a packet from a queue at some rounds to possibly inject the same packet at

the next round. This means that the sizes of queues depend on successful transmissions in both E

and Eh in a similar way, and hence that E is stable if Eh is such. �

Lemma 5 Algorithm Ph is retaining, for any input algorithm P.

Proof: Suppose that station p transmits at a round t and that afterwards the adversary does not

inject any packet into p. Station p performs a round reservation by way of the message transmitted

at round t, unless the queue is empty. The station keeps reserving the channel in each subse-

quent transmission at a reserved round, for as long as the queue is nonempty. The mechanism of

reservation provides that all the packets at the station get transmitted eventually. �

Corollary 3 No queue-size oblivious algorithm can be stable in a system of at least four stations

against the window adversary of burstiness 2.

Proof: Let P be a queue-size oblivious algorithm that is stable in a given system of n ≥ 4 stations

against the window adversary of burstiness 2. Then, by Lemma 4, algorithm Ph is also stable

in the same system of n stations against the window adversary of burstiness 2. This contradicts

Theorem 10, because algorithm Ph is retaining by Lemma 5. �

Algorithm Move-Big-To-Front makes a station inform other stations if it has at least n

packets available, which grants the station the right to transmit again at the next round. It follows

from Corollary 3 that any algorithm stable in large systems needs to resort to a similar mechanism

of deciding on transmissions based on the sizes of queues.

6 Conclusion

We studied deterministic broadcasting algorithms for multiple access channels that need to handle

the injection rate of one packet per round. The question we addressed was what quality of service

could be obtained along with throughput 1. We attempted to provide a comprehensive picture of

the problem. We emphasized two aspects. One of them concerns the power of acknowledgment

based algorithms and full sensing ones. These subclasses of algorithms are natural to define and

their namesakes play a prominent role among randomized algorithms. The other aspect concerns a

comparison of the environments determined by window adversaries and leaky-bucket ones. It turns

out that a combination of an adversarial model and a subclass of algorithms determines a unique

quality of service that can be achieved in the respective broadcasting environment, depending on

the number of stations. Systems of surprisingly small sizes of just two or three stations are sufficient

for differences in the associated quality of service to be manifested.

The subclasses of acknowledgment based and full sensing deterministic algorithms we consider

are motivated by the corresponding randomized classes of algorithms, see [14]. Historically, in-

vestigating algorithmic aspects of broadcasting on multiple access channels has concentrated on

randomized algorithms in environments determined by stochastic constraints on injection rates,

with stability understood as either ergodicity of a Markov Chain representing the broadcast envi-

ronment or as having throughput equal to the injection rate. The goal was to find the maximum

34



rate for which stability or bounded latency was achievable. This paper considers deterministic al-

gorithms in adversarial settings. We show that, as far as the maximum throughput 1 is concerned,

acknowledgment based algorithms and full sensing ones cannot achieve much, except for systems of

just a few stations. On the other hand, we show that a general deterministic algorithm can achieve

the maximum throughput 1, although no such an algorithm can simultaneously guarantee bounded

latency.

How to compare these results to those in the literature about randomized algorithms, including

environments with stochastic constraints on injections? The authors of this paper do not know

any prior work that shows that a randomized algorithm under stochastic assumptions on dynamic

packet generation has throughput 1. As randomness can be understood as an additional resource

to help an algorithm, it is surprising that a deterministic algorithm can achieve throughput 1 in

the worst case. Apparently stability in the stochastic sense versus stability in the adversarial sense

capture different phenomena and stem from different intuitions related to a vague idea of quality

of service provided by bounded queues.
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