
Byzantine Agreement with Homonyms

Carole Delporte-Gallet ∗

University Paris Diderot
Hugues Fauconnier
University Paris Diderot

Rachid Guerraoui
Ecole Polytechnique Fédérale

de Lausanne

Anne-Marie Kermarrec
INRIA Rennes-Bretagne

Atlantique

Eric Ruppert
York University

Hung Tran-The
University Paris Diderot

ABSTRACT
So far, the distributed computing community has either as-
sumed that all the processes of a distributed system have
distinct identifiers or, more rarely, that the processes are
anonymous and have no identifiers. These are two extremes
of the same general model: namely, n processes use � dif-
ferent authenticated identifiers, where 1 ≤ � ≤ n. In this
paper, we ask how many identifiers are actually needed to
reach agreement in a distributed system with t Byzantine
processes.

We show that having 3t + 1 identifiers is necessary and
sufficient for agreement in the synchronous case but, more
surprisingly, the number of identifiers must be greater than
n+3t

2
in the partially synchronous case. This demonstrates

two differences from the classical model (which has � = n):
there are situations where relaxing synchrony to partial syn-
chrony renders agreement impossible; and, in the partially
synchronous case, increasing the number of correct processes
can actually make it harder to reach agreement. The im-
possibility proofs use the fact that a Byzantine process can
send multiple messages to the same recipient in a round.
We show that removing this ability makes agreement easier:
then, t + 1 identifiers are sufficient for agreement, even in
the partially synchronous model.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Distributed programming

General Terms
Algorithms, Reliability, Theory

Keywords
agreement, Byzantine failures, consensus, identifiers, lower
bounds, synchrony

∗This work is partially supported by the ERC Starting
Grant project 204742 and the ANR VERSO SHAMAN.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’11, June 6–8, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0719-2/11/06 ...$10.00.

1. INTRODUCTION
We consider a distributed system in which � distinct iden-

tifiers are assigned to n processes, where 1 ≤ � ≤ n. Several
processes may be assigned the same identifier, in which case
we call the processes homonyms. The identifiers are authen-
ticated: if a process p receives a message from a process q
with identifier i, p knows that the message was not sent by
a process with identifier i′ �= i, but p does not know whether
the message was sent by q or another process q′ having the
same identifier i. A process cannot direct a message it sends
to a particular process, but can direct the message to all
processes that have a particular identifier.

This model generalizes the classical scheme where pro-
cesses have distinct identifiers (i.e., � = n), and the less clas-
sical scheme where processes are anonymous (i.e., � = 1).
Studying systems with homonyms provides a better under-
standing of the importance of identifiers in distributed com-
puting, and there are two additional motivations for the
new model. Firstly, assuming in systems such as Pastry or
Chord [19, 22] that all processes have unique (unforgeable)
identifiers might be too strong an assumption in practice.
We may wish to design protocols that still work if, by a rare
coincidence, two processes are assigned the same identifier.
This approach is also useful if security is breached and a ma-
licious process can forge the identifier of a correct process, for
example by obtaining the correct process’s private key. Sec-
ondly, in many cases, users of a system may wish to preserve
their privacy by remaining anonymous. However, in a fully
anonymous system where no identifiers are used, very few
problems are solvable. (In particular, Okun observed that
Byzantine agreement is impossible in the fully anonymous
model [15], even with a single faulty process.) With a lim-
ited number of identifiers, more problems become solvable,
and some level of anonymity can be preserved by hiding, to
some extent, the association between users and identifiers.
For example, users of a distributed protocol might use only
their domain names as identifiers. Others will see that some
user within the domain is participating, but will not know
exactly which one. If several users within the same domain
participate in the protocol, they will behave as homonyms.

We ask in this paper how many distinct identifiers are
needed to reach agreement in a system of n processes, up
to t of which can be Byzantine. We need only to consider
systems where n > 3t: this assumption is known to be a
requirement for solving Byzantine agreement, even when
� = n [14, 18], and it thus applies also for systems with
homonyms. For the synchronous case, we prove using a sce-
nario argument that 3t + 1 identifiers are necessary. The

21

Synchronous Partially synchronous
Innumerate processes � > 3t � > n+3t

2

Numerate processes
� > 3t � > n+3t

2
(� > t for restricted Byzantine processes) (� > t for restricted Byzantine processes)

Table 1: Necessary and sufficient conditions for solving Byzantine agreement in a system of n processes using
� identifiers and tolerating t Byzantine failures. In all cases, n must be greater than 3t.

matching synchronous algorithm is obtained by a simula-
tion that transforms any synchronous Byzantine agreement
algorithm designed for a system with unique identifiers to
one that works in a system with � > 3t identifiers. For the
partially synchronous case, we prove using a partitioning
argument that the lower bound becomes � > n+3t

2
. (Note

that n+3t
2

is strictly greater than 3t because n > 3t.) We
show that this bound is also tight by giving a new partially
synchronous Byzantine agreement algorithm. This bound is
somewhat surprising because the number of required iden-
tifiers � depends on n as well as t. Counter-intuitively, in-
creasing the number of correct processes can render agree-
ment impossible. For example, if t = 1 and � = 4, agreement
is solvable for 4 processes but not for 5. Another difference
from the classical situation (where � = n) is that the con-
dition that makes Byzantine agreement solvable is different
for the synchronous and partially synchronous models.

To strengthen our results, we show that (a) both the syn-
chronous and partially synchronous lower bounds hold even
if correct processes are numerate, i.e., can count the num-
ber of processes that send identical messages in a round and
(b) the matching algorithms are correct even if processes are
innumerate. In systems with unique identifiers, senders can
append their identifier to all messages, making it trivial for
the receiver to count copies of messages. This is not possi-
ble in systems with homonyms, so the distinction between
numerate and innumerate processes is important.

What has more impact, however, is the ability for a Byzan-
tine process to send multiple messages to a single recipient
in a round. In a classical system with unique identifiers,
the Byzantine process has no advantage in doing this: algo-
rithms could simply discard such messages. In systems with
homonyms, there is a clear advantage. In fact, we prove
that if each Byzantine process is restricted to sending a sin-
gle message per round to each recipient (and processes are
numerate), then t + 1 identifiers are enough to reach agree-
ment even in a partially synchronous model. We also show
this bound is tight using a valency argument: t + 1 iden-
tifiers are needed even in the synchronous case. The fact
that t + 1 identifiers are sufficient to reach agreement with
restricted Byzantine processes has some practical relevance:
In some settings, it is reasonable to assume that Byzan-
tine processes are simply malfunctioning ordinary processes
sending incorrect messages, and not malicious processes with
the additional power to generate and send more messages
than correct processes can.

The results are summarized in Table 1. Section 2 de-
scribes our models and recalls the specification of Byzantine
agreement. Section 3 considers the synchronous case and
Section 4 considers the partially synchronous one. Section 5
gives our results for restricted Byzantine processes. Section
6 provides some concluding remarks. Due to space limita-
tions, details of some proofs and algorithms appear in [8].

2. DEFINITIONS
We consider a distributed message-passing system with

n ≥ 2 processes. Each process has an authenticated identi-
fier from the set L = {1, ..., �}. We assume that n ≥ � and
that each identifier is assigned to at least one process. Thus,
the parameter � measures the number of different identifiers
that are actually assigned to processes. In the case where
n > �, one or more identifiers will each be shared by sev-
eral processes. In the case where � = 1, all processes have
the same identifier, and they are therefore anonymous. We
assume algorithms are deterministic. Thus, the actions of
a process are entirely determined by the process’s initial
state and the messages it receives. Processes with the same
identifier execute the same code but processes with different
identifiers may behave differently. In our proofs, we some-
times refer to individual processes using names like p, but
these names cannot be used by the processes themselves in
their algorithms.

A correct process does not deviate from its algorithm spec-
ification. A process that is not correct is called Byzantine.
The maximum possible number of Byzantine processes is de-
noted t (where 0 < t < n). We need only consider systems
where n > 3t: this assumption is known to be a requirement
for solving Byzantine agreement, even when � = n [14, 18],
and it thus also applies to systems with homonyms. A
Byzantine process may choose to send arbitrary messages
(or no message) to each other process. However, we assume
Byzantine processes cannot forge identifiers: each message is
authenticated with its sender’s identifier. Given a message
m, we denote by m.val its value (or content) and by m.id
the identifier of the sender. If a correct process receives m,
then at least one process p with identifier m.id sent m.

In the synchronous model, computation proceeds in rounds.
In each round, each process can send a message to each other
process and then receive all messages that were sent to it
during that round.

For the partially synchronous model we use the definition
of Dwork, Lynch and Stockmeyer [10]: computation pro-
ceeds in rounds, as in the synchronous model, except that
in each execution, a finite number of messages might not
be delivered to all of their intended recipients. There is
no bound on the number of messages that can be dropped.
As argued in [10], this basic partially synchronous model is
equivalent to other models with partially synchronous com-
munication. More specifically, the model in which message
delivery times are eventually bounded by a known constant
and the model in which message delivery times are always
bounded by an unknown constant can both simulate the ba-
sic partially synchronous model. Conversely, each of these
models can be simulated by the basic partially synchronous
model. Thus, our characterization of the values of n, � and t
for which Byzantine agreement can be solved applies to the
other models with partially synchronous communication too.

22

n − 3t + 1 processes

A1

A2 A2t+2

At+2

A2t

0

1

01

1 0

n − 3t + 1 processes

A2

At+1

At+2

A2t

A2t+1

A3t

At

A2t+1

A2t+2

A3t

At

At+1

A1

Figure 1: System used in proof of Proposition 1

As mentioned in the introduction, we also consider vari-
ants of the models in which each Byzantine process is re-
stricted to sending at most one message to each recipient in
each round. In general, we consider unrestricted Byzantine
processes unless the restriction is explicitly mentioned. We
also distinguish the cases where processes are innumerate
from the case where they are numerate. We say that a pro-
cess is innumerate if the messages it receives in a round form
a set of messages: the process cannot count the number of
copies of identical messages it receives in the round. We say
that a process is numerate if the messages it receives in a
round form a multiset of messages: the process can count
the number of copies of identical messages it receives in the
round. (As we shall show, the numerate model is more pow-
erful than the innumerate model against restricted Byzan-
tine processes.)

The goal of an agreement algorithm is for a set of processes
proposing values to decide on exactly one of these values. We
consider the classical Byzantine agreement problem [11,18],
defined by the following three properties.

1. Validity: If all correct processes propose the same value
v, then no value different from v can be decided by any
correct process.

2. Agreement: No two correct processes decide different
values.

3. Termination: Eventually, each correct process decides
some value.

An algorithm solves Byzantine agreement in a system of n
processes with � identifiers tolerating t failures if these three
properties are satisfied in every execution in which at most
t processes fail, regardless of the way the n processes are
assigned the � identifiers. (Recall that each identifier must
be assigned to at least one process.)

3. SYNCHRONOUS MODEL
Here, we prove that having � > 3t is necessary and suffi-

cient for solving synchronous Byzantine agreement, regard-
less of whether the processes are numerate or innumerate.
To show that the condition � > 3t is sufficient to reach agree-
ment, we design a simulation, where each group of processes
with a common identifier cooperatively simulate a single pro-
cess.

3.1 Impossibility
We prove the condition � > 3t is necessary using a scenario

argument, in the style of Fischer, Lynch and Merritt [11].

Proposition 1 Synchronous Byzantine agreement is un-
solvable even with numerate processes if � ≤ 3t.

Proof. It suffices to prove there is no synchronous algo-
rithm for Byzantine agreement when � = 3t. To derive a
contradiction, suppose there was an n-process synchronous
algorithm A for Byzantine agreement when � = 3t. Let
Ai(v) be the algorithm executed by a process with identifier
i when it has input value v.

Imagine setting up a system as shown in Figure 1. Every
process correctly executes the algorithm Ai assigned to it.
The two stacks of processes shown in the diagram each have
n − 3t + 1 processes, so there are a total of 2n processes
in this system. All processes within a stack have the same
identifier, and execute the same algorithm Ai, as shown.
Inputs to each of the 2n process are indicated by the arrows.

Consider the n− t processes that run At+1(1), . . . ,A3t(1).
These n− t processes cannot distinguish this execution from
an execution in an n-process system where the remaining
identifiers, 1, . . . , t are each assigned to a single Byzantine
process. (Here, we use the fact that each Byzantine process
can send multiple messages to each correct process in a single
round.) By validity, the n − t processes must output 1.

23

By a symmetric argument, the n − t processes running
A1(0), . . . ,A2t(0) must output 0.

Now, consider the n − 2t processes that run
A1(0), . . . ,At(0) and the t processes that run A2t+1(1), . . . ,
A3t(1). These n − t processes cannot distinguish this
execution from an n-process execution where each of the
remaining identifiers, t + 1, . . . , 2t are each assigned to a
single Byzantine process. By agreement, the n− t processes
must output the same value, contradicting the previous two
paragraphs

3.2 Algorithm
Next, we present an algorithm that solves Byzantine

agreement assuming � > 3t. Our agreement algorithm is
generic: given any synchronous Byzantine agreement algo-
rithm for � processes with unique identifiers (such algorithms
exist when � = n > 3t, e.g., [14]), we transform it into an
algorithm for n processes and � identifiers, where n ≥ �.
Without loss of generality, we assume that the algorithm to
be transformed uses broadcasts: a process sends the same
message to all other processes. (If a process wishes to send
a message only to specific recipients, it could include the
recipient’s identifier in the broadcasted message.)

In our transformation, we divide processes into groups ac-
cording to their identifiers. Each group simulates a single
process. If all processes within a group are correct, then
they can reach agreement and cooperatively simulate a sin-
gle process. If any process in the group is Byzantine, we
allow the simulated process of that group to behave in a
Byzantine manner. The correctness of our simulation re-
lies on the fact that more than two-thirds of the simulated
processes will be correct (since � > 3t), which is enough to
achieve agreement.

Proposition 2 Synchronous Byzantine agreement is solv-
able even with innumerate processes if � > 3t.

Proof sketch. We transform any Byzantine agreement
algorithm A for the classical model with unique identifiers
into an algorithm T (A) for systems with homonyms. Con-
sider any such A (Figure 2) for a system with � processes
{p1, . . . , p�}. A can be specified by: (1) a set of local pro-
cess states, (2) a function init(i, v) that encodes the initial
state of process pi when pi has input value v, (3) a function
M(s, r) that determines the message to send in state s in
round r, (4) a transition function δ(s, r, R) that determines
the new state to which the process moves from state s after
receiving a set of messages R in round r, and (5) a decision
function decide(s) which is the decision in state s, or ⊥ if
there is no decision yet (once a correct process has decided
in a state s, decide(s′) remains equal to this decision in all
states s′ reachable from s).

Let G(i) be the set of processes with identifier i. We name
such a set a group. We say that the group G(i) is correct if
all processes in G(i) are correct. At most t of the � groups
are not correct.

In our new algorithm T (A), shown in Figure 3, three
rounds simulate one round of A. We call these three rounds
a phase. Each phase consists of a selection round, a deciding
round and a running round. In the selection round (line 3
to 5) of a phase r, the processes within each group agree on
a state for phase r. For each i, if G(i) is correct, then in each
round the selected state will be the same for the processes

Code for process pi

Variable:

1 s = init(i, v) /* v is the value proposed by pi */

Main code:

2 for all r from 1 to ∞
3 if decide(s) �= ⊥ then decide the value decide(s)

4 send(M(s, r)) to all processes
5 receive(R) /* receive messages sent this round */
6 s = δ(s, r, R)

Figure 2: Synchronous Byzantine agreement algo-
rithm A with � processes and � identifiers.

in this group. In deciding rounds (line 6 to 9), if there is
a value decided by t + 1 processes with different identifiers
then the process can decide that value. At least one of these
identifiers refers to a correct group and gives the decision.
The deciding rounds are useful for correct processes that be-
long to a group with a Byzantine process. In running rounds
(line 10 to 15), each process executes one step of algorithm
A with the state chosen in the preceding selection round and
the messages received in the round.

Let αH be an execution of T (A). For all phases r, at the
end of the r-th selection round (line 5), all processes in a
correct group G(i) have the same value for the state s, and
therefore for M(s, r) and decide(s). Let sr

i be the value of
state s for the processes in group G(i) after the rth selection
round. Note that s1

i is the initial state of at least one process
in G(i).

By induction on r, we prove that there is an execution αS

of A such that for all r and for all processes in each correct
group G(i): sr

i = str
i (and hence M(sr

i , r) = M(str
i , r)),

where str
i is the value of pi’s variable s at the beginning of

round r in αS . In αS , pi is correct for all identifiers i such
that G(i) is correct in αH .

We sketch the key idea of the inductive step that proves
this claim. In each running round, messages sent by the
processes in a correct group G(i) are identical and indis-
tinguishable from a single message from a unique correct
process with identifier i. On the other hand, if G(i) is not
correct, the processes in G(i) may send different messages
to a process p (in which case p ignores the messages at line
14) or they may all send the same (arbitrary) message to
p. Either way, their collective behaviour is indistinguishable
from a unique Byzantine process with identifier i (which
could either send nothing or an arbitrary message to p).

As A is a synchronous Byzantine agreement algorithm
that tolerates t Byzantine failures, all correct processes even-
tually decide some value v in αS . It follows from the claim
above that in αH , eventually for all correct groups G(i), sr

i

is a state where decide(sr
i) is v. As � > 3t, at least t + 1

groups G(i) are correct and all processes in these groups
eventually send v in the deciding rounds. Thus, each cor-
rect process in αH eventually decides, even if it is in a group
with a Byzantine process. Furthermore, if a correct process
decides in αH , it decides the value it received from t + 1
groups, at least one of which is a correct group, so it must
decide v. Thus, the agreement, validity and termination

24

Code for processes with identifier i

Variable:

1 s = init(i, v) /* v is the value proposed by the process */

Main code:

2 for all r from 1 to ∞
3 send(s) to all processes /* get groups to agree on their state */
4 receive(R) /* receive the messages of the round */
5 s = deterministic choice of some element x.val such that x ∈ R and x.id = i

6 send(decide(s)) to all processes /* deciding round replaces decision line of original algorithm */
7 receive(R) /* receive the messages of the round */
8 if there is a v �= ⊥ such that |{d ∈ R : d.val = v}| ≥ t + 1
9 then decide such a v

10 send(M(s, r)) to all processes /* almost identical to original algorithm */
11 receive(R) /* receive the messages of the round */

12 for all j in L /* eliminate messages from known Byzantine groups */
13 if there is more than one different message from identifier j in R
14 then remove all of them from R
15 s = δ(s, r,R)

Figure 3: Synchronous Byzantine agreement algorithm T (A) with n processes and � identifiers.

properties for αH follow from the agreement, validity and
termination properties for αS .

If the algorithm in Figure 2 is known to terminate within
k rounds, the algorithm in Figure 3 need only be run for
k + 1 iterations of the loop. (The extra iteration provides
an additional deciding round to ensure correct processes in
incorrect groups decide.)

Proposition 1 states that � > 3t identifiers are required
to solve synchronous Byzantine agreement, even if processes
are numerate. Proposition 2 states that � > 3t identifiers
are sufficient, even if processes are innumerate. Thus, we
have the following theorem.

Theorem 3 Synchronous Byzantine agreement is solvable
if and only if � > 3t.

4. PARTIALLY SYNCHRONOUS MODEL
Here we prove that having � > 3t+n

2
is necessary and suf-

ficient for solving Byzantine agreement in a partially syn-
chronous system, regardless of whether the processes are
numerate or innumerate. Intuitively, this condition means
that at least 3t+1 of the identifiers must each be assigned to
a single process (since 2� − n > 3t). We shall see in Section
4.2 that having this many non-homonym processes will be
crucial in proving the correctness of the algorithm that we
design.

4.1 Impossibility
We prove the necessity of the condition � > n+3t

2
using a

partitioning argument. We show that if there are too few
identifiers, and messages between two groups of correct pro-
cesses are not delivered for sufficiently long, then the Byzan-
tine processes can force processes in the two groups to decide
different values.

Proposition 4 Partially synchronous Byzantine agreement
is unsolvable even with numerate processes if � ≤ n+3t

2
.

Proof. Byzantine agreement is impossible when � ≤ 3t,
even in the fully synchronous model, by Proposition 1. So,
it remains to show that agreement is impossible when � > 3t
and � ≤ n+3t

2
. To derive a contradiction, assume a Byzantine

agreement algorithm A does exist for such a system. In our
proof, we construct three executions of this algorithm, α, β
and γ.

In α, process identifiers are assigned as shown in the upper
left portion of Figure 4. In this diagram, a process labelled
Ai has identifier i and runs the algorithm A correctly, and
a process labelled Bi has identifier i and is Byzantine. Note
that there are n processes in total. The t Byzantine pro-
cesses send no messages and all messages sent by correct
processes are delivered. All correct processes have input 0
in α and must therefore decide 0 by some round rα.

Execution β is defined similarly, as shown in the upper
right portion of Figure 4. Again, the t Byzantine processes
send no messages and all messages sent by correct processes
are delivered. All correct processes have input 1, and must
therefore decide 1 by some round rβ.

In γ, the n processes are assigned identifiers as shown in
the bottom half of Figure 4. (Here, we use the assump-
tion that � ≤ n+3t

2
, so that n ≥ 2� − 3t.) The inputs to

each group of correct processes is also shown in the diagram.
The t Byzantine processes B1,B2, . . . ,Bt send to each cor-
rect process with input 0 the same messages as that process
receives in α and they send to each correct process with
input 1 the same messages as that process receives in β.
(This requires the ability of Byzantine process B1 to send
more than one message to each recipient per round.) All
messages sent across the edges shown in the diagram are
delivered. All other messages are not delivered for the first
r = max(rα, rβ) rounds. The correct processes with input 0
cannot distinguish γ from α for the first r rounds, so they
must decide 0 by round r. The correct processes with input
1 cannot distinguish γ from β for the first r rounds, so they
must decide 1 by round r. This contradicts the assumption
that A satisfies agreement.

25

1

At

A2

processes
n−�+1

0 0

0

1 1

1Execution β

A�

Execution α

0

0

A�

Execution γ

2

n−2�+3t
processes

1

n−�+1
processesA3t+1

A3t+2

A3t+1

A3t+2

A2

A�

At+2

A2t

B2

A�

A3t

At

B2t+2

B3t

At+2

A2t

A2t+2

A3t+1

A2t+2

A3t+1

A3t+2

A3t+2

A3t

Bt+2

Bt

B2t

A1

A1

B1

A1

B2t+1 Bt+1

At+1

A2t+1At+1

A2t+1

Figure 4: System used in proof of Proposition 4

4.2 Algorithm
We now describe an algorithm that solves Byzantine

agreement in the basic partially synchronous model when
� > n+3t

2
. Our algorithm is based on the algorithm given

by Dwork, Lynch and Stockmeyer [10] for the classical case
where n = �, with several novel features. Generalizing
the algorithm is not straightforward. Some of the difficulty
stems from the following scenario. Suppose two correct pro-
cesses share an identifier and follow the traditional algo-
rithm of [10]. They could send very different messages (for
example, if they have different input values), but recipients
of those messages would have no way of telling apart the
messages of the two correct senders, so it could appear to
the recipients as if a single Byzantine process was sending
out contradictory information. Thus, the algorithm has to
guard against inconsistent information coming from correct
homonym processes as well as malicious messages sent by
the Byzantine processes.

Proposition 5 Partially synchronous Byzantine agreement
is solvable even with innumerate processes if � > n+3t

2
.

We think of an execution as being divided into super-
rounds, where each superround consists of two consecutive
rounds. Let T be the first superround such that all messages
sent during or after superround T are delivered. We begin
with an authenticated broadcast primitive based on [21]. This
primitive allows processes to perform Broadcast(m) com-

mands. Once a process receives sufficient evidence that a
process with identifier i has performed a Broadcast(m),
it performs an Accept(m, i) action. This is guaranteed to
happen for broadcasts from correct processes after super-
round T . (In the case where a process with identifier i is
Byzantine, processes will at least eventually agree on which
messages to accept from identifier i.) Our version of au-
thenticated broadcast for homonymous systems satisfies the
following three properties.

1. Correctness: If a process with identifier i performs
Broadcast(m) in superround r ≥ T , then every
correct process performs Accept(m, i) during super-
round r.

2. Unforgeability: If all processes with identifier i are cor-
rect and none of them perform Broadcast(m), then
no correct process performs Accept(m, i).

3. Relay: If some correct process performs Accept(m, i)
during superround r, then every correct process per-
forms Accept(m, i) by superround max(r + 1, T).

Proposition 6 It is possible to implement authenticated
broadcasts satisfying the correctness, unforgeability and re-
lay properties in the basic partially synchronous model, pro-
vided � > 3t.

Proof sketch. The implementation is a straightforward
generalization of the ones given in [10, 21] for systems with

26

Code for process with identifier i ∈ {1, . . . , �}
1 locks = ∅
2 ph = 0 /* phase number */
3 proper = {v} /* v is the value proposed by the process */
4 Note: in each round, proper is updated as described on page
5 while true

6 /* beginning of superround 1 of phase */
7 let V be the set of values v ∈ proper such that there is no pair (w, ∗) ∈ locks for any w �= v
8 Broadcast(〈propose V, ph〉) /* superround 1 */

9 /* beginning of superround 2 of phase */
10 if i = (ph mod �) + 1 and there is some value vlock such that the process has performed Accept(〈propose Vj , ph〉, j)
11 from � − t different identifiers j with vlock ∈ Vj

12 then send 〈lock vlock, ph〉 to all processes /* round 1 of superround 2 */

13 /* beginning of superround 3 of phase */
14 if there is some value v for which the process received 〈lock v, ph〉 from identifier (ph mod �) + 1 and
15 has performed Accept(〈propose Vj , ph〉, j) for � − t different identifiers j with v ∈ Vj

16 then choose one such v and perform Broadcast(〈vote v, ph〉) /* superround 3 */

17 /* beginning of superround 4 of phase */
18 if for some v, the process has performed Accept(〈vote v, ph〉, j) from � − t different identifiers j
19 then add (v, ph) to locks and remove any other pair (v, ∗) from locks
20 send 〈ack v, ph〉 to all processes /* round 1 of superround 4 */
21 if i = (ph mod �) + 1 and the process has received 〈ack vlock, ph〉 from � − t different identifiers in this round
22 then decide vlock (but continue running the algorithm)
23 if the process has already decided some value v
24 then send 〈decide v〉 to all processes /* round 2 of superround 4 */
25 if for some v, the process has received 〈decide v〉 from t + 1 different identifiers j in this round
26 then decide v (but continue running the algorithm)
27 for each (v1, ph1) ∈ locks
28 if for some v2 �= v1 and ph2 > ph1, the process has performed Accept(〈vote v2, ph2〉, j) for � − t
29 different identifiers j
30 then remove (v1, ph1) from locks
31 ph = ph + 1

Figure 5: Byzantine agreement algorithm for the partially synchronous model.

unique identifiers. To perform Broadcast(m) in super-
round r, a process sends a message 〈init m〉 in the first round
of superround r. Any process that receives this message from
identifier i sends 〈echo m, r, i〉 in the following round, which
is the second round of superround r, and in all subsequent
rounds. In each round after superround r, any process that
has so far received 〈echo m, r, i〉 from � − 2t distinct identi-
fiers sends a message 〈echo m, r, i〉. If, at any time, a process
has received the message 〈echo m, r, i〉 from � − t distinct
identifiers, the process performs Accept(m, i).

We now describe the Byzantine agreement protocol. Each
process keeps track of a set of proper values, which are values
that can be output without violating validity. Initially, only
the process’s own input value is in this set. Each process
appends its proper set to each message it sends. If a process
receives proper sets containing v in messages from t + 1
different identifiers, it adds v to its own proper set. Also,
if a process has received proper sets from 2t + 1 different
identifiers and no value appears in t + 1 of them, it adds
all possible input values to its own proper set. (This can
be done because t + 1 of the proper sets are from correct
processes, so there are at least two different inputs to correct
processes.)

The Byzantine agreement algorithm is shown in Figure
5. Whenever a correct process sends a message, it sends it
to all processes. The execution of the algorithm is broken
into phases, each of which lasts four superrounds. Processes

assigned the identifier (ph mod �)+1 are the leaders of phase
ph. In each phase, each process first performs a Broadcast
of a proposal containing the set of values it would be willing
to decide (line 8). These are the values in its proper set,
unless it has already locked a value, as described below, in
which case it can only send its locked value. Each phase
leader chooses a value that appears in proposals the leader
has accepted from � − t different identifiers (if such a value
exists) and sends out a request for processes to lock that
value (line 12) during superround 2 of the phase. Then, in
superround 3 of the phase, all processes vote on which lock
message to support, using a Broadcast (line 16). In the
third superround of the phase, each process that performed
Accept for votes for a particular value v from �− t different
identifiers sends 〈ack v〉 back to the leaders (line 20) and
locks the value v (by adding the value to its locks set, along
with the phase number associated with the lock). A leader
that receives �−t ack messages for the value it wanted locked
can decide that value (line 22). Finally, each process that has
decided sends a message to others (line 23); if any process
receives such a message with the same decision value from
t + 1 identifiers, it can also decide that value (line 26). At
the end of a phase, a process releases old locks (line 30) if it
has accepted enough votes for a later lock request.

To cope with homonyms, our algorithm differs from the
original algorithm of [10] in the following three ways. (1)
The new algorithm uses a set of processes with � − t differ-
ent identifiers as a quorum (e.g., for vote messages). The key

27

property of these quorums is that any two such sets must
both contain a process that is correct and does not share its
identifier with any other process, as shown in Lemma 7, be-
low. (2) The vote messages are needed to ensure agreement
in the case where several leaders ask processes to lock differ-
ent values, something which could not occur in the original
algorithm of [10], since each phase in that algorithm has a
unique leader. (3) The decide messages are used to ensure
that a correct process that shares its identifier with a Byzan-
tine process can eventually decide. (This is similar to the
mechanism used in Section 3.2.) We begin by proving the
property of quorums used by the algorithm.

Lemma 7 Assume � > n+3t
2

. If A and B are sets of iden-
tifiers and |A| ≥ � − t and |B| ≥ � − t, then A ∩ B contains
an identifier that belongs to only one correct process and no
Byzantine processes.

Proof. At most n−� identifiers belong to more than one
process. At most t identifiers belong to Byzantine processes.
Thus, any set that has more than n − � + t identifiers must
contain an identifier that belongs to only one correct process
and no Byzantine processes. Since 2� − 3t > n, we have
|A∩B| = |A|+ |B| − |A∪B| ≥ |A|+ |B| − � ≥ (�− t)+ (�−
t) − � = 2� − 3t − � + t > n − � + t.

In the original algorithm of [10], each phase has a unique
leader. In our algorithm, there may be several leaders. The
new voting superround ensures this cannot cause problems,
as shown in the following lemmas.

Lemma 8 If the messages 〈ack v, ph〉 and 〈ack v′, ph〉 are
sent by correct processes, then v = v′.

Proof. Suppose a correct process p sends 〈ack v, ph〉 and
a correct process p′ sends 〈ack v′, ph〉. (We may have p = p′.)
According to line 18, there is a set A of � − t identifiers
j for which p performs Accept(〈vote v, ph〉, j). Similarly,
there is a set B of � − t identifiers j for which p′ performs
Accept(〈vote v′, ph〉, j). By Lemma 7, A ∩ B contains an
identifier j that belongs to only one correct process and no
Byzantine processes. By unforgeability, the correct process
with identifier j performed Broadcast(〈vote v, ph〉) and
Broadcast(〈vote v′, ph〉). Thus, v = v′.

Lemma 9 If two correct processes decide on line 22 in the
same phase, then they decide the same value.

Proof. Suppose two correct processes p and p′ decide
values v and v′, respectively, during some phase ph. Then,
process p received 〈ack v, ph〉 from � − t > t different iden-
tifiers, so some correct process must have sent 〈ack v, ph〉.
Similarly, some correct process must have sent 〈ack v′, ph〉.
By Lemma 8, v = v′.

The remainder of the proof of correctness of the algorithm
is similar to the proof for the original algorithm of [10]. It
is given in [8], using the following lemmas.

Lemma 10 Suppose there is a value v and a phase ph
such that processes with � − t different identifiers sent an
〈ack v, ph〉 message in phase ph. Then, at all times after
phase ph, each correct process that sent 〈ack v, ph〉 has a
pair (v, ph′) with ph′ ≥ ph in its locks set.

Lemma 11 At the end of any phase ph3 that occurs after
T , if (v1, ph1) is in the locks variable of a correct process p1

and (v2, ph2) is in the locks variable of a correct process p2,
then v1 = v2.

Lemma 12 Let p be a correct process. Let ph be a phase
such that (ph mod �) + 1 is the identifier of p and phase
ph − 1 occurs after T . Then, p will send a lock message in
superround 2 of phase ph.

Combining Proposition 4 and 5 yields the following theo-
rem (for numerate or innumerate processes).

Theorem 13 Partially synchronous Byzantine agreement
is solvable if and only if � > n+3t

2
.

5. RESTRICTED BYZANTINE
PROCESSES

We now consider the effect of restricting the Byzantine
processes so that each Byzantine process can send at most
one message to each recipient in each round. We prove that
this restriction reduces the number of identifiers needed to
reach agreement if processes are numerate but does not help
if processes are innumerate.

5.1 Numerate Processes
First, we consider the model where processes can count

copies of identical messages. We prove the following two
theorems for this model.

Theorem 14 Synchronous Byzantine agreement is solvable
with numerate processes against restricted Byzantine pro-
cesses if and only if � > t.

Theorem 15 Partially synchronous Byzantine agreement
is solvable with numerate processes against restricted
Byzantine processes if and only if � > t.

Both of these theorems follow from Proposition 16 and 18,
below.

Proposition 16 Synchronous Byzantine agreement is un-
solvable with numerate processes against restricted Byzan-
tine processes if � ≤ t.

Proof sketch. To derive a contradiction, assume that
there exists an algorithm A that solves Byzantine agree-
ment with � ≤ t. In the argument below, we consider only
executions of A with some fixed set of � Byzantine processes,
chosen so that each of the � identifiers is held by one Byzan-
tine process.

We consider configurations of the the algorithm A at the
end of a synchronous round. Such a configuration can be
completely specified by the state of each process. A config-
uration C is 0-valent if, starting from C, the only possible
decision value that correct processes can have is 0; it is 1-
valent if, starting from C, the only possible decision value
that correct processes can have is 1. C is univalent if it
is either 0-valent or 1-valent; C is multivalent if it is not
univalent.

The following lemma encapsulates a Byzantine agent’s
ability to influence the decision value.

28

Lemma 17 Let C and C′ be two configurations of A such
that the state of only one correct process is different in C
and C′. Then, there exist executions α and α′ that start
from C and C′, respectively, which both produce the same
output value.

Proof. Let p be the correct process whose state is dif-
ferent in C and C′ and let i be the identifier assigned to p.
Let s and s′ be the state of p in C and C′, respectively. Let
b be a Byzantine process that has identifier i.

Let α be the execution from C in which b starts in state s′

and follows p’s algorithm, and all other Byzantine processes
send no messages. Let α′ be the execution from C′ in which
b starts in state s and follows p’s algorithm, and all other
Byzantine processes send no messages. No correct process
other than p can distinguish between α and α′, since p and
b send the same messages in α as b and p send in α′. Thus,
each correct process other than p must output the same
decision in α and α′.

The remainder of the proof of Proposition 16 is a standard
valency argument (see [8]). We sketch it here. By validity,
the initial configuration where all inputs are 0 is 0-valent.
We can obtain a sequence of initial configurations by chang-
ing the correct process’s inputs to 1, one at a time. By
validity, the final configuration in this sequence is 1-valent.
By Lemma 17 successive configurations in this sequence are
capable of leading to the same output. It follows that some
initial configuration in this sequence is multivalent.

A similar argument can be used to show that every multi-
valent configuration must have a multivalent successor con-
figuration, again using Lemma 17. Hence, we can construct
an infinite execution of multivalent configurations in which
no process ever decides, violating termination. This contra-
diction establishes Proposition 16.

Proposition 18 Partially synchronous Byzantine agree-
ment is solvable with numerate processes against restricted
Byzantine processes if � > t.

The algorithm used to prove this proposition is similar to
the one presented in Section 4.2. Details may be found in [8].
Like the algorithm in Section 4.2, it uses an authenticated
broadcast primitive, but here Accept actions have an extra
parameter indicating the multiplicity of the accepted mes-
sage. More precisely, this multiplicity is greater than the
number of correct processes that sent the message and does
not exceed the number of correct processes by more than
the actual number of Byzantine processes in the execution.
Furthermore, all correct processes agree eventually on the
multiplicity of each message.

This authenticated broadcast with multiplicity is used to
ensure the agreement property. As � > t, at least one iden-
tifier is assigned only to correct processes. This property is
used to ensure the termination property of the agreement
algorithm.

5.2 Innumerate Processes

Theorem 19 Synchronous Byzantine agreement is solvable
with innumerate processes against restricted Byzantine pro-
cesses if and only if � > 3t.

Proof sketch. (See [8] for a detailed proof.) By Propo-
sition 2, there is an algorithm if � > 3t, even against (unre-
stricted) Byzantine processes, so the same algorithm would
work against restricted Byzantine processes. To prove that
� > 3t is necessary, we use a simulation. If it were possi-
ble to solve the problem when � ≤ 3t, this algorithm would
work, in particular, when n − � + 1 of the processes are all
assigned the same identifier and input, and all receive ex-
actly the same messages from the Byzantine agents. In this
situation, the n − � + 1 processes would behave as clones,
taking exactly the same sequence of steps. This would imply
that the same algorithm would solve Byzantine agreement
when n = � ≤ 3t, which is known to be impossible.

Theorem 20 Partially synchronous Byzantine agreement
is solvable with innumerate processes against restricted
Byzantine processes if and only if � > n+3t

2
.

Proof. By Proposition 5, there is an algorithm if � >
n+3t

2
, even against (unrestricted) Byzantine processes, so

the same algorithm would work against restricted Byzantine
processes. The impossibility result can be proved in exactly
the same way as Proposition 4. In that proof, only the
Byzantine process denoted B1 must send multiple messages
to a single recipient in execution γ. Consider the messages
B1 must send to At(0) in γ. It must send the same messages
as the entire stack of processes running A1 send to At(0) in
α. However, all processes in that stack behave identically in
α, so B1 must simply send n − � + 1 copies of a message to
At(0). Since we are now considering a model where At(0)
is innumerate, B can simply send one copy of the message
to At(0) instead. (A symmetric argument applies to the
messages sent by B1 to each other process in γ.)

6. CONCLUDING REMARKS
Since the pioneering work of [1], the question of what can

be computed in a totally anonymous distributed systems
has been extensively studied. Some results depended on
properties of the communication graph (e.g., [4, 23]). Some
work considered shared memory for the “wake up” prob-
lem [13], others considered consensus [3]. The power of
anonymous broadcast systems, in comparison with anony-
mous shared-memory systems has also been studied [2].
None of these considered process failures. Anonymous pro-
cesses with crash failures have been considered more re-
cently [5, 6, 9, 12, 17, 20]. In [16], Byzantine agreement was
studied in a model with a restricted kind of anonymity: pro-
cesses have no identifiers, but each process has a separate
channel to every other process and a process can detect
through which channel an incoming message is delivered.
It was shown that Byzantine agreement can be solved in
this model when n > 3t.

This paper is the first to study a distributed system
model with homonyms, i.e., with a limited number of identi-
fiers. The model unifies both classical (non-anonymous) and
anonymous models and is interesting from both a theoreti-
cal and a practical viewpoint. We completely characterized
the solvability of Byzantine agreement in this model, pre-
cisely quantifying the impact of the adversary, with some
surprising results. We focused however on agreement and
many other problems would be interesting to consider. We
also focused on computability and complexity is yet to be
explored.

29

Acknowledgments.
We are grateful to Christian Cachin for his useful com-

ments on our model with homonyms. A small subset of
our results was presented in a preliminary form in [7]. Eric
Ruppert received funding from the Natural Sciences and En-
gineering Research Council of Canada.

7. REFERENCES
[1] Dana Angluin. Local and global properties in

networks of processors (extended abstract). In Proc.
12th ACM Symposium on Theory of Computing, pages
82–93. ACM, 1980.

[2] James Aspnes, Faith Ellen Fich, and Eric Ruppert.
Relationships between broadcast and shared memory
in reliable anonymous distributed systems. Distributed
Computing, 18(3):209–219, February 2006.

[3] Hagit Attiya, Alla Gorbach, and Shlomo Moran.
Computing in totally anonymous asynchronous shared
memory systems. Information and Computation,
173(2):162–183, 2002.

[4] Paolo Boldi and Sebastiano Vigna. An effective
characterization of computability in anonymous
networks. In Proc. 15th International Conference on
Distributed Computing, volume 2180 of LNCS, pages
33–47. Springer, 2001.

[5] François Bonnet and Michel Raynal. The price of
anonymity: Optimal consensus despite asynchrony,
crash and anonymity. In Proc. 23rd International
Symposium on Distributed Computing, volume 5805 of
LNCS, pages 341–355. Springer, 2009.

[6] Harry Buhrman, Alessandro Panconesi, Riccardo
Silvestri, and Paul M. B. Vitányi. On the importance
of having an identity or, is consensus really universal?
Distributed Computing, 18(3):167–176, February 2006.

[7] Carole Delporte-Gallet, Hugues Fauconnier, Rachid
Guerraoui, and Anne-Marie Kermarrec. Brief
announcement: Byzantine agreement with homonyms.
In Proc. 22nd ACM Symposium on Parallelism in
Algorithms and Architectures, pages 74–75, 2010.

[8] Carole Delporte-Gallet, Hugues Fauconnier, Rachid
Guerraoui, Anne-Marie Kermarrec, Eric Ruppert, and
Hung Tran-The. Byzantine agreement with
homonyms. Technical Report hal-00580133, CNRS,
France, 2011.

[9] Carole Delporte-Gallet, Hugues Fauconnier, and
Andreas Tielmann. Fault-tolerant consensus in
unknown and anonymous networks. In Proc. 29th
IEEE International Conference on Distributed
Computing Systems, pages 368–375. IEEE Computer
Society, 2009.

[10] Cynthia Dwork, Nancy A. Lynch, and Larry
Stockmeyer. Consensus in the presence of partial

synchrony. Journal of the ACM, 35(2):288–323, April
1988.

[11] Michael J. Fischer, Nancy A. Lynch, and Michael
Merritt. Easy impossibility proofs for distributed
consensus problems. Distributed Computing,
1(1):26–39, January 1986.

[12] Rachid Guerraoui and Eric Ruppert. Anonymous and
fault-tolerant shared-memory computing. Distributed
Computing, 20(3):165–177, October 2007.

[13] Prasad Jayanti and Sam Toueg. Wakeup under
read/write atomicity. In Jan van Leeuwen and Nicola
Santoro, editors, Proc. 4th International Workshop on
Distributed Algorithms, volume 486 of LNCS, pages
277–288. Springer, 1990.

[14] Leslie Lamport, Robert Shostak, and Marshall Pease.
The Byzantine generals problem. ACM Transactions
on Programming Languages and Systems,
4(3):382–401, July 1982.

[15] Michael Okun. Agreement among unacquainted
Byzantine generals. In Proc. 19th International
Conference on Distributed Computing, volume 3724 of
LNCS, pages 499–500. Springer, 2005.

[16] Michael Okun and Amnon Barak. Efficient algorithms
for anonymous Byzantine agreement. Theory of
Computing Systems, 42(2):222–238, February 2008.

[17] Michael Okun, Amnon Barak, and Eli Gafni.
Renaming in synchronous message passing systems
with Byzantine failures. Distributed Computing,
20(6):403–413, April 2008.

[18] Marshall Pease, Robert Shostak, and Leslie Lamport.
Reaching agreement in the presence of faults. Journal
of the ACM, 27(2):228–234, April 1980.

[19] Antony I. T. Rowstron and Peter Druschel. Pastry:
Scalable, decentralized object location, and routing for
large-scale peer-to-peer systems. In Middleware,
volume 2218 of LNCS, pages 329–350, 2001.

[20] Eric Ruppert. The anonymous consensus hierarchy
and naming problems. In Proc. Principles of
Distributed Systems, 11th International Conference,
volume 4878 of LNCS, pages 386–400. Springer, 2007.

[21] T. K. Srikanth and Sam Toueg. Simulating
authenticated broadcasts to derive simple
fault-tolerant algorithms. Distributed Computing,
2(2):80–94, 1987.

[22] Ion Stoica, Robert Morris, David R. Karger, M. Frans
Kaashoek, and Hari Balakrishnan. Chord: A scalable
peer-to-peer lookup service for internet applications.
In ACM SIGCOMM, pages 149–160, 2001.

[23] Masafumi Yamashita and Tsunehiko Kameda.
Computing on anonymous networks: Part
I-characterizing the solvable cases. IEEE Transactions
on Parallel and Distributed Systems, 7(1):69–89, 1996.

30

