Skip to main content
Log in

Dynamics in network interaction games

  • Published:
Distributed Computing Aims and scope Submit manuscript

Abstract

We study the convergence times of dynamics in games involving graphical relationships of players. Our model of interaction games generalizes a variety of recently studied games in game theory and distributed computing. In a local interaction games each agent is a node embedded in a graph and plays the same 2-player game with each neighbor. He can choose his strategy only once and must apply his choice in each 2-player game he is involved in. This represents a fundamental model of decision making with local interaction and distributed control. Furthermore, we introduce a generalization called 2-type interaction games, in which one 2-player game is played on edges and possibly another game is played on non-edges. For the popular case with symmetric 2 × 2 games, we show that several dynamics converge to a pure Nash equilibrium in polynomial time. This includes arbitrary sequential better-response dynamics, as well as concurrent dynamics resulting from a distributed protocol that does not rely on global knowledge. We supplement these results with an experimental comparison of sequential and concurrent dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ackermann, H., Berenbrink, P., Fischer, S., Hoefer, M.: Concurrent imitation dynamics in congestion games. In: Proceedings of 28th Symposium on Principles of Distributed Computing (PODC), pp. 63–72 (2009)

  2. Ackermann, H., Röglin, H., Vöcking, B.: On the impact of combinatorial structure on congestion games. J. ACM 55(6) (2008)

  3. Aumann R.: Subjectivity and correlation in randomized strategies. J. Math. Econ. 1, 67–96 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berninghaus S., Vogt B.: Network formation in symmetric 2 × 2 games. Homo Oeconomicus 23(3/4), 421–466 (2006)

    Google Scholar 

  5. Blum, A., Mansour, Y.: Learning, regret minimization, and equilibria. In: Nisan et al. [38], Chap. 4

  6. Blume L.: The statistical mechanics of strategic interaction. Games Econ. Behav. 5, 387–424 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blume L.: How noise matters. Games Econ. Behav. 44(2), 251–271 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bollobás B.: Random Graphs, 2nd edn. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  9. Bramoullé Y.: Anti-coordination and social interactions. Games Econ. Behav. 58(1), 30–49 (2007)

    Article  MATH  Google Scholar 

  10. Bramoullé Y., López-Pintado D., Goyal S., Vega-Redondo F.: Network formation and anti-coordination games. Int. J. Game Theory 33(1), 1–19 (2004)

    Article  MATH  Google Scholar 

  11. Brock W., Durlauf S.: Discrete choice with social interactions. Rev. Econ. Stud. 68(2), 235–260 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Christodoulou, G., Mirrokni, V., Sidiropoulos, A.: Convergence and approximation in potential games. In: Proceedings of 23rd Symposium on Theoretical Aspects of Computer Science (STACS), pp. 349–360 (2006)

  13. Daskalakis C., Goldberg P., Papadimitriou C.: The complexity of computing a Nash equilibrium. SIAM J. Comput. 39(1), 195–259 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ellison G.: Learning, local interaction, and coordination. Econometrica 61(5), 1047–1071 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fabrikant, A., Papadimitriou, C.: The complexity of game dynamics: BGP oscillations, sink equilibria, and beyond. In: Proceedings of 19th Symposium on Discrete Algorithms (SODA), pp. 844–853 (2008)

  16. Fabrikant, A., Papadimitriou, C., Talwar, K.: The complexity of pure Nash equilibria. In: Proceedings of 36th Symposium on Theory of Computing (STOC), pp. 604–612 (2004)

  17. Fischer, S.: Dynamic Selfish Routing. PhD thesis, Lehrstuhl für Algorithmen und Komplexität, RWTH Aachen (2007)

  18. Fischer S., Räcke H., Vöcking B.: Fast convergence to Wardrop equilibria by adaptive sampling mehtods. SIAM J. Comput. 39(8), 3700–3735 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Foster D., Vohra R.: Calibrated learning and correlated equilibrium. Games Econ. Behav. 21, 40–55 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fudenberg D., Levine D.: Consistency and cautious ficticious play. J. Econ. Dyn. Control 19, 1065–1090 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fudenberg D., Levine D.: The Theory of Learning in Games. MIT Press, Cambridge, MA (1998)

    MATH  Google Scholar 

  22. Giotis I., Guruswami V.: Correlation clustering with a fixed number of clusters. Theory Comput. 2(1), 249–266 (2006)

    Article  MathSciNet  Google Scholar 

  23. Goemans, M., Mirrokni, V., Vetta, A.: Sink equilibria and convergence. In: Proceedings of 46th Symposium on Foundations of Computer Science (FOCS), pp. 142–154 (2005)

  24. Goyal S., Vega-Redondo F.: Network formation and social coordination. Games Econ. Behav. 50, 178–207 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hart S., Mas-Colell A.: A simple adaptive procedure leading to correlated equilibrium. Econometrica 68(5), 1127–1150 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hoefer, M., Suri, S.: Dynamics in network interaction games. In: Proceedings of 23rd International Symposium on Distributed Computing (DISC), pp. 294–308 (2009)

  27. Jackson M., Watts A.: On the formation of interaction networks in social coordination games. Games Econ. Behav. 41, 265–291 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Johnson D., Papadimitriou C., Yannakakis M.: How easy is local search?. J. Comput. Syst. Sci. 37, 79–100 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kakade, S., Kearns, M., Ortiz, L., Pemantle, R., Suri, S.: Economic properties of social networks. In: Advances in Neural Information Processing Systems (NIPS’04) (2004)

  30. Kearns, M.: Graphical games. In: Nisan et al. [38], Chap. 7

  31. Kearns, M., Suri, S.: Networks preserving evolutionary equilibria and the power of randomization. In: Proceedings of 7th Conference on Electronic Commerce (EC), pp. 200–207 (2006)

  32. Kearns, M., Tan, J.: Biased voting and the democratic primary problem. In: Proceedings of 4th International Workshop Internet & Network Economics (WINE), pp. 639–652 (2008)

  33. Kleinberg, J.: Cascading behavior in netwoks: Algorithmic and economic issues. In Nisan et al. [38], Chap. 24

  34. Marden, J.: Learning in large-scale games and cooperative control. PhD thesis, UCLA, Los Angeles (2007)

  35. Marden J., Arslan G., Shamma J.: Joint strategy fictitious play with inertia for potential games. IEEE Trans. Autom. Control 54(2), 208–220 (2009)

    Article  MathSciNet  Google Scholar 

  36. Monderer D., Shapley L.: Potential games. Games Econ. Behav. 14, 1124–1143 (1996)

    MathSciNet  Google Scholar 

  37. Montanari, A., Saberi, A.: Convergence to equilibrium in local interaction games. In: Proceedings of 50th Symposium on Foundations of Computer Science (FOCS), pp. 303–312 (2009)

  38. Nisan, N., Tardos, É., Roughgarden, T., Vazirani, Vijay (eds): Algorithmic Game Theory. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  39. Weibull J.: Evolutionary Game Theory. MIT Press, Cambridge, MA (1995)

    MATH  Google Scholar 

  40. Young H.P.: Individual Strategy and Social Structure. Princeton University Press, Princeton (1998)

    Google Scholar 

  41. Young H.P.: Strategic Learning and its Limits. Oxford University Press, Oxford (2004)

    Book  Google Scholar 

  42. Zinkevich, M.: Online convex programming and generalized infinitesimal gradient ascent. In: Proceedings of 20th International Conference on Machine Learning (ICML’03), pp. 928–936 (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hoefer.

Additional information

An extended abstract of this work has appeared in DISC 2009 [26].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoefer, M., Suri, S. Dynamics in network interaction games. Distrib. Comput. 25, 359–370 (2012). https://doi.org/10.1007/s00446-012-0171-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00446-012-0171-y

Keywords

Navigation