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Abstract. At the heart of distributed computing lies the fundamen-
tal result that the level of agreement that can be obtained in an asyn-
chronous shared memory model where ¢ processes can crash is exactly
t + 1. In other words, an adversary that can crash any subset of size at
most ¢ can prevent the processes from agreeing on ¢ values. But what
about the remaining (22n —n) adversaries that might crash certain com-
bination of processes and not others?

This paper presents a precise way to characterize such adversaries by
introducing the notion of disagreement power: the biggest integer k for
which the adversary can prevent processes from agreeing on k values. We
show how to compute the disagreement power of an adversary and how
this notion enables to derive n equivalence classes of adversaries.

1 Introduction

The theory of distributed computing is largely related to determining what can
be computed against a specific adversary. Most results so far have been devoted
to one specific form of adversaries: those that can control any subset of size ¢
of the processes, i.e., the t-failures adversary. In particular, a seminal result in
distributed computing says that the level of agreement that can be obtained de-
terministically in a shared memory model where t processes can crash is exactly
t+1 [1-3]. In other words, an adversary that can crash any subset of size at most
t can prevent the processes from agreeing on ¢ values. In the case of consensus
for instance (¢ = 1), this translates into FLP [4].

In a sense, these results are very incomplete. Indeed, the ¢-failures assumption
covers only the n “uniform” adversaries in a system of size n. What about
the other (22" — n) adversaries that can crash certain subsets of processes of a
certain size but not others of the same size? In particular, given any adversary
A, for what k does A prevent k-set agreement [5]7 This paper addresses this
question and derives from the answer equivalence classes between adversaries.
More specifically, we characterize the power of an adversary A by the biggest
k for which k-set agreement cannot be solved with A, which we call here the
disagreement power of A. We show how to compute the disagreement power of
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an adversary and we show that adversaries within the same class solve the same
set of (colorless®) tasks.

Beyond intellectual curiosity, studying “non-uniform” adversaries might even
be practically motivated by modern multicore architectures where the failures
of processes in the same core might all be correlated [8-10].

Determining the disagreement power of certain adversaries is trivial. For
others, it is not. Consider, in a system of 3 processes, {1,2,3}, an adversary
A that can fail either no process, both processes 2 and 3, or process 1 i.e.
A = {0, 23%, 1}. It is easy to show that A can prevent consensus but not 2-set
agreement. In this sense, adversary A has the same disagreement power as the
1-failure adversary, i.e., 1. Consider now a more involved scenario: a system of 4
processes and another adversary A’ that can fail any element of {0, 4, 23, 14, 12,
134, 124, 123}. What is the disagreement power of A’? We prove in this paper
that it is also 1.

We give a general characterization of adversaries that enables one to auto-
matically compute their disagreement power. Namely, we introduce a structure
predicate on adversaries, parameterized by an integer k, and which, intuitively,
checks for any set of faulty processes of size less or equal k, whether there is some
adequate superset in the adversary. We prove that any adversary that satisfies
the predicate has disagreement power k. We first show (sufficient condition) that
if k-set agreement can be solved with some adversary that satisfies the predicate
for some k, then k-set agreement can be solved with the k-failures adversary
which in turn is known to be impossible [1-3]. Hence, an adversary that satisfies
the predicate has disagreement power at least k. We do this through a new sim-
ulation between adversaries, which we call the conservative back-off simulation,
and which we believe is interesting in its own right. The idea underlying our
simulation is the following: a process backs-off and skips its simulation step if
the process thinks that it is faulty in some set where the simulated algorithm
is known to work. Conversely (necessary condition), we show how to solve k-set
agreement with any adversary A that does not satisfy the predicate for some k.
We do this by showing how to implement failure detector k-anti-{2 [11], known
in turn to implement k-set agreement. (Each query to k-anti-{2 returns n — k
process ids; the specification ensures that there is a correct process whose id is
eventually never output.)

We then use our characterization to split the set of all adversaries into n
disjoint equivalence classes, one for every level of disagreement: we show that for
any two adversaries with the same disagreement power, exactly the same set of
(colorless) tasks can be solved. The key to our proof of the equivalence is that
for every adversary with disagreement power k, it is possible to simulate a wait-
free system of k 4+ 1 processes which in turn can simulate every other k-failure
adversary [6, 12]. This is technically achieved by implementing (k+ 1)-anti-{2 for
the adversary and translating it to a vector of k 4+ 1 2 failure detectors [13] of

3 Intuitively, in a colorless task [6, 7] any process can adopt any input or output value
of any other process without violating the task specification.
4 When appropriate, we will use e.g. 23 as shorthand for the set {2,3}.



The Disagreement Power of an Adversary 3

which at least one is a “real” {2 (i.e. it outputs eventually everywhere the same
correct process). Then, each of the k + 1 simulated processes can be associated
with one of the 2’s and a consensus-object can be built to agree on the simulated
steps of such a process.

Since we can compute automatically the disagreement power of an adversary
(using our structural predicate), we can thus automatically derive results for an
adversary from known results from another adversary with the same disagree-
ment power.

Indirectly, our partitioning contributes to the idea that a very small subset
of results and ad-hoc proofs in distributed computing should suffice to derive all
others. In particular, if indeed needed to reason about (n—1)-set agreement for
the “wait-free” adversary, topology is not needed for all the other ones. Results
concerning other k-failures (“uniform”) adversaries can be deduced by [6,12],
whereas results for all other (“non-uniform”) (22" —n) adversaries can be deduced
from our characterization.

The remainder of the paper is structured as follows. We first define our
model in Section 2. We then introduce our notion of disagreement power and our
structural predicate in Section 3. We present our conservative back-off simulation
and use it in Section 4 to show that any adversary that satisfies the predicate
for k can be reduced to the k-failure adversary (thus the predicate is sufficient
for the simulation). We show in Section 5 how to implement k-set agreement
with any adversary that does not satisfy the predicate (therefore, the predicate
is necessary). We then show that adversaries with the same disagreement power
are actually in the same equivalence class in Section 6 and conclude the paper
with some general remarks in Section 7.

2 Model and Definitions

We assume systems of deterministic processes that communicate asynchronously
using read-write atomic registers. We recall below the necessary elements to
describe our model and introduce the notion of an adversary.

Processes and registers. Our system consists of a set IT = {p1,pa,...,pn} of n
processes sharing atomic registers. Processes might crash. Processes that crash
are called faulty and a process that never crashes is said to be correct.

Adversaries and runs. Intuitively, an adversary can choose which set of pro-
cesses will crash. More precisely, we represent an adversary as a set of sets of
processes (we call these sets faulty-sets) and the adversary can choose one of
these faulty-sets. Here, we consider only adversaries A for which there is always
at least one correct process, i.e. IT & A.

A run of an algorithm A is an infinite sequence of steps of the processes.
Given an adversary A, associated with every run is a set of processes a € A
that will crash. This set is chosen by the adversary and the processes in a may
crash at any time. The set of processes that make an infinity of steps in some
run associated with a is then exactly IT \ a.
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The classical n process k-failure adversary, denoted B} is the adversary for
which at most k£ (0 < k < n — 1) processes may crash: By = {b C I | |b| <
kAT = n}. Where the number of processes is clear from the context, we will
omit the n (i.e. By = By).

Tasks. Generally, we say that algorithm A solves a task 7" in adversary A if
every run of A with associated a € A satisfies the specification of T' (we say also
A implements T for adversary .4). More specifically, a task is a tuple (Z, 0, A),
where 7 is a set of vectors of input values and O is a set of vectors of output
values such that the value of every process p; corresponds to the i-th entry of
a vector. A is a total relation from Z to O. Then, a task is solved if for input
vector I € Z, an output vector O € O is computed such that O € A(I).

In the following, we restrict ourselves to specific colorless tasks [6,7]. Let
val(V') be the set of values in some vector V. A colorless task is such that if
O € A(I), then for every I’ with val(I') C val(I): I' € T and A(I') C A(I).
Furthermore, for every O" with val(O’) C val(O): O’ € O and O’ € A(I). As
a result, the specification of a colorless task is independent of the number of
processes. In this sense, such a task specifies a family of tasks, one for every
possible number of processes.

k-Set agreement. The canonical example of a colorless task is k-set agreement.
Let S be any set of values with |S| > k+ 1. In k-set agreement, Z and O are the
sets of all vectors of values from S such that for all O € O, |val(O)| < k and for
every I € 7. O € A(I) iff val(O) Cwal(I).

Consensus is 1-set agreement. k-set agreement can be solved in B; iff 0 <[ <
k—1[1-3].

In one of our proofs, we will use a distributed oracle called k-anti-{2 [11]: each
query to k-anti-{2 returns n — k process ids, with the guarantee that there is a
correct process whose id is returned only a finite number of times. If k£ = 1, k-
anti-{2 is equivalent to the eventual leader (2 failure detector, the weakest failure
detector for consensus [13, 14]. If k = n—1, k-anti-(2 is anti-{2, the weakest failure
detector to solve (n — 1)-set agreement [11].

3 Disagreement Power

We define the disagreement power of an adversary A to be the maximal k for
which it is impossible to implement k-set agreement in A. More precisely:

Definition 1. An adversary A has disagreement power k, denoted dis(A), if
(1) it is impossible to implement k-set agreement in A, and (2) it is possible to
implement (k + 1)-set agreement in A.

If an adversary cannot prevent agreement for any k, then we say that its
disagreement power is 0. As established in [1-3], it is possible to implement
(k 4+ 1)-set agreement in By but it is impossible to implement k-set agreement
in By. Hence, the disagreement power of By is k.
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Proposition 1. dis(By) =k

To compare the power of two adversaries, we define what it means for an
adversary to be stronger than another adversary:

Definition 2. An adversary A is stronger than an adversary B (denoted A =
B) if every colorless task that can be solved in A can be solved in B.

We also compare our adversaries with a (structural) domination property
without considering the tasks that they can solve. The interesting point, as we
will show later, is that this property captures exactly the power of an adversary.
For our domination property, we implicitly assume that both adversaries are
built upon the same set of processes II.

Definition 3. Let A and B be any two adversaries. We say that a faulty-set
a € A dominates a faulty-set b € B in A and B (denoted D(a, A,b,B)), if

(@2b) and (V' €B,b 2b,3a € A,a’ Da:D(d, AV, B))

In the base case, when there is no strict superset of b in B, then this translates to
a 2O b. Where A and B are clear from the context, we will simply write D(a,b).
With a slight abuse of the D-symbol, we extend the notion of domination to
adversaries:

Definition 4. We say that an adversary A dominates an adversary B (denoted
D(A, B)) if and only if the following property is satisfied:

Vb e B,Jda € A: D(a, A, B).

This property is intricate. One may think that if for all by C by ... C b, in B
there exist ag C a7 ... C a, in A such that b; C a; for all i then D(A, B). But
this is not the case. Consider the following example:

Ezample 1. Assume n = 3 and consider two adversaries (we use ij... as a
shorthand for the set {p;, p;,...}):

A=1{0,2,12,13,23}
By ={0,1,2,3,12,13,23}

In this example for all by C bl C b2 there exist ag C al C a2. But ~D(A, Bs),
because for all a € A, =D(a,3).

Ezxample 2. Consider now a slightly different example with n = 4 and the fol-
lowing adversaries :

A={0,12,34,123,124,134,234}

By ={0,1,2,3,4,12,13,14, 23,24, 34}

In this example, D(A, Bs), i.e. for every b € By there exists an a € A such that
D(a,b) (e.g. D(0,0), D(12,2) and D(124,24)).
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Interestingly, concerning adversary By, our definitions induce the following
property:

Theorem 1. Consider any k with 1 < k < n—1 and any element b € By.. Then
~D(By \ {b}, By).

Proof. We show that for all a € By, \ {b}, =D(a,b). If |b| = k, then this is imme-
diately clear, because there cannot be any superset of b in By, \ {b}. Otherwise,
if |b] < k then assume that a € By, is any set such that D(a,b). Hence, there is
some set b’ D b with || = k such that the number of processes not in a is maxi-
mal in b'. Assume there exists some o’ 2 a and o' D V. Then |d'| > |aUV| > k,
because |b'| = k and there is at least one element in a \'V'. Thus o’ & By, and we
have a contradiction.

4 The Conservative Back-off Simulation (Sufficient
Condition)

In this section we show that if, for adversaries A and B, we have D(A, BB), then A
is stronger than B. Given that k-set agreement cannot be implemented in By, we
get a sufficient condition for the impossiblity of implementing k-set agreement,
namely if D(A, By), then k-set agreeement cannot be implemented in A.

Assume D(A, B) for some adversaries A and B over the same set of processes
II. Let Alg be any algorithm which solves a colorless task 7" in A. Then, the
conservative back-off simulation in Algorithm 1 solves T with Alg in B.

The goal of the simulation is to identify, in every possible run with a set
of faulty processes b* € B, a set of processes a* € A with b* C a* (i.e. more
failures in a* than in b*). Hence, the processes outside a* can use the given
algorithm which is known to terminate for every a* € A. The processes in a*
that are not in b* can then just back-off and omit to take simulation steps,
since the others are enough to ensure termination. Thus, termination is achieved
by simply letting some correct processes take only finitely many steps, i.e. to
simulate their crashes.

To determine a*, we first narrow down the possibilities in b* in the run. This
is achieved by simply using step-counters. The current estimations are stored
in possibly-faulty. Then, starting from the smallest set b € possibly-faulty, every
process tries to stepwise approximate a*.

In these steps, our property D(A, B) is needed. For every b € possibly-faulty,
starting from the smallest, some a € A with D(a,b) that is a superset of all
other elements in faulty is deterministically chosen and added to faulty. Since
D(a,b), and every next b’ € possibly-faulty is a superset of b, it is guaranteed
that in the following there will always be an o’ € A that is a superset of a
and D(a’,"). This sequence of a’s is stored in faulty. Since the subsets of b* in
possibly-faulty are stable (i.e. they are eventually always in possibly-faulty), even
if the supersets of b* change infinitely often, the a added in the step in b* is such
that b* C a. Then, the a* we are trying to seek is just the smallest set in faulty
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where b* C a*. Although we do not know which one of the elements of faulty it
is, it is safe for a process to take a step if it does not belong to some a € faulty
and has reason to believe that all other processes that are not in a are alive.
This is simply achieved by determining which processes took steps since the last
own simulation step using the variable lastsimsteps. A process not in a* will not
block here forever, because all non-faulty processes increase their step-counters
infinitely often.

If some process decides, it writes its decision value into a special register.
If some other process observes that another process has decided, it adopts its
decision value and decides also.

Consider the adversaries from Example 2: A = {0),12, 34,123,124, 134,234},
By and n = 4. If the actual faulty-set is 3, then eventually possibly-faulty can only
be: {0, 3,23}, {0,3,13} or {0, 3,34}, because process 3 takes the least number
of steps. By construction, faulty will be {0, 34,234}, {0,34,134} or {0, 34,234}
respectively. For the three processes pi, po and ps that take infinitely many
steps, eventually alive C 124. If one of these processes takes only finitely many
simulation steps, then alive = 124 at this process. In this case, for p; and po
there is always the set 34 in faulty such that alive U 34 = IT and p; respectively
po are not in 34. But this is not the case for ps. Thus, ps takes only finitely
many steps and only processes p; and ps take infinitely many steps. Therefore,
the simulated algorithm is executed as if the faulty set is 34.

Algorithm 1: The conservative back-off simulation for process p; and

D(A, B).

1 Stepc; := 0; /* a SWMR register */
2 lastsimsteps; :== [0,...,0]; /* the state at the last simulated step */
3 while true do
4 if some other process has decided then adopt its decision value and decide;
5 let pi,-..,Dps, be the processes ordered by increasing Stepc (ties broken
deterministically);
6 possibly-faulty, := {0, {pi, }, {pir» Piz } - - s {Pirs -+ Pi_1 }} N B
7 faulty, := 0;
8 foreach b € possibly-faulty,, ordered by inclusion do
9 add some a € A to faulty; s.t. D(a,b) and Va' € faulty;,a 2 a’ (choose
| deterministically);
10 alive; == {p; | Stepc; > lastsimsteps;[j]};
11 if Ja € faulty;, alive; Ua = II and p; ¢ a then
12 execute a step of Alg;
13 if decided then write decision value into special register;
14 lastsimsteps,; := [Stepc,, . . ., Stepc, |;

15 Stepc; := Stepc; + 1;
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Theorem 2. If D(A,B), then A = B.

Proof. We show that Algorithm 1 decides for any algorithm Alg and any colorless
task T in all runs of B. For this, it is sufficient if the simulation of Alg decides,
because T is a colorless task and every other process can decide on the decision
value of any other decided process.

Let b* € B be the actual set of faulty processes in some run. Then, eventually
always b* € possibly-faulty and all b € possibly-faulty with b C b* are the same
at all processes, because all the step counters at processes in sets b C b* change
only finitely often and the step counters of some of the processes in all other sets
increase infinitely often.

In the “for”-loop, for every b € possibly-faulty, some a € A with D(a,b) is
chosen such that ¥Ya' € faulty;, a 2 a'. It is here where we need D(A,B). If b
s the smallest set in possibly-faulty, we simply have to choose some set a where
D(a,b). In all following steps, the recursiveness of the domination predicate is
needed. Let a’ be the set that has been added to faulty in the previous step in
b € possibly-faulty. Thus D(a’,b") and we need in fact some a 2 o with D(a,b)
where b 2 V. And this follows immediately from D(a’, V).

Let a* € A be the smallest set with a* 2 b* that is eventually always added
to faulty,. Such a set has to exist (e.g. the one that is added in the step where
b = b*). Then, eventually, and at all correct processes, for all sets a € faulty;
where a U alive; = II, a is a superset of a*, because for all strict subsets a’ of
a* there is at least one process p & o' that makes only finitely many steps. Since
eventually only processes that are not in such an a take steps, processes in a*
simulate only finitely many steps of Alg.

Assume some process p; that is not in a* simulates only finitely many steps
of Alg. Since a* D b*, all these processes take infinitely many steps. Therefore,
eventually, alive; O IT\a*. But then, alive;Ua* = II. A contradiction to the fact
that p; simulates only finitely many steps of Alg. Therefore, exactly the processes
not in a* simulate infinitely many steps. Since a* € A, Alg has to terminate.

From this Theorem follows, that if D(A, By), then k-set agreement cannot
be implemented in A, since it is impossible in By, [1-3].

Corollary 1. If D(A, By,), then k-set agreement cannot be implemented in A.

5 k-Set Agreement Protocol (Necessary Condition)

In this section, we show that if for adversaries A and Bj we have ~D(A, By),
then k-set agreement can be implemented in A. By the contrapositive, we get
a necessary condition for the impossibility of implementing k-set agreement,
namely if k-set agreement cannot be implemented in A, then D(A, By)

We compare an adversary A with the k-failure adversary which contains
all sets of size less or equal k. We show that if =D(A, By), then it is possible
to implement k-set agreement for A. For this, it is sufficient to show how to
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implement k-anti-{2, since this is sufficient to implement k-set agreement in
adversary A [11]. Basically, k-anti-{2 outputs, whenever queried, at least n — k
processes, s.t. at least one correct process is output only finitely often. Algorithm
2 implements k-anti-{2.

The key to the implementation is to find a set b* such that b* contains at
least one non-faulty process, i.e. if the actual set of faulty processes is a*, then
b* & a*. It is sufficient though, that we eventually always find supersets of b*
of size at most k. The output for k-anti-f2 is then just the complement of these
sets.

As in the previous section, we first try to narrow down the possibilities for the
actual faulty set a*. This is again achieved by using step-counters. The current
estimations are stored in possibly-faulty. Then, we take the smallest set b;,;; € By
that is not dominated by any a € A (since =D(A, By), there has to exist at least
one). Although this set is not dominated by any a, it may contain no correct
process (in particular, b;,;; may be the empty set). However, if so, then by the
recursive nature of the domination property, there has to exist a strict superset
of bins¢ which is not dominated by any a € A with a D by (if binge = 0, then
this applies to all a € A). By an iterated use of this property, for every possible
a € possibly-faulty, the inner “while”-loop ends. Thus, for all a € possibly-faulty:
a 2 est for the corresponding est after the loop. Since a* is eventually always
in possibly-faulty, we eventually always choose the same b* & a* in the step for
a*. Although the supersets of a* in possibly-faulty may differ in each round, our
estimate will eventually always contain b*, because some prefix in possibly-faulty
is stable.

Consider Example 1 with n = 3 and k = 2: A = {0,2,12,13,23} and B, and
recall that =D(A, By). Then, for example b;,;; = 3 and thus est is initially set
to 3.

Assume first that the actual faulty-set is 1. Eventually possibly-faulty will
be {0,12} or {0, 13}. In any case, if a = () is considered, then est remains 3. If
a = 12 is considered, then est remains 3 and thus the failure detector output
does not contain 3.

Assume now that all the processes are correct i.e. the faulty-set is (). We have
to avoid, in this case, that the output alternates between 1, 2 and 3. Eventu-
ally possibly-faulty will be {0, 1,12}, {0,1,13}, {0,2,12}, {0,2,23}, {0, 3,13} or
{0,3,23}. In any case, if a = ) is considered, then est remains 3. After that,
est can be augmented, but 3 will eventually never be in the ouput of k-anti-f2.
Therefore, eventually there is a correct process (3) that is not in the output of
k-anti-{2.

Theorem 3. For all A, if ~D(A, By), then it is possible to implement k-anti-£2
in A.
Proof. If =D(A, By), then:
b € By,Va € A,—D(a,b).
Thus, this b can be chosen as b;,;;. If a does not dominate b for A and By, then

(b)) Vv (T eBb 2bVad € Ad 2a,~D(d,b)). (1)
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Algorithm 2: Implementation of k-anti-{2

1 Stepc, == 0; /* a SWMR register */
2 binit := some set in By s.t. for all a € A, =D(a, binit);

3 while true do
4 let pi,,...,Dps, be the processes ordered by increasing Stepc (ties broken
deterministically);
5 possibly-faulty; = {®7 {pi b Apisspin by Apis - yPiy 1 0 A
6 est; 1= bimt;
7 foreach a € possibly-faulty,, ordered by inclusion do
8 while a D est; do
9 est; := determin. choose some b € By, b D est; s.t. Va' € A, d' D a:
L -D(d’,b);
10 if |est;| < k then add some processes to est; until |est;| = k
11 Stepc; := Stepc; + 1;
12 output IT \ est;;

Let a* € A be the actual set of faulty processes in some run. Then, eventually,
possibly-faulty contains o™ and all a € possibly-faulty, a C a* are the same at all
processes, because all the step counters at these processes change only finitely
often and the step counters of some of the processes in all supersets increase
infinitely often.

Since = D(A, By), there exists some good b;,;;. For every a € possibly-faulty
in every step in the “for”-loop, =D(a, est), because otherwise it would not have
been chosen as b, or in the inner “while”-loop. Thus, either a 2 est and the
inner “while”-loop immediately terminates, or it follows from (1), that there
exists some some b € By, b D est; s.t. Va' € A,a’ 2 a: —D(d,b), i.e. the loop
continues. Since in every step of the inner “while”-loop, est grows and est € By,
the loop ends after at most k steps.

Let b* D b;ni+ be the maximal set such that b* is eventually always a subset
of est; at the end of the “for”-loop. Since the prefix of the subsets of a* is stable
in possibly-faulty, a* O b*, because this is the terminating condition of the inner
“while”-loop. Therefore, a* 2 b* and there exists a process p € b* which is not
in a* and the properties of k-anti-{2 are fulfilled.

Then, we get:
Corollary 2. If k-set agreement cannot be implemented in A, then D(A, By).

If we gather together Theorem 2 and Theorem 3, we obtain a necessary and
sufficient condition in terms of structured predicate under which an adversary
can solve the k-set agreement.

Theorem 4. k-set agreement can be implemented in A if and only if =~D(A, Bx)

We can now directly derive the disagreement power of an adversary by our
structural predicate:
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Theorem 5. dis(A) =k if and only if (1) D(A,By), and (2) ~D(A, Bi+1)

6 Equivalence Classes

In this section we show that if two adversaries have the same disagreeement
power then they solve exactly the same set of colorless tasks: dis(A) = dis(B) if
and only if A %= B and B = A

Before showing that all adversaries with the same disagreement power solve
the same set of (colorless) tasks, we show that the ability of an adversary to
prevent agreement is independent of the number of processes (as long as n >
k+1). After that, we show that for any two adversaries A and B with the same
disagreement power k, A = B.

6.1 Robustness against the Number of Processes

Before we state our results, we recall a theorem from [6] that, in our notation,
states the following;:

Theorem 6. (BG [6]). For all n, for all k with n > k: B} &= By,

Theorem 7. For every adversary A™ built upon a set of n processes, for every
k < n:if k-set agreement for k + 1 < n processes can be implemented in A",
then k-set agreement can be implemented in A™.

Proof. Assume k-set agreement can be implemented for k + 1 processes in ad-
versary A". Assume for contradiction that D(A", By). Then, with Theorem 2,
k-set agreement for k41 processes can be implemented in B} and with Theorem
6 it follows that k-set agreement can be implemented in BkH. A contradiction
o [1-3]. Thus, ~D(A™, B}) which means by Theorem 3 that k-set agreement
can be implemented in A™.

Thus, the ability of an adversary to prevent an agreement of k values is
independent from the number of processes, i.e. if it cannot prevent agreement
for k + 1 processes, then it cannot prevent agreement for any n > k processes.
In this sense, the disagreement power is robust against the number of processes.

6.2 Simulating k Processes with k-anti-f2

In the following, we will show how to use k-anti-{2 to simulate a set of k processes,
such that at least one of the simulated processes takes infinitely many steps (this
simulation, although seemingly simple, may be of independent interest). With
the simulation, we can show that every colorless task that can be solved in BY |
can be solved with any adversary A where k-anti-f2 is implementable. We use
here the fact that it is possible to extract an array of k (2-failure detectors
21,...,8 from k-anti-{2 with the property that at least one of them is a “real”
2 (i.e. it eventually outputs everywhere always the same correct process) [11].
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Thus we can build &k consensus objects [14], one for every 2 and we have the
property, that at least one consensus terminates infinitely often. Note that for
the consensuses associated with a bogus {2 (i.e. one that outputs infinitely often
faulty processes or does not stabilize on one process), in [14], the agreement and
validity properties of consensus are never violated.

We denote with consensus;, the r-th invocation of the consensus object
associated with §2;. Furthermore, we associate with every 1 < j < k a “virtual”
process ¢; and all processes use the consensus; -objects to agree on the simulated
steps of g;.

Without loss of generality, we assume that the algorithm that implements
the task in BY_, uses only one single-writer multiple-reader (SWMR) register
per process. Three types of steps need to be considered:

— a write(v)-step in which a process writes v to its associated SWMR register,

— a read(p;)-step in which a process reads the SWMR register associated to
process pj

— and an internal step which does not involve any registers

These assumptions do not restrict the set of solvable tasks [15].

The simulation works as follows: at the beginning, all processes propose their
initial values to all k consensuses in parallel. Since the algorithm is deterministic,
the internal steps of ¢; can just be executed. To simulate the write-steps of g;,
every simulator p; writes the value to be written together with the number of
the currently simulated step to its own register R[i, j|. To simulate a read step
of g;, a process scans all other processes registers associated with g; and returns
the “freshest” value (i.e. the value associated with the maximal step-number).
Then, it proposes this value to the consensus corresponding to ¢; and returns
the result for the read-operation. In this way, it is ensured that all simulators
will return exactly the same values for every ¢; and all will simulate exactly the
same steps. If some virtual process ¢; has decided, the simulator just adopts that
value and halts.

Theorem 8. For every adversary A™ build upon a set of n processes, for every
k<mn, :if ~D(A", B}), then Bf_| = A™.

Proof. We assume an algorithm that solves a colorless task in B | and use
Theorem 3 to extract k-anti-f2 from A™ and thus create consensus; »-objects for
every j and k. Since there is some j such that {2; contains eventually always a
correct process, all correct processes simulate infinitely many steps of g;.
Furthermore, since the execution of the simulated algorithm depends only on
the values read (i.e. the algorithm is deterministic), for all j, all processes execute
exactly the same steps for virtual process ¢;. By the definition of colorless tasks,
it is allowed that any process picks up any other processes input and output
value and particularly, it is allowed that several processes have the same input
or output values. It remains to show that every run of the virtual processes is
indeed a run of the simulated algorithm in B’,j_p i.e. it is indistinguishable from a
real run. For this, we need to show that the sequence of the simulated operations
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Algorithm 3: Simulation of BY | for process p;

1 for 1 < j <kdo R[i,j] :=(L,0);

2 init; := initial value;

3 foreach 1 < j <k in parallel do

4 init; := consensus; o (init;);

5 rj = 1;

6 while ¢; has not decided do start simulating steps of ¢; with initial value

im'tj

7 if next step of q; is a write(v)-step then

8 | Rli,g] = (0,75);

9 else if next step of q; is a read(ps )-step then
10 select v s.t. r is max. V(v,r) where Jy : R[y, z] = (v,7);
11 return consensus;,,; (v) for the read;
12 else
13 | take internal step of g;;
14 rj=rj+1;
15 decide on g¢;’s decision value; halt;

on the registers is linearizable. But this follows from the fact that the sequence
of the real registers is linearizable and every simulated operation corresponds to
some operation of the real run.

Thus, every simulated run will eventually terminate at at least one virtual
process and every simulator decides.

If we put all other theorems together, we get the following result:

Theorem 9. For any two adversaries A and B: dis(A) = dis(B) if and only if
A=Band B= A

Proof. Since A has disagreement power k, it is impossible to implement k-set
agreement in A. Thus D(A, By,) (Theorem 3) and therefore A = Bj, (Theorem 2).
Furthermore, since B has also disagreement power k, it is possible to implement
(k+1)-set agreement in B. Therefore, since it is impossible to implement (k+1)-
set agreement in Byy1 [8-10]: =D (B, Bi41) (Theorem 2). Thus, with Theorem 8,
B’,j“ %= B. With Theorem 6 (BG), By, = B. If we put all these results together,
A = B. We obtain B = A in the same way.

7 Concluding Remarks

This paper presents a novel way to precisely characterize adversaries: the notion
of disagreement power, i.e., the biggest integer k for which an adversary can
prevent processes from agreeing on k values. This notion partitions the set of all
adversaries into n distinct equivalence classes, one for every disagreement power.
Any two adversaries with the same disagreement power solve exactly the same
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set of (colorless) tasks (Section 6). We believe that our result could be extended
to colored tasks but this is subject to future work.

At the heart of our partitioning lies our simulation between adversaries (Sec-

tion 4). Interestingly, the simulation works also if we assume the existence of
stronger objects than registers or even non-deterministic object types. Further-
more, the simulation (as well as our implementation of k-set agreement with a
given adversary in Section 5) remains correct even if the adversary is known only
eventually, i.e., not necessarily from the beginning.
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