Skip to main content
Log in

Distributed discovery of large near-cliques

  • Published:
Distributed Computing Aims and scope Submit manuscript

Abstract

Given an undirected graph and \({0\le\epsilon\le1}\), a set of nodes is called an \({\epsilon}\)-near clique if all but an \({\epsilon}\) fraction of the pairs of nodes in the set have a link between them. In this paper we present a fast synchronous network algorithm that uses small messages and finds a near-clique. Specifically, we present a constant-time algorithm that finds, with constant probability of success, a linear size \({\epsilon}\)-near clique if there exists an \({\epsilon^3}\)-near clique of linear size in the graph. The algorithm uses messages of O(log n) bits. The failure probability can be reduced to n Ω(1) by increasing the time complexity by a logarithmic factor, and the algorithm also works if the graph contains a clique of size Ω(n/(log log n)α) for some \({\alpha \in (0,1)}\). Our approach is based on a new idea of adapting property testing algorithms to the distributed setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abello, J., Resende, M.G.C., Sudarsky, S.: Massive quasi-clique detection. In: LATIN ’02: Proceedings of the 5th Latin American Symposium on Theoretical Informatics, pp. 598–612. Springer, London, UK (2002)

  2. Alon N., Babai L., Itai A.: A fast and simple randomized parallel algorithm for the maximal independent set problem. J. Algorithms 7, 567–583 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Awerbuch B.: Complexity of network synchronization. J. ACM. 32(4), 804–823 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Basagni S., Mastrogiovanni M., Panconesi A., Petrioli C.: Localized protocols for ad hoc clustering and backbone formation: a performance comparison. IEEE. Trans. Parallel. Dist. Syst. 17(4), 292–306 (2006)

    Article  Google Scholar 

  5. Brin S., Page L.: The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN. Syst. 30(1–7), 107–117 (1998)

    Article  Google Scholar 

  6. Broder, A.Z., Glassman, S.C., Manasse M.S., Zweig, G.: Syntactic clustering of the web. In: Selected papers from the 6th International Conference on World Wide Web, pp. 1157–1166, Elsevier, Essex, UK (1997)

  7. Feige U., Langberg M.: Approximation algorithms for maximization problems arising in graph partitioning. J. Algorithms 41(2), 174–211 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Feige U., Peleg D., Kortsarz G.: The dense k-subgraph problem. Algorithmica 29(3), 410–421 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fischer, E., Newman, I.: Testing versus estimation of graph properties. In: Proceedings of 37th Annual ACM Symposium on Theory of Computing, pp. 138–146. ACM, New York (2005)

  10. Goldreich O., Goldwasser S., Ron D.: Property testing and its connection to learning and approximation. J. ACM 45(4), 653–750 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goldreich, O., Trevisan, L.: Three theorems regarding testing graph properties. Random Struct. Algorithms 23(1), 23–57 (2003) (Preliminary version in FOCS ’01)

    Google Scholar 

  12. Gupta, R., Walrand, J.: Approximating maximal cliques in ad-hoc networks. In: Proceedings of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, pp. 365–369, Barcelona (2004)

  13. Håstad J.: Clique is hard to approximate within \({n^{1-\epsilon}}\). Acta Mathematica 182(1), 105–142 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kumar R., Novak J., Raghavan P., Tomkins A.: On the bursty evolution of blogspace. World Wide Web 8(2), 159–178 (2005)

    Article  Google Scholar 

  15. Lempel R., Moran S.: SALSA: the stochastic approach for link-structure analysis. ACM. Trans. Inf. Syst. 19(2), 131–160 (2001)

    Article  Google Scholar 

  16. Luby M.: A simple parallel algorithm for the maximal independent set problem. SIAM. J. Comput. 15(4), 1036–1053 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nguyen, H.N., Onak, K.: Constant-time approximation algorithms via local improvements. In: FOCS, pp. 327–336. IEEE Computer Society (2008)

  18. Parnas M., Ron D.: Approximating the minimum vertex cover in sublinear time and a connection to distributed algorithms. Theor. Comput. Sci. 381(1–3), 183–196 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Parnas, M., Ron, D., Rubinfeld, R.: Tolerant property testing and distance approximation. J. Comput. Syst. Sci. 72(6):1012–1042 (2006) (Preliminary version in STOC ’05)

    Google Scholar 

  20. Peleg D.: Distributed Computing: A Locality-sensitive Approach. SIAM, Philadelphia, PA (2000)

    Book  MATH  Google Scholar 

  21. Rubinfeld R., Sudan M.: Robust characterizations of polynomials with applications to program testing. SIAM. J. Comput. 25(2), 252–271 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Saks M.E., Seshadhri C.: Parallel monotonicity reconstruction. In: Teng, S.-H (ed.) SODA, pp. 962–971. SIAM, Philadelphia, PA (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boaz Patt-Shamir.

Additional information

B. Patt-Shamir was supported in part by the Israel Science Foundation grant 1372/09, and by Israel Ministry of Science and Technology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brakerski, Z., Patt-Shamir, B. Distributed discovery of large near-cliques. Distrib. Comput. 24, 79–89 (2011). https://doi.org/10.1007/s00446-011-0132-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00446-011-0132-x

Keywords

Navigation