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Abstract

Traceroute measurements are one of our main instruments to shed light onto the structure and properties of
today’s complex networks such as the Internet. This paper studies the feasibility and infeasibility of inferring the
network topology given traceroute data from a worst-case perspective, i.e., without any probabilistic assumptions
on, e.g., the nodes’ degree distribution. We attend to a scenario where some of the routers are anonymous,
and propose two fundamental axioms that model two basic assumptions on the traceroute data: (1) each trace
corresponds to a real path in the network, and (2) the routing paths are at most a factor 1/α off the shortest
paths, for some parameter α ∈ (0, 1]. In contrast to existing literature that focuses on the cardinality of the
set of (often only minimal) inferrable topologies, we argue that a large number of possible topologies alone is
often unproblematic, as long as the networks have a similar structure. We hence seek to characterize the set
of topologies inferred with our axioms. We introduce the notion of star graphs whose colorings capture the
differences among inferred topologies; it also allows us to construct inferred topologies explicitly. We find that
in general, inferrable topologies can differ significantly in many important aspects, such as the nodes’ distances
or the number of triangles. These negative results are complemented by a discussion of a scenario where the
trace set is best possible, i.e., “complete”. It turns out that while some properties such as the node degrees are
still hard to measure, a complete trace set can help to determine global properties such as the connectivity.
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1 Introduction

Surprisingly little is known about the structure of many important complex networks such as the Internet. One
reason is the inherent difficulty of performing accurate, large-scale and preferably synchronous measurements
from a large number of different vantage points. Another reason are privacy and information hiding issues: for
example, network providers may seek to hide the details of their infrastructure to avoid tailored attacks.

Since knowledge of the network characteristics is crucial for many applications (e.g., RMTP [12], or
PaDIS [13]), the research community implements measurement tools to analyze at least the main properties of
the network. The results can then, e.g., be used to design more efficient network protocols in the future.

This paper focuses on the most basic characteristic of the network: its topology. The classic tool to study
topological properties is traceroute. Traceroute allows us to collect traces from a given source node to a set of
specified destination nodes. A trace between two nodes contains a sequence of identifiers describing the route
traveled by the packet. However, not every node along such a path is configured to answer with its identifier.
Rather, some nodes may be anonymous in the sense that they appear as stars (‘∗’) in a trace. Anonymous nodes
exacerbate the exploration of a topology because already a small number of anonymous nodes may increase the
spectrum of inferrable topologies that correspond to a trace set T .

This paper is motivated by the observation that the mere number of inferrable topologies alone does not con-
tradict the usefulness or feasibility of topology inference; if the set of inferrable topologies is homogeneous in the
sense that that the different topologies share many important properties, the generation of all possible graphs can
be avoided: an arbitrary representative may characterize the underlying network accurately. Therefore, we identify
important topological metrics such as diameter or maximal node degree and examine how “close” the possible
inferred topologies are with respect to these metrics.

1.1 Related Work

Arguably one of the most influential measurement studies on the Internet topology was conducted by the Faloutsos
brothers [8] who show that the Internet exhibits a skewed structure: the nodes’ out-degree follows a power-law
distribution. Moreover, this property seems to be invariant over time. These results complement discoveries of
similar distributions of communication traffic which is often self-similar, and of the topologies of natural networks
such as human respiratory systems. This property allows us to give good predictions not only on node degree
distributions but also, e.g., on the expected number of nodes at a given hop-distance. Since [8] was published,
many additional results have been obtained, e.g., by conducting a distributed computing approach to increase the
number of measurement points [6]. However, our understanding remains preliminary, and the topic continues to
attract much attention from the scientific communities. In contrast to these measurement studies, we pursue a more
formal approach, and a complete review of the empirical results obtained over the last years is beyond the scope of
this paper.

In the field of network tomography, topologies are explored using pairwise end-to-end measurements, without
the cooperation of nodes along these paths. This approach is quite flexible and applicable in various contexts, e.g.,
in social networks [4]. For a good discussion of this approach as well as results for a routing model along shortest
and second shortest paths see [4]. For example, [4] shows that for sparse random graphs, a relatively small number
of cooperating participants is sufficient to discover a network fairly well.

The classic tool to discover Internet topologies is traceroute [7]. Unfortunately, there are several problems with
this approach that render topology inference difficult, such as aliasing or load-balancing, which has motivated
researchers to develop new tools such as Paris Traceroute [5, 10]. Another complication stems from the fact that
routers may appear as stars in the trace since they are overloaded or since they are configured not to send out any
ICMP responses. The lack of complete information in the trace set renders the accurate characterization of Internet
topologies difficult.

This paper attends to the problem of anonymous nodes and assumes a conservative, “worst-case” perspective
that does not rely on any assumptions on the underlying network. There are already several works on the subject.
Yao et al. [15] initiated the study of possible candidate topologies for a given trace set and suggested computing
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the minimal topology, that is, the topology with the minimal number of anonymous nodes, which turns out to be
NP-hard. Consequently, different heuristics have been proposed [9, 10].

Our work is motivated by a series of papers by Acharya and Gouda. In [3], a network tracing theory model
is introduced where nodes are “irregular” in the sense that each node appears in at least one trace with its real
identifier. In [1], hardness results are derived for this model. However, as pointed out by the authors themselves,
the irregular node model—where nodes are anonymous due to high loads—is less relevant in practice and hence
they consider strictly anonymous nodes in their follow-up studies [2]. As proved in [2], the problem is still hard
(in the sense that there are many minimal networks corresponding to a trace set), even with only two anonymous
nodes, symmetric routing and without aliasing.

In contrast to this line of research on cardinalities, we are interested in the network properties. If the inferred
topologies share the most important characteristics, the negative results in [1, 2] may be of little concern. Moreover,
we believe that a study limited to minimal topologies only may miss important redundancy aspects of the Internet.
Unlike [1, 2], our work is constructive in the sense that algorithms can be derived to compute inferred topologies.

1.2 Our Contribution

This paper initiates the study and characterization of topologies that can be inferred from a given trace set computed
with the traceroute tool. While existing literature assuming a worst-case perspective has mainly focused on the
cardinality of minimal topologies, we go one step further and examine specific topological graph properties.

We introduce a formal theory of topology inference by proposing basic axioms (i.e., assumptions on the trace
set) that are used to guide the inference process. We present a novel and we believe appealing definition for the
isomorphism of inferred topologies which is aware of traffic paths; it is motivated by the observation that although
two topologies look equivalent up to a renaming of anonymous nodes, the same trace set may result in different
paths. Moreover, we initiate the study of two extremes: in the first scenario, we only require that each link appears
at least once in the trace set; interestingly, however, it turns out that this is often not sufficient, and we propose a
“best case” scenario where the trace set is, in some sense, complete: it contains paths between all pairs of nodes.

The main result of the paper is a negative one. It is shown that already a small number of anonymous nodes
in the network renders topology inference difficult. In particular, we prove that in general, the possible inferrable
topologies differ in many crucial aspects.

We introduce the concept of the star graph of a trace set that is useful for the characterization of inferred
topologies. In particular, colorings of the star graphs allow us to constructively derive inferred topologies. (Al-
though the general problem of computing the set of inferrable topologies is related to NP-hard problems such as
minimal graph coloring and graph isomorphism, some important instances of inferrable topologies can be com-
puted efficiently.) The minimal coloring (i.e., the chromatic number) of the star graph defines a lower bound on the
number of anonymous nodes from which the stars in the traces could originate from. And the number of possible
colorings of the star graph—a function of the chromatic polynomial of the star graph—gives an upper bound on the
number of inferrable topologies. We show that this bound is tight in the sense that there are situation where there
indeed exist so many inferrable topologies. Especially, there are problem instances where the cardinality of the set
of inferrable topologies equals the Bell number. This insight complements (and generalizes to arbitrary, not only
minimal, inferrable topologies) existing cardinality results.

Finally, we examine the scenario of fully explored networks for which “complete” trace sets are available. As
expected, inferrable topologies are more homogenous and can be characterized well with respect to many properties
such as node distances. However, we also find that other properties are inherently difficult to estimate. Interestingly,
our results indicate that full exploration is often useful for global properties (such as connectivity) while it does not
help much for more local properties (such as node degree).

1.3 Organization

The remainder of this paper is organized as follows. Our theory of topology inference is introduced in Section 2.
The main contribution is presented in Sections 3 and 4 where we derive bounds for general trace sets and fully
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explored networks, respectively. In Section 5, the paper concludes with a discussion of our results and directions
for future research. Due to space constraints, some proofs are moved to the appendix.

2 Model

Let T denote the set of traces obtained from probing (e.g., by traceroute) a (not necessarily connected and undi-
rected) network G0 = (V0, E0) with nodes or vertices V0 (the set of routers) and links or edges E0. We assume
that G0 is static during the probing time (or that probing is instantaneous). Each trace T (u, v) ∈ T describes a
path connecting two nodes u, v ∈ V0; when u and v do not matter or are clear from the context, we simply write
T . Moreover, let dT (u, v) denote the distance (number of hops) between two nodes u and v in trace T . We define
dG0(u, v) to be the corresponding shortest path distance in G0. Note that a trace between two nodes u and v may
not describe the shortest path between u and v in G0.

The nodes in V0 fall into two categories: anonymous nodes and non-anonymous (or shorter: named) nodes.
Therefore, each trace T ∈ T describes a sequence of symbols representing anonymous and non-anonymous nodes.
We make the natural assumption that the first and the last node in each trace T is non-anonymous. Moreover, we
assume that traces are given in a form where non-anonymous nodes appear with a unique, anti-aliased identifier
(i.e., the multiple IP addresses corresponding to different interfaces of a node are resolved to one identifier); an
anonymous node is represented as ∗ (“star”) in the traces. For our formal analysis, we assign to each star in a trace
set T a unique identifier i: ∗i. (Note that except for the numbering of the stars, we allow identical copies of T in
T , and we do not make any assumptions on the implications of identical traces: they may or may not describe the
same paths.) Thus, a trace T ∈ T is a sequence of symbols taken from an alphabet Σ = ID ∪ (

⋃
i ∗i), where ID

is the set of non-anonymous node identifiers (IDs): Σ is the union of the (anti-aliased) non-anonymous nodes and
the set of all stars (with their unique identifiers) appearing in a trace set. The main challenge in topology inference
is to determine which stars in the traces may originate from which anonymous nodes.

Henceforth, let n = |ID| denote the number of non-anonymous nodes and let s = |
⋃
i ∗i| be the number of

stars in T ; similarly, let a denote the number of anonymous nodes in a topology. Let N = n+ s = |Σ| be the total
number of symbols occurring in T .

Clearly, the process of topology inference depends on the assumptions on the measurements. In the following,
we postulate the fundamental axioms that guide the reconstruction. First, we make the assumption that each link of
G0 is visited by the measurement process, i.e., it appears as a transition in the trace set T . In other words, we are
only interested in inferring the (sub-)graph for which measurement data is available.

AXIOM 0 (Complete Cover): Each edge of G0 appears at least once in some trace in T .

The next fundamental axiom assumes that traces always represent paths on G0.

AXIOM 1 (Reality Sampling): For every trace T ∈ T , if the distance between two symbols σ1, σ2 ∈ T
is dT (σ1, σ2) = k, then there exists a path (i.e., a walk without cycles) of length k connecting two (named or
anonymous) nodes σ1 and σ2 in G0.

The following axiom captures the consistency of the routing protocol on which the traceroute probing relies. In
the current Internet, policy routing is known to have in impact both on the route length [14] and on the convergence
time [11].

AXIOM 2 (α-(Routing) Consistency): There exists an α ∈ (0, 1] such that, for every trace T ∈ T , if
dT (σ1, σ2) = k for two entries σ1, σ2 in trace T , then the shortest path connecting the two (named or anony-
mous) nodes corresponding to σ1 and σ2 in G0 has distance at least dαke.
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Note that if α = 1, the routing is a shortest path routing. Moreover, note that if α = 0, there can be loops in
the paths, and there are hardly any topological constraints, rendering almost any topology inferrable. (For example,
the complete graph with one anonymous router is always a solution.)

A natural axiom to merge traces is the following.

AXIOM 3 (Trace Merging): For two traces T1, T2 ∈ T for which ∃σ1, σ2, σ3, where σ2 refers to a named node,
such that dT1(σ1, σ2) = i and dT2(σ2, σ3) = j, it holds that the distance between two nodes u and v corresponding
to σ1 and σ2, respectively, in G0, is at most dG0(σ1, σ3) ≤ i+ j.

Any topology G which is consistent with these axioms (when applied to T ) is called inferrable from T .

Definition 2.1 (Inferrable Topologies). A topology G is (α-consistently) inferrable from a trace set T if axioms
AXIOM 0, AXIOM 1, AXIOM 2 (with parameter α), and AXIOM 3 are fulfilled.

We will refer by GT to the set of topologies inferrable from T . Please note the following important observation.

Remark 2.2. While we generally have that G0 ∈ GT , since T was generated from G0 and AXIOM 0, AXIOM 1,
AXIOM 2 and AXIOM 3 are fulfilled by definition, there can be situations where an α-consistent trace set for
G0 contradicts AXIOM 0: some edges may not appear in T . If this is the case, we will focus on the inferrable
topologies containing the links we know, even if G0 may have additional, hidden links that cannot be explored due
to the high α value.

The main objective of a topology inference algorithm ALG is to compute topologies which are consistent with
these axioms. Concretely, ALG’s input is the trace set T together with the parameter α specifying the assumed
routing consistency. Essentially, the goal of any topology inference algorithm ALG is to compute a mapping of
the symbols Σ (appearing in T ) to nodes in an inferred topology G; or, in case the input parameters α and T are
contradictory, reject the input. This mapping of symbols to nodes implicitly describes the edge set of G as well:
the edge set is unique as all the transitions of the traces in T are now unambiguously tied to two nodes.

u v

*12

*34

u v

*14

*23

Figure 1: Two non-isomorphic inferred
topologies, i.e., different mapping functions
lead to these topologies.

So far, we have ignored an important and non-trivial ques-
tion: When are two topologies G1, G2 ∈ GT different (and
hence appear as two independent topologies in GT )? In this pa-
per, we pursue the following approach: We are not interested in
purely topological isomorphisms, but we care about the identi-
fiers of the non-anonymous nodes, i.e., we are interested in the
locations of the non-anonymous nodes and their distance to other
nodes. For anonymous nodes, the situation is slightly more com-
plicated: one might think that as the nodes are anonymous, their
“names” do not matter. Consider however the example in Fig-
ure 1: the two inferrable topologies have two anonymous nodes,
once where {∗1, ∗2} plus {∗3, ∗4} are merged into one node each
in the inferrable topology and once where {∗1, ∗4} plus {∗2, ∗3}
are merged into one node each in the inferrable topology. In this paper, we regard the two topologies as different,
for the following reason: Assume that there are two paths in the network, one u ∗2  v (e.g., during day time)
and one u  ∗3  v (e.g., at night); clearly, this traffic has different consequences and hence we want to be able
to distinguish between the two topologies described above. In other words, our notion of isomorphism of inferred
topologies is path-aware.

It is convenient to introduce the following MAP function. Essentially, an inference algorithm computes such a
mapping.

Definition 2.3 (Mapping Function MAP). Let G = (V,E) ∈ GT be a topology inferrable from T . A topology
inference algorithm describes a surjective mapping function MAP : Σ → V . For the set of non-anonymous nodes
in Σ, the mapping function is bijective; and each star is mapped to exactly one node in V , but multiple stars may be
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assigned to the same node. Note that for any σ ∈ Σ, MAP(σ) uniquely identifies a node v ∈ V . More specifically,
we assume that MAP assigns labels to the nodes in V : in case of a named node, the label is simply the node’s
identifier; in case of anonymous nodes, the label is ∗β , where β is the concatenation of the sorted indices of the
stars which are merged into node ∗β .

With this definition, two topologies G1, G2 ∈ GT differ if and only if they do not describe the identical (MAP-)
labeled topology. We will use this MAP function also for G0, i.e., we will write MAP(σ) to refer to a symbol σ’s
corresponding node in G0.

In the remainder of this paper, we will often assume that AXIOM 0 is given. Moreover, note that AXIOM 3
is redundant. Therefore, in our proofs, we will not explicitly cover AXIOM 0, and it is sufficient to show that
AXIOM 1 holds to prove that AXIOM 3 is satisfied.

Lemma 2.4. AXIOM 1 implies AXIOM 3.

Proof. Let T be a trace set, and G ∈ GT . Let σ1, σ2, σ3 s.t. ∃T1, T2 ∈ T with σ1 ∈ T1, σ3 ∈ T2 and σ2 ∈ T1 ∩ T2.
Let i = dT1(σ1, σ2) and j = dT2(σ1, σ3). Since any inferrable topology G fulfills AXIOM 1, there is a path π1 of
length at most i between the nodes corresponding to σ1 and σ2 in G and a path π2 of length at most j between the
nodes corresponding to σ2 and σ3 in G. The combined path can only be shorter, and hence the claim follows.

3 Inferrable Topologies

What insights can be obtained from topology inference with minimal assumptions, i.e., with our axioms? Or what
is the structure of the inferrable topology set GT ? We first make some general observations and then examine
different graph metrics in more detail.

3.1 Basic Observations

Although the generation of the entire topology set GT may be computationally hard, some instances of GT can be
computed efficiently. The simplest possible inferrable topology is the so-called canonic graph GC : the topology
which assumes that all stars in the traces refer to different anonymous nodes. In other words, if a trace set T
contains n = |ID| named nodes and s stars, GC will contain |V (GC)| = N = n+ s nodes.

Definition 3.1 (Canonic Graph GC). The canonic graph is defined by GC(VC , EC) where VC = Σ is the set
of (anti-aliased) nodes appearing in T (where each star is considered a unique anonymous node) and where
{σ1, σ2} ∈ EC ⇔ ∃T ∈ T , T = (. . . , σ1, σ2, . . .), i.e., σ1 follows after σ2 in some trace T (σ1, σ2 ∈ T can be
either non-anonymous nodes or stars). Let dC(σ1, σ2) denote the canonic distance between two nodes, i.e., the
length of a shortest path in GC between the nodes σ1 and σ2.

Note that GC is indeed an inferrable topology. In this case, MAP : Σ → Σ is the identity function. The proof
appears in the appendix.

Theorem 3.2. GC is inferrable from T .

GC can be computed efficiently from T : represent each non-anonymous node and star as a separate node, and
for any pair of consecutive entries (i.e., nodes) in a trace, add the corresponding link. The time complexity of this
construction is linear in the size of T .

With the definition of the canonic graph, we can derive the following lemma which establishes a necessary
condition when two stars cannot represent the same node in G0 from constraints on the routing paths. This is
useful for the characterization of inferred topologies.

Lemma 3.3. Let ∗1, ∗2 be two stars occurring in some traces in T . ∗1, ∗2 cannot be mapped to the same node, i.e.,
MAP(∗1) 6= MAP(∗2), without violating the axioms in the following conflict situations:
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(i) if ∗1 ∈ T1 and ∗2 ∈ T2, and T1 describes a too long path between anonymous node MAP(∗1) and non-
anonymous node u, i.e., dα · dT1(∗1, u)e > dC(u, ∗2).

(ii) if ∗1 ∈ T1 and ∗2 ∈ T2, and there exists a trace T that contains a path between two non-anonymous nodes u
and v and dα · dT (u, v)e > dC(u, ∗1) + dC(v, ∗2).

Proof. The first proof is by contradiction. Assume MAP(∗1) = MAP(∗2) represents the same node v of G0, and
that dα · dT1(v, u)e > dC(u, v). Then we know from AXIOM 2 that dC(v, u) ≥ dG0(v, u) ≥ dα · dT1(u, v)e >
dC(v, u), which yields the desired contradiction.

Similarly for the second proof. Assume for the sake of contradiction that MAP(∗1) = MAP(∗2) represents
the same node w of G0, and that dα · dT (u, v)e > dC(u,w) + dC(v, w). Due to the triangle inequality, we have
that dC(u,w) + dC(v, w) ≥ dC(u, v) and hence, dα · dT (u, v)e > dC(u, v), which contradicts the fact that GC is
inferrable (Theorem 3.2).

Lemma 3.3 can be applied to show that a topology is not inferrable from a given trace set because it merges
(i.e., maps to the same node) two stars in a manner that violates the axioms. Let us introduce a useful concept for
our analysis: the star graph that describes the conflicts between stars.

Definition 3.4 (Star Graph G∗). The star graph G∗(V∗, E∗) consists of vertices V∗ representing stars in traces, i.e.,
V∗ =

⋃
i ∗i. Two vertices are connected if and only if they must differ according to Lemma 3.3, i.e., {∗1, ∗2} ∈ E∗

if and only if at least one of the conditions of Lemma 3.3 hold for ∗1, ∗2.

Note that the star graph G∗ is unique and can be computed efficiently for a given trace set T : Conditions (i)
and (ii) can be checked by computing GC . However, note that while G∗ specifies some stars which cannot be
merged, the construction is not sufficient: as Lemma 3.3 is based on GC , additional links might be needed to
characterize the set of inferrable and α-consistent topologies GT exactly. In other words, a topology G obtained by
merging stars that are adjacent in G∗ is never inferrable (G 6∈ GT ); however, merging non-adjacent stars does not
guarantee that the resulting topology is inferrable.

What do star graphs look like? The answer is arbitrarily: the following lemma states that the set of possible star
graphs is equivalent to the class of general graphs. This claim holds for any α. The proof appears in the appendix.

Lemma 3.5. For any graph G = (V,E), there exists a trace set T such that G is the star graph for T .

The problem of computing inferrable topologies is related to the vertex colorings of the star graphs. We will
use the following definition which relates a vertex coloring of G∗ to an inferrable topology G by contracting
independent stars in G∗ to become one anonymous node in G. For example, observe that a maximum coloring
treating every star in the trace as a separate anonymous node describes the inferrable topology GC .

Definition 3.6 (Coloring-Induced Graph). Let γ denote a coloring of G∗ which assigns colors 1, . . . , k to the
vertices of G∗: γ : V∗ → {1, . . . , k}. We require that γ is a proper coloring of G∗, i.e., that different anonymous
nodes are assigned different colors: {u, v} ∈ E∗ ⇒ γ(u) 6= γ(v). Gγ is defined as the topology induced by γ. Gγ
describes the graph GC where nodes of the same color are contracted: two vertices u and v represent the same
node in Gγ , i.e., MAP(∗i) = MAP(∗j), if and only if γ(∗i) = γ(∗j).

The following two lemmas establish an intriguing relationship between colorings of G∗ and inferrable topolo-
gies. Also note that Definition 3.6 implies that two different colorings of G∗ define two non-isomorphic inferrable
topologies.

We first show that while a coloring-induced topology always fulfills AXIOM 1, the routing consistency is
sacrificed. The proof appears in the appendix.

Lemma 3.7. Let γ be a proper coloring of G∗. The coloring induced topology Gγ is a topology fulfilling AXIOM 2
with a routing consistency of α′, for some positive α′.

An inferrable topology always defines a proper coloring on G∗.
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Lemma 3.8. Let T be a trace set and G∗ its corresponding star graph. If a topology G is inferrable from T , then
G induces a proper coloring on G∗.

Proof. For any α-consistent inferrable topology G there exists some mapping function MAP that assigns each
symbol of T to a corresponding node in G (cf Definition 2.3), and this mapping function gives a coloring on G∗
(i.e., merged stars appear as nodes of the same color in G∗). The coloring must be proper: due to Lemma 3.3, an
inferrable topology can never merge adjacent nodes of G∗.

The colorings of G∗ allow us to derive an upper bound on the cardinality of GT .

Theorem 3.9. Given a trace set T sampled from a network G0 and GT , the set of topologies inferrable from T , it
holds that:

|V∗|∑
k=γ(G∗)

P (G∗, k)/k! ≥ |GT |,

where γ(G∗) is the chromatic number of G∗ and P (G∗, k) is the number of colorings of G∗ with k colors (known
as the chromatic polynomial of G∗).

Proof. The proof follows directly from Lemma 3.8 which shows that each inferred topology has proper colorings,
and the fact that a coloring of G∗ cannot result in two different inferred topologies, as the coloring uniquely
describes which stars to merge (Lemma 3.7). In order to account for isomorphic colorings, we need to divide by
the number of color permutations.

Note that the fact that G∗ can be an arbitrary graph (Lemma 3.5) implies that we cannot exploit some special
properties of G∗ to compute colorings of G∗ and γ(G∗). Also note that the exact computation of the upper bound
is hard, since the minimal coloring as well as the chromatic polynomial of G∗ (in P]) is needed. To complement
the upper bound, we note that star graphs with a small number of conflict edges can indeed result in a large number
of inferred topologies.

Theorem 3.10. For any α > 0, there is a trace set for which the number of non-isomorphic colorings of G∗ equals
|GT |, in particular |GT | = Bs, where GT is the set of inferrable and α-consistent topologies, s is the number of
stars in T , and Bs is the Bell number of s. Such a trace set can originate from a G0 network with one anonymous
node only.

Proof. Consider a trace set T = {(σi, ∗i, σ′i)i=1,...,s} (e.g., obtained from exploring a topology G0 where one
anonymous center node is connected to 2s named nodes). The trace set does not impose any constraints on how the
stars relate to each other, and hence, G∗ does not contain any edges at all; even when stars are merged, there are no
constraints on how the stars relate to each other. Therefore, the star graph for T has Bs =

∑s
j=0 S(s,j) colorings,

where S(s,j) = 1/j! ·
∑j

`=0(−1)`
(
j
`

)
(j − `)s is the number of ways to group s nodes into j different, disjoint

non-empty subsets (known as the Stirling number of the second kind). Each of these colorings also describes a
distinct inferrable topology as MAP assigns unique labels to anonymous nodes stemming from merging a group of
stars (cf Definition 2.3).

3.2 Properties

Even if the number of inferrable topologies is large, topology inference can still be useful if one is mainly interested
in the properties of G0 and if the ensemble GT is homogenous with respect to these properties; for example, if
“most” of the instances in GT are close to G0, there may be an option to conduct an efficient sampling analysis
on random representatives. Therefore, in the following, we will take a closer look how much the members of GT
differ.

Important metrics to characterize inferrable topologies are, for instance, the graph size, the diameter DIAM(·),
the number of triangles C3(·) of G, and so on. In the following, let G1 = (V1, E1), G2 = (V2, E2) ∈ GT be two
arbitrary representatives of GT .

As one might expect, the graph size can be estimated quite well.
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Lemma 3.11. It holds that |V1| − |V2| ≤ s− γ(G∗) ≤ s− 1 and |V1|/|V2| ≤ (n+ s)/(n+ γ(G∗)) ≤ (2 + s)/3.
Moreover, |E1| − |E2| ≤ 2(s − γ(G∗)) and |E1|/|E2| ≤ (ν + 2s)/(ν + 2) ≤ s, where ν denotes the number of
edges between non-anonymous nodes. There are traces with inferrable topology G1, G2 reaching these bounds.

Observe that inferrable topologies can also differ in the number of connected components. This implies that
the shortest distance between two named nodes can differ arbitrarily between two representatives in GT .

Lemma 3.12. Let COMP(G) denote the number of connected components of a topology G. Then, |COMP(G1) −
COMP(G2)| ≤ n/2. There are instances G1, G2 that reach this bound.

Proof. Consider the trace set T = {Ti, i = 1 . . . bn/2c} in which Ti = {n2i, ∗i, n2i+1}. Since i 6= j ⇒ Ti ∩ Tj =
∅, we have |E∗| = 0. Take G1 as the 1-coloring of G∗: G1 is a topology with one anonymous node connected to
all named nodes. Take G2 as the bn/2c-coloring of the star graph: G2 has bn/2c distinct connected components
(consisting of three nodes).

Upper bound: For the sake of contradiction, suppose ∃T s.t. |COMP(G1) − COMP(G2)| > bn/2c. Let us
assume that G1 has the most connected components: G1 has at least bn/2c + 1 more connected components than
G2. Let C refer to a connected component ofG2 whose nodes are not connected inG1. This means that C contains
at least one anonymous node. Thus, C contains at least two named nodes (since a trace T cannot start or end
by a star). There must exist at least bn/2c + 1 such connected component C. Thus G2 has to contain at least
2(bn/2c+ 1) ≥ n+ 1 named nodes. Contradiction.

An important criterion for topology inference regards the distortion of shortest paths.

Definition 3.13 (Stretch). The maximal ratio of the distance of two non-anonymous nodes in G0 and a connected
topology G is called the stretch ρ: ρ = maxu,v∈ID(G0) max{dG0(u, v)/dG(u, v), dG(u, v)/dG0(u, v)}.

From Lemma 3.12 we already know that inferrable topologies can differ in the number of connected com-
ponents, and hence, the distance and the stretch between nodes can be arbitrarily wrong. Hence, in the
following, we will focus on connected graphs only. However, even if two nodes are connected, their dis-
tance can be much longer or shorter than in G0. Figure 2 gives an example. Both topologies are in-
ferrable from the traces T1 = (v, ∗, v1, . . . , vk, u) and T2 = (w, ∗, w1, . . . , wk, u). One inferrable topology
is the canonic graph GC (Figure 2 left), whereas the other topology merges the two anonymous nodes (Fig-
ure 2 right). The distances between v and w are 2(k + 2) and 2, respectively, implying a stretch of k + 2.

u

v w

kk

11
*1 *2

u

v w

kk

11
*

Figure 2: Due to the lack of a trace between v
and w, the stretch of an inferred topology can
be large.

Lemma 3.14. Let u and v be two arbitrary named nodes in the
connected topologies G1 and G2. Then, even for only two stars
in the trace set, it holds for the stretch that ρ ≤ (N−1)/2. There
are instances G1, G2 that reach this bound.

We now turn our attention to the diameter and the degree.

Lemma 3.15. For connected topologies G1, G2 it holds that
DIAM(G1) − DIAM(G2) ≤ (s − 1)/s · DIAM(GC) ≤ (s −
1)(N − 1)/s and DIAM(G1)/DIAM(G2) ≤ s, where DIAM de-
notes the graph diameter and DIAM(G1) > DIAM(G2). There
are instances G1, G2 that reach these bounds.

Proof. Upper bound: As GC does not merge any stars, it describes the network with the largest diameter. Let π be
a longest path between two nodes u and v in GC . In the extreme case, π is the only path determining the network
diameter and π contains all star nodes. Then, the graph where all s stars are merged into one anonymous node has
a minimal diameter of at least DIAM(GC)/s.

Example meeting the bound: Consider the trace set T = {(u1, . . . , ∗1, . . . , u2), (u2, . . . , ∗2, . . . , u3), . . . ,
(us, . . . , ∗s, . . . , us+1)} with x named nodes and star in the middle between ui and ui+1 (assume x to be even, x
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does not include ui and ui+1 ). It holds that DIAM(GC) = s · (x + 2) whereas in a graph G where all stars are
merged, DIAM(G) = x + 2. There are n = s(x + 1) non-anonymous nodes, so x = (n − s − 1)/s. Figure 3
depicts an example.

Lemma 3.16. For the maximal node degree DEG, we have DEG(G1) − DEG(G2) ≤ 2(s − γ(G∗)) and
DEG(G1)/DEG(G2) ≤ s− γ(G∗) + 1. There are instances G1, G2 that reach these bounds.

u1

GC :
x/2

* u2
x/2

*
x/2 u3

x/2

u3

x/2

u1

x/2

* u2

x/2
G:

Figure 3: Estimation error for diameter.

Another important topology measure that indicates
how well meshed the network is, is the number of tri-
angles.

Lemma 3.17. Let C3(G) be the number of cycles of
length 3 of the graph G. It holds that C3(G1) −
C3(G2) ≤ 2s(s− 1), which can be reached. The rela-
tive error C3(G1)/C3(G2) can be arbitrarily large un-
less the number of links between non-anonymous nodes exceeds n2/4 in which case the ratio is upper bounded by
2s(s− 1) + 1.

Proof. Upper bound: Each node which is part of a triangle has at least two incident edges. Thus, a node v
can be part of at most

(DEG(v)
2

)
triangles, where DEG(v) denotes v’s degree. As a consequence the number of

triangles containing an anonymous node in an inferrable topology with a anonymous nodes u1, . . . ua is at most∑a
j=1

(DEG(uj)
2

)
. Given s, this sum is maximized if a = 1 and DEG(u1) = 2s as 2s is the maximum degree

possible due to Lemma 3.16. Thus there can be at most s · (2s− 1) triangles containing an anonymous node in G1.
The number of triangles with at least one anonymous node is minimized in GC because in the canonic graph the
degrees of the anonymous nodes are minimized, i.e, they are always exactly two. As a consequence there cannot
be more than s such triangles in GC .

If the number of such triangles in GC is smaller by x, then the number of of triangles with at least one anony-
mous node in the topology G1 is upper bounded by s · (2s − 1) − x. The difference between the triangles in G1

and G2 is thus at most s(2s− 1)− x− s+ x = 2s(s− 1).
Example meeting this bound: If the non-anonymous nodes form a complete graph and all star nodes can be

merged into one node inG1 andG2 = GC , then the difference in the number of triangles matches the upper bound.
Consequently it holds for the ratio of triangles with anonymous nodes that it does not exceed (s(2s−1)−x)/(s−x).
Thus the ratio can be infinite, as x can reach s. However, if the number of links between n non-anonymous nodes
exceeds n2/4 then there is at least one triangle, as the densest complete bipartite graph contains at most n2/4
links.

4 Full Exploration

So far, we assumed that the trace set T contains each node and link of G0 at least once. At first sight, this seems
to be the best we can hope for. However, sometimes traces exploring the vicinity of anonymous nodes in different
ways yields additional information that help to characterize GT better.

This section introduces the concept of fully explored networks: T contains sufficiently many traces such that
the distances between non-anonymous nodes can be estimated accurately.

Definition 4.1 (Fully Explored Topologies). A topologyG0 is fully explored by a trace set T if it contains all nodes
and links of G0 and for each pair {u, v} of non-anonymous nodes in the same component of G0 there exists a trace
T ∈ T containing both nodes u ∈ T and v ∈ T .

In some sense, a trace set for a fully explored network is the best we can hope for. Properties that cannot be
inferred well under the fully explored topology model are infeasible to infer without additional assumptions on G0.
In this sense, this section provides upper bounds on what can be learned from topology inference. In the following,
we will constrain ourselves to routing along shortest paths only (α = 1).
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Let us again study the properties of the family of inferrable topologies fully explored by a trace set. Obviously,
all the upper bounds from Section 3 are still valid for fully explored topologies. In the following, let G1, G2 ∈ GT
be arbitrary representatives of GT for a fully explored trace set T . A direct consequence of the Definition 4.1
concerns the number of connected components and the stretch. (Recall that the stretch is defined with respect to
named nodes only, and since α = 1, a 1-consistent inferrable topology cannot include a shorter path between u and
v than the one that must appear in a trace of T .)

Lemma 4.2. It holds that COMP(G1) = COMP(G2) (= COMP(G0)) and the stretch is 1.

The proof for the claims of the following lemmata are analogous to our former proofs, as the main difference
is the fact that there might be more conflicts, i.e., edges in G∗.

Lemma 4.3. For fully explored networks it holds that |V1| − |V2| ≤ s − γ(G∗) ≤ s − 1 and |V1|/|V2| ≤ (n +
s)/(n+γ(G∗)) ≤ (2+s)/3. Moreover, |E1|−|E2| ∈ 2(s−γ(G∗)) and |E1|/|E2| ≤ (ν+2s)/(ν+2) ≤ s, where
ν denotes the number of links between non-anonymous nodes. There are traces with inferrable topology G1, G2

reaching these bounds.

Lemma 4.4. For the maximal node degree, we have DEG(G1) − DEG(G2) ≤ 2(s − γ(G∗)) and
DEG(G1)/DEG(G2) ≤ s− γ(G∗) + 1. There are instances G1, G2 that reach these bounds.

From Lemma 4.2 we know that fully explored scenarios yield a perfect stretch of one. However, regarding the
diameter, the situation is different in the sense that distances between anonymous nodes play a role.

Lemma 4.5. For connected topologies G1, G2 it holds that DIAM(G1)/DIAM(G2) ≤ 2, where DIAM denotes the
graph diameter and DIAM(G1) > DIAM(G2). There are instances G1, G2 that reach this bound. Moreover, there
are instances with DIAM(G1)− DIAM(G2) = s/2.

The number of triangles with anonymous nodes can still not be estimated accurately in the fully explored
scenario.

Lemma 4.6. There exist graphs where C3(G1) − C3(G2) = s(s − 1)/2, and the relative error C3(G1)/C3(G2)
can be arbitrarily large.

5 Conclusion

We understand our work as a first step to shed light onto the similarity of inferrable topologies based on most basic
axioms and without any assumptions on power-law properties, i.e., in the worst case. Using our formal framework
we show that the topologies for a given trace set may differ significantly. Thus, it is impossible to accurately
characterize topological properties of complex networks. To complement the general analysis, we propose the
notion of fully explored networks or trace sets, as a “best possible scenario”. As expected, we find that fully
exploring traces allow us to determine several properties of the network more accurately; however, it also turns out
that even in this scenario, other topological properties are inherently hard to compute. Our results are summarized
in Figure 4.

Our work opens several directions for future research. On a theoretical side, one may study whether the minimal
inferrable topologies considered in, e.g., [1, 2], are more similar in nature. More importantly, while this paper
presented results for the general worst-case, it would be interesting to devise algorithms that compute, for a given
trace set, worst-case bounds for the properties under consideration. For example, such approximate bounds would
be helpful to decide whether additional measurements are needed. Moreover, maybe such algorithms may even
give advice on the locations at which such measurements would be most useful.
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Property/Scenario Arbitrary Fully Explored (α = 1)
G1 −G2 G1/G2 G1 −G2 G1/G2

# of nodes ≤ s− γ(G∗) ≤ (n+ s)/(n+ γ(G∗)) ≤ s− γ(G∗) ≤ (n+ s)/(n+ γ(G∗))

# of links ≤ 2(s− γ(G∗)) ≤ (ν + 2s)/(ν + 2) ≤ 2(s− γ(G∗)) ≤ (ν + 2s)/(ν + 2)

# of connected components ≤ n/2 ≤ n/2 = 0 = 1

Stretch - ≤ (N − 1)/2 - = 1

Diameter ≤ (s− 1)/s · (N − 1) ≤ s s/2 (¶) 2

Max. Deg. ≤ 2(s− γ(G∗)) ≤ s− γ(G∗) + 1 ≤ 2(s− γ(G∗)) ≤ s− γ(G∗) + 1

Triangles ≤ 2s(s− 1) ∞ ≤ 2s(s− 1)/2 ∞

Figure 4: Summary of our bounds on the properties of inferrable topologies. s denotes the number of stars
in the traces, n is the number of named nodes, N = n+s, and ν denotes the number of links between named
nodes. Note that trace sets meeting these bounds exist for all properties for which we have tight or upper
bounds. For the two entries marked with (¶), only “lower bounds” are derived, i.e., examples that yield at
least the corresponding accuracy; as the upper bounds from the arbitrary scenario do not match, how to
close the gap remains an open question.
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A Deferred Proofs

A.1 Proof of Theorem 3.2

Fix T . We have to prove that GC fulfills AXIOM 0, AXIOM 1 (which implies AXIOM 3) and AXIOM 2.
AXIOM 0: The axiom holds trivially: only edges from the traces are used in GC .
AXIOM 1: Let T ∈ T and σ1, σ2 ∈ T . Let k = dT (σ1, σ2). We show that GC fulfills AXIOM 1, namely, there

exists a path of length k in GC . Induction on k: (k = 1:) By the definition of GC , {σ1, σ2} ∈ EC thus there exists
a path of length one between σ1 and σ2. (k > 1:) Suppose AXIOM 1 holds up to k − 1. Let σ′1, . . . , σ

′
k−1 be the

intermediary nodes between σ1 and σ2 in T : T = (. . . , σ1, σ
′
1, . . . , σ

′
k−1, σ2, . . .). By the induction hypothesis, in

GC there is a path of length k−1 between σ1 and σ′k−1. Let π be this path. By definition ofGC , {σ′k−1, σ2} ∈ EC .
Thus appending (σ′k−1, σ2) to π yields the desired path of length k linking σ1 and σ2: AXIOM 1 thus holds up to k.

AXIOM 2: We have to show that dT (σ1, σ2) = k ⇒ dC(σ1, σ2) ≥ dα · ke. By contradiction, suppose that GC
does not fulfill AXIOM 2 with respect to α. So there exists k′ < dα ·ke and σ1, σ2 ∈ VC such that dC(σ1, σ2) = k′.
Let π be a shortest path between σ1 and σ2 in GC . Let (T1, . . . , T`) be the corresponding (maybe repeating) traces
covering this path π in GC . Let Ti ∈ (T1, . . . , T`), and let si and ei be the corresponding start and end nodes of π
in Ti. We will show that this path π implies the existence of a path in G0 which violates α-consistency. Since G0 is
inferrable, G0 fulfills AXIOM 2, thus we have: dC(σ1, σ2) =

∑`
i=1 dTi(si, ei) = k′ < dα · ke ≤ dG0(σ1, σ2) since

G0 is α-consistent. However, G0 also fulfills AXIOM 1, thus dTi(si, ei) ≥ dG0(si, ei). Thus
∑`

i=1 dG0(si, ei) ≤∑`
i=1 dTi(si, ei) < dG0(σ1, σ2): we have constructed a path from σ1 to σ2 in G0 whose length is shorter than the

distance between σ1 and σ2 in G0, leading to the desired contradiction.

A.2 Proof of Lemma 3.5

First we construct a topology G0 = (V0, E0) and then describe a trace set on this graph that generates the star
graph G = (V,E). The node set V0 consists of |V | anonymous nodes and |V | · (1 + τ) named nodes, where
τ = d3/(2α) − 1/2e. The first building block of G0 is a copy of G. To each node vi in the copy of G we add
a chain consisting of 2 + τ nodes, first appending τ non-anonymous nodes w(i,k) where 1 ≤ k ≤ τ , followed
by an anonymous node ui and finally a named node w(i,τ+1). More formally we can describe the link set as

E0 = E ∪
⋃|V |
i=1

(
{vi, w(i,1)}, {w(i,1), w(i,2)}, . . . , {w(i,τ), ui}, {ui, w(i,τ+1)}

)
. The trace set T consists of the

following |V | + |E| shortest path traces: the traces T` for ` ∈ {1, . . . , |V |}, are given by T`(w(`,τ), w(`,τ+1)) (for
each node in V ), and the traces T` for ` ∈ {|V | + 1, . . . , |V | + |E|}, are given by T`(w(i,τ), w(j,τ)) for each
link {vi, vj} in E. Note that G0 = GC as each star appears as a separate anonymous node. The star graph G∗
corresponding to this trace set contains the |V | nodes ∗i (corresponding to ui). In order to prove the claim of the
lemma we have to show that two nodes ∗i, ∗j are conflicting according to Lemma 3.3 if and only if there is a link
{vi, vj} in E. Case (i) does not apply because the minimum distance between any two nodes in the canonic graph
is at least one, and dα · dTi(∗i, w(i,τ))e = 1 and dα · dTi(∗i, w(i,τ+1))e = 1. It remains to examine Case (ii): “⇒”
if MAP(∗i) = MAP(∗j) there would be a path of length two between w(i,τ) and w(j,τ) in the topology generated
by MAP; the trace set however contains a trace T`(w(i,τ), w(j,τ)) of length 2τ + 1. So dα · dT`(w(i,τ), w(j,τ))e =
dα · (2τ + 1)e = dα · (2d3/(2α) − 1/2e + 1e) ≥ 3, which violates the α-consistency (Lemma 3.3 (ii)) and
hence {∗i, ∗j} ∈ E∗ and {vi, vj} ∈ E. “⇐”: if {vi, vj} 6∈ E, there is no trace T (w(i,τ), w(j,τ)), thus we have
to prove that no trace T`(w(i′,τ), w(j′,τ)) with i′ 6= i and j′ 6= j and j′ 6= i leads to a conflict between ∗i and

13



∗j . We show that an even more general statement is true, namely that for any pair of distinct non-anonymous
nodes x1, x2, where x1, x2 ∈ {vi′ , vj′ , w(i′,k), w(j′,k)|1 ≤ k ≤ τ + 1, i′ 6= i, j′ 6= i, j′ 6= j}, it holds that
dα · dC(x1, x2)e ≤ dC(x1, ∗i) + dC(x2, ∗j). Since GC = G0 and the traces contain shortest paths only, the trace
distance between two nodes in the same trace is the same as the distance in GC . The following tables contain the
relevant lower bounds on distances in GC and µ(x1, x2) = dC(x1, ∗i) + dC(x2, ∗j).

dC(·, ·) ≥ vi′ vj′ w(i′,k1) w(j′,k1)

vi′ 0 1 k1 k1 + 1
vj′ 1 0 k1 + 1 k1

w(i′,k2) k2 k2 + 1 |k2 − k1| k1 + 1 + k2
w(j′,k2) k2 + 1 k2 k1 + 1 + k2 |k2 − k1|
∗i τ + 2 τ + 1 2 + τ + k1 τ − k1 + 1
∗j τ + 2 τ + 2 2 + τ + k1 2 + τ + k1

µ(·, ·) ≥ vi′ vj′ w(i′,k1) w(j′,k1)

vi′ 2τ + 4 2τ + 3 4 + 2τ + k1 4 + 2τ + k1
vj′ 2τ + 3 2τ + 4 2τ + 3 + k1 3 + 2τ + k1

w(i′,k2) 4 + 2τ + k2 4 + 2τ + k2 4 + 2τ + k1 + k2 4 + 2τ + k1 + k2
w(j′,k2) 2τ − k2 + 3 2τ − k2 + 3 2τ + 3 + k1 − k2 2τ + k1 − k2 + 3

Table 1: Proof of Lemma 3.5: lower bounds for the distances in GC , and lower bounds for µ(x1, x2) =
dC(x1, ∗i) + dC(x2, ∗j).

If x1 6= w(j′,k2) then it holds for all x1, x2 that dT`(x1, x2) ≤ 2τ + 1 whereas µ(x1, x2) = dC(x1, ∗i) +
dC(x2, ∗j) ≥ 2τ + 2. In all other cases it holds at least that dC(x1, x2) < µ(x1, x2). Thus dα · dC(x1, x2)e ≤
dC(x1, ∗i) + dC(x2, ∗j). Consequently, we have conflicts if and only if {vi, vj} ∈ E, which concludes the proof.

A.3 Proof of Lemma 3.7

s

kk

k

T1

*1

t

m1 *2 *3 *4m2 m3

1

k‘ k‘ k‘ k‘

T3

T3

T4

T5T2

Figure 5: Visualization for proof of
Lemma 3.7. Solid lines denote links, dashed
lines denote paths (of annotated length).

We have to show that the paths in the traces correspond to paths
in Gγ . Let T ∈ T , and σ1, σ2 ∈ T . Let π be the sequence
of nodes in T connecting σ1 and σ2. This is also a path in Gγ :
since α > 0, for any two symbols σ1, σ2 ∈ T , it holds that
MAP(σ1) 6= MAP(σ2) as α > 0.

We now construct an example showing that the α′ for
which Gγ fulfills AXIOM 2 can be arbitrarily small. Con-
sider the graph represented in Figure 5. Let T1 =
(s, . . . , t), T2 = (s, ∗1, . . . ,m1), T3 = (m1, . . . , ∗2,m2), T4 =
(m2, ∗3, . . . ,m3), T5 = (m3, . . . , ∗4, t). We assume α = 1.
By changing parameters k = dC(s, t) and k′ = dC(m1, ∗1) =
dC(m1, ∗2) = dC(m3, ∗3) = dC(m3, ∗4), we can modulate the

links of the corresponding star graph G∗. Using dT1(s, t) = k, observe that k > 2 ⇔ {∗1, ∗4} ∈ E∗. Similarly,
k > 2(k′ + 1) ⇔ {∗1, ∗3} ∈ E∗ ∧ {∗2, ∗4} ∈ E∗ and k > 2(k′ + 2) ⇔ {∗1, ∗2} ∈ E∗ ∧ {∗3, ∗4} ∈ E∗. Taking
k = 2k′ + 4, we thus have E∗ = {{∗1, ∗3}, {∗2, ∗4}, {∗1, ∗4}}.

Thus, we here construct a situation where ∗1 and ∗2 as well as ∗3 and ∗4 can be merged without breaking the
consistency requirement, but where merging both simultaneously leads to a topologyG′ that is only 4/k-consistent,
since dG′(s, t) = 4. This ratio can be made arbitrarily small provided we choose k′ = (k − 4)/2.

A.4 Proof of Lemma 3.11

In the worst-case, each star in the trace represents a different node in G1, so the maximal number of nodes in any
topology in GT is the total number of non-anonymous nodes plus the total number of stars in T . This number of
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nodes is reached in the topology GC . According to Definition 3.4, only non-adjacent stars in G∗ can represent the
same node in an inferrable topology. Thus, the stars in trace T must originate from at least γ(G∗) different nodes.
As a consequence |V1|− |V2| ≤ s−γ(G∗), which can reach s− 1 for a trace set T = {Ti = (v, ∗i, w)|1 ≤ i ≤ s}.
Analogously, |V1|/|V2| ≤ (n+ s)/(n+ γ(G∗)) ≤ (2 + s)/3.

Observe that each occurrence of a node in a trace describes at most two edges. If all anonymous nodes are
merged into γ(G∗) nodes in G1 and are separate nodes in G2 the difference in the number of edges is at most
2(s − γ(G∗)). Analogously, |E1|/|E2| ≤ (ν + 2s)/(ν + 2) ≤ s. The trace set T = {Ti = (v, ∗i, w)|1 ≤ i ≤ s}
reaches this bound.

A.5 Proof of Lemma 3.14

An “lower bound” example follows from Figure 2. Essentially, this is also the worst case: note that the difference in
the shortest distance between a pair of nodes u and v inG1 andG2 is only greater than 0 if the shortest path between
them involves at least one anonymous node. Hence the shortest distance between such a pair is two. The longest
shortest distance between the same pair of nodes in another inferred topology visits all nodes in the network, i.e.,
its length is bounded by N − 1.

A.6 Proof of Lemma 3.16

Each occurrence of a node in a trace describes at most two links incident to this node. For the degree difference
we only have to consider the links incident to at least one anonymous node, as the number of links between non-
anonymous nodes is the same in G1 and G2. If all anonymous nodes can be merged into γ(G∗) nodes in G1 and all
anonymous nodes are separate in G2 the difference in the maximum degree is thus at most 2(s− γ(G∗)), as there
can be at most s−γ(G∗)+1 nodes merged into one node and the minimal maximum degree of a node inG2 is two.
This bound is tight, as the trace set Ti = {vi, ∗, wi} for 1 ≤ i ≤ s containing s stars can be represented by a graph
with one anonymous node of degree 2s or by a graph with s anonymous nodes of degree two each. For the ratio of
the maximal degree we can ignore links between non-anonymous nodes as well, as these only decrease the ratio.
The highest number of links incident at node v with one endpoint in the set of anonymous nodes is s− γ(G∗) + 1
for non-anonymous nodes and 2(s− γ(G∗) + 1) for anonymous nodes, whereas the lowest number is two.

A.7 Proof of Lemma 4.4

The proof for the upper bound is analogous to the case without full exploration. To prove that this bound can be
reached, we need to add traces to the trace set to ensure that all pairs of named nodes appear in the trace but does
not change the degrees of anonymous nodes. To this end we add a named node u for each pair {v, w} that is not in
the trace set yet to G0 and a trace T = {v, u, w}. This does not increase the maximum degree and guarantees full
exploration.

A.8 Proof of Lemma 4.5

We first prove the upper bound for the relative case. Note that the maximal distance between two anonymous
nodes MAP(∗1) and MAP(∗2) in an inferred topology component cannot be larger than twice the distance of two
named nodes u and v: from Definition 4.1 we know that there must be a trace in T connecting u and v, and the
maximal distance δ of a pair of named nodes is given by the path of the trace that includes u and v. Therefore, and
since any trace starts and ends with a named node, any star can be at a distance at a distance δ/2 from a named
node. Therefore, the maximal distance between MAP(∗1) and MAP(∗2) is δ/2 + δ/2 to get to the corresponding
closest named nodes, plus δ for the connection between the named nodes. As according to Lemma 4.2, the distance
between named nodes is the same in all inferred topologies, the diameter of inferred topologies can vary at most by
a factor of two.

We now construct an example that reaches this bound. Consider a topology consisting of a center node c and
four rays of length k. Let u1, u2, u3, u4 be the “end nodes” of each ray. We assume that all these nodes are named.
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Now add two chains of anonymous nodes of length 2k + 1 between nodes u1 and u2, and between nodes u3 and
u4 to the topology. The trace set consists of the minimal trace set to obtain a fully explored topology: six traces of
length 2k+1 between each pair of end nodes u1, u2, u3, u4. Now we add two traces of length 2k+1 between nodes
u1 and u2, and between nodes u3 and u4. These traces explore the anonymous chains and have the following shape:
T7 = (u1, ∗1, . . . , ∗k, σ, ∗k+1, . . . , ∗2k, u2) and T8 = (u3, ∗2k+1, . . . , ∗3k, σ′, ∗3k+1, . . . , ∗4k, u4), where σ and σ′

are stars. Let G1 = GC and G2 be the inferrable graph where σ and σ′ are merged. The resulting diameters are
DIAM(G1) = 4k+2 and DIAM(G2) = 2k+1. Since s = 4k+2, the difference can thus be as large as s/2. Note that
this construction also yields the bound of the relative difference: DIAM(G1)/DIAM(G2) = (4k+2)/(2k+1) = 2.

A.9 Proof of Lemma 4.6

Given the number of stars s, we construct a trace set T with two inferrable graphs such that in one graph the number
of triangles with anonymous nodes is s(s− 1)/2 and in the other graph there are no such triangles. As a first step
we add s traces Ti = (vi, ∗i, w) to the trace set T , where 1 ≤ i ≤ s. To make this trace set fully explored we add
traces for each pair vi, vj to T as a second step, i.e., traces Ti,j = (vi, vj) for 1 ≤ i ≤ s and 1 ≤ j ≤ s. The
resulting trace set contains s stars and none of the stars are in conflict with each other. Thus the graph G1 merging
all stars into one anonymous node is inferrable from this trace and the number of triangles where the anonymous
node is part of is s(s−1)/2. LetG2 be the canonic graph of this trace set. This graph does not contain any triangles
with anonymous nodes and hence the difference C(G1)− C(G2) is s(s− 1)/2.

To see that the ratio can be unbounded look at the trace set {(v, ∗1, w), (u, ∗2, w), (u, v)}. This set is fully
explored since all pairs of named nodes appear in a trace. The graph where the two stars are merged has one
triangle and the canonic graph has no triangle.
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