
ar
X

iv
:1

30
3.

58
91

v1
 [

cs
.D

C
]

23
 M

ar
 2

01
3

Noname manuscript No.
(will be inserted by the editor)

Fault Tolerance in Distributed Systems using Fused State Machines

Bharath Balasubramanian · Vijay K. Garg

the date of receipt and acceptance should be inserted later

Abstract Replication is a standard technique for fault tol-
erance in distributed systems modeled as deterministic finite
state machines (DFSMs or machines). To correctf crash or
⌊ f /2⌋ Byzantine faults amongn different machines, replica-
tion requiresn f additional backup machines. We present a
solution calledfusion that requires justf additional backup
machines. First, we build a framework for fault tolerance in
DFSMs based on the notion of Hamming distances. We in-
troduce the concept of an (f , m)-fusion, which is a set of
m backup machines that can correctf crash faults or⌊ f /2⌋
Byzantine faults among a given set of machines. Second, we
present an algorithm to generate an (f , f)-fusion for a given
set of machines. We ensure that our backups are efficient
in terms of the size of their state and event sets. Third, we
use locality sensitive hashingfor the detection and correc-
tion of faults that incurs almost the same overhead as that for
replication. We detect Byzantine faults with time complex-
ity O(n f) on average while we correct crash and Byzantine
faults with time complexityO(nρ f) with high probability,
whereρ is the average state reduction achieved by fusion. Fi-
nally, our evaluation of fusion on the widely used MCNC’91
benchmarks for DFSMs show that the average state space

*This research was supported in part by the NSF Grants CNS-0718990,
CNS-0509024, CNS-1115808 and Cullen Trust for Higher Education
Endowed Professorship.

Bharath Balasubramanian
EDGE Lab, Dept. of Electrical Engineering,
Princeton University,
Engineering Quadrangle, Olden Street,
Princeton, NJ 08544.
Tel.:+1 512 239 8104, E-mail: bbharath@utexas.edu.

Vijay K. Garg
Parallel and Distributed Systems Laboratory,
Dept. of Electrical and Computer Engineering,
The University of Texas at Austin,
1 University Station, C0803,
Austin, TX 78712-0240.
Tel.:+1 512 471 9424, E-mail: garg@ece.utexas.edu.

savings in fusion (over replication) is 38% (range 0-99%).
To demonstrate the practical use of fusion, we describe its
potential application to the MapReduce framework. Using a
simple case study, we compare replication and fusion as ap-
plied to this framework. While a pure replication-based solu-
tion requires 1.8 million map tasks, our fusion-based solution
requires only 1.4 million map tasks with minimal overhead
during normal operation or recovery. Hence, fusion resultsin
considerable savings in state space and other resources such
as the power needed to run the backup tasks.

Keywords Distributed Systems, Fault Tolerance, Finite
State Machines, Coding Theory, Hamming Distances.

1 Introduction

Distributed applications often use deterministic finite state
machines (referred to as DFSMs or machines) to model com-
putations such as regular expressions for pattern detection,
syntactical analysis of documents or mining algorithms for
large data sets. These machines executing on distinct dis-
tributed processes are often prone to faults. Traditional so-
lutions to this problem involve some form of replication. To
correct f crash faults [25] amongn given machines (referred
to asprimaries), f copies of each primary are maintained
[17,28,26]. If the backups start from the same initial stateas
the corresponding primaries and act on the same events, then
in the case of faults, the state of the failed machines can be
recovered from one of the remaining copies. These backups
can also correct⌊ f /2⌋ Byzantine faults [18], where the pro-
cesses lie about the state of the machine, since a majority of
truthful machines is always available. This approach, requir-
ing n f total backups, is expensive both in terms of the state
space of the backups and other resources such as the power
needed to run these backups.

http://arxiv.org/abs/1303.5891v1

2 Bharath Balasubramanian, Vijay K. Garg

(ii) RCP: Ineffecient Backup

c0
a1b0

c1

a0b0

c1

a1b1

c1

a0b1

c1
a1b1

c0
a1b0

c0

a0b1

c0

f 2

2

f 3

2

a0 a1

0, 2

0, 2

b0 b1

1, 2

1, 2

0
c0 c1

0

B (Parity of 1s, 2s)

C (Parity of 0s)

0

0

0

0

0

0

2 2

1

1

1

2 2

1

1

2 2 2 2

0 1

1

0

1

r1

r7

r3

r6

r5r4

r0 r2

R (8 states, 3 events)

A (Parity of 0s, 2s)

(i) Primaries

(iii) State and Event Efficient Backup

1

1
f 0

1 f 1

1

F1 (2 states, 1 event)

(iv) State Efficient Backup

f 1

2

2

2

f 0

2

0, 1

0, 1

0, 1
0, 1

2

2

F2 (4 states, 3 events)

a0b0

Fig. 1 Correcting one crash fault among{A, B,C} using just one additional backup rather than three backups required by replication.

Consider a distributed application that is searching for
three different string patterns in a file. These string patterns
or regular expressions are usually modeled as DFSMs. Con-
sider the state machinesA, B andC shown in Fig. 1. A state
machine in our system consists of a finite set of states and a
finite set of events. On application of an event, the state ma-
chine transitions to the next state based on the state-transition
function. For example, machineA in Fig. 1 contains the states
{a0, a1}, events{0, 2} and the initial state, shown by the dark
ended arrow, isa0. The state transitions are shown by the ar-
rows from one state to another. Hence, ifA is in statea0 and
event 0 is applied to it, then it transitions to statea1. In this
example,A checks the parity of{0, 2} and so, if it is in state
a0, then an even number of 0sor 2shave been applied to the
machine and if it is in statea1, then an odd number of the
inputs have been applied. MachinesB andC check for the
parity of {1, 2} and{0} respectively.

To correct one crash fault among these machines, replica-
tion requires a copy of each of them, resulting in three backup
machines, consuming total state space of eight (23). Another
way of looking at replication in DFSMs is by constructing a
backup machine that is thereachable cross productor RCP
(formally defined in section 3.1) of the original machines.
As shown in Fig. 1, each state of theRCP, denoted byR, is
a tuple, in which the elements corresponds to the states of
A, B andC respectively. Let each of the machinesA, B, C
and R start from their initial state. If some event sequence
(generated by the client/environment) 0→ 2 → 1 is ap-
plied on these machines, then the state ofR, A, B andC are
r6 = {a0b0c1}, a0, b0 andc1 respectively. Here, even if one
of the primaries crash, using the state ofR, we can determine
the state of the crashed primary. Hence, theRCP is a valid
backup machine.

However, using theRCPof the primaries as a backup has
two major disadvantages: (i) Givenn primaries each contain-
ing O(s) states, the number of states in theRCP is O(sn),
which is exponentialin the number of primaries. In Fig. 1,

R has eight states. (ii) The event set of theRCPis the union
of the event sets of the primaries. In Fig. 1 whileA, B andC
have only two, two and one event respectively in their event
sets,R has three events. This translates to increased load on
the backup. Can we generate backup machines that are more
efficient than theRCPin terms of states and events?

ConsiderF1 shown in Fig. 1. If the event sequence 0→
0→ 1→ 2 is applied the machines,A, B,C andF1, then they
will be in statesa1, b0, c0 and f 1

1 . Assume a crash fault inC.
Given the parity of 1s (state ofF1) and the parity of 1s or 2s
(state ofB), we can first determine the parity of 2s. Using this,
and the parity of 0s or 2s (state ofA), we can determine the
parity of 0s (state ofC). Hence, we can determine the state of
C asc0 using the states ofA, B andF1. This argument can be
extended to correcting one fault among any of the machines
in {A, B,C, F1}. This approach consumes fewer backups than
replication (one vs. three), fewer states than theRCP (two
states vs. eight states) and fewer number of events than the
RCP(one event vs. three events). How can we generate such
a backup for any arbitrary set of machines? In Fig. 1, canF1

andF2 correct two crash faults among the primaries? Further,
how do we correct the faults? In this paper, we address such
questions through the following contributions:

Framework for Fault Tolerance in DFSMsWe explore the
idea of a fault graph and use that to define the minimum Ham-
ming distance [13] for a set of machines. Using this frame-
work, we can specify the exact number of crash or Byzantine
faults a set of machines can correct. Further, we introduce the
concept of an(f , m)-fusionwhich is a set ofmmachines that
can correctf crash faults, detectf Byzantine faults or correct
⌊ f /2⌋ Byzantine faults. We refer to the machines asfusions
or fused backups. In Fig. 1,F1 andF2 can correct two crash
faults among{A, B,C} and hence{F1, F2} is a (2, 2)-fusion of
{A, B,C}. Replication is just a special case of (f , m)-fusion
wherem = n f . We prove properties on the (f , m)-fusion for

Fault Tolerance in Distributed Systems using Fused State Machines 3

a given set of primary machines including lower bounds for
the existence of such fusions.

Algorithm to Generate Fused Backup MachinesGiven a set
of n primaries we present an algorithm that generates an (f ,
f)-fusion corresponding to them, i.e., we generate a set off
backup machines that can correctf crash or⌊ f /2⌋ Byzantine
faults among them. We show that our backups are efficient
in terms of: (i) The number of states in each backup (ii) The
number of events in each backup (iii) Theminimality(defined
in section 3.4) of the entire set of backups in terms of states.
Further, we show that if our algorithm does not achieve state
and event reduction, then no solution with the same number
of backups achieves it. Our algorithm has time complexity
polynomial inN, whereN is the number of states in theRCP
of the primaries. We present an incremental approach to this
algorithm that improves the time complexity by a factor of
O(ρn), whereρ is the average state savings achieved by fu-
sion.

Detection and Correction of FaultsWe present a Byzantine
detection algorithm with time complexityO(n f) on average,
which is the same as the time complexity of detection for
replication. Hence, for a system that needs to periodically
detect liars, fusion causes no additional overhead. We re-
duce the problem of fault correction to one of finding points
within a certain Hamming distance of a given query point in
n-dimensional space and present algorithms to correct crash
and Byzantine faults with time complexityO(nρ f) with high
probability (w.h.p). The time complexity for crash and Byzan-
tine correction in replication isO(f) andO(n f) respectively.
Hence, for small values ofn andρ, fusion causes almost no
overhead for recovery. Table 1 describes the main symbols
used in this paper, while Table 2 summarizes the main results
in the paper through a comparison with replication.

Fusion-based Grep in the MapReduce FrameworkTo illus-
trate the practical use of fusion, we consider its potentialap-
plication to thegrep functionality of the MapReduce frame-
work [8]. The MapReduce framework is a prevalent solu-
tion to model large scale distributed computations. The grep
functionality is used in many applications that need to iden-
tify patterns in huge textual data such as data mining, ma-
chine learning and query log analysis. Using a simple case
study, we show that a pure replication-based approach for
fault tolerance needs 1.8 million map tasks while our fusion-
based solution requires only 1.4 million map tasks. Further,
we show that our approach causes minimal overhead during
normal operation or recovery.

Fusion-based Design Tool and Experimental EvaluationWe
provide a Java design tool based on our fusion algorithm, that

takes a set of input machines and generates fused backup ma-
chines corresponding to them. We evaluate our fusion algo-
rithm on the MCNC’91 [30] benchmarks for DFSMs, that
are widely used in the fields of logic synthesis and circuit de-
sign. Our results show that the average state space savings in
fusion (over replication) is 38% (range 0-99%), while the av-
erage event-reduction is 4% (range 0-45%). Further, the av-
erage savings in time by the incremental approach for gener-
ating the fusions (over the non-incremental approach) is 8%.

In section 2, we specify the system model and assump-
tions of our work. In section 3 we describe the theory of
our backup or fusion machines. Following this, we present
algorithms to generate these fusion machines in section 4.
In section 5 we present the algorithms for the detection and
correction of faults in a system with primary and fusion ma-
chines. Sections 6 and 7 deal with the practical aspects and
experimental evaluation of fusion. In section 8, we consider
potential solutions to this problem, outside the frameworkof
this paper. Section 9 covers the related work in this area. Fi-
nally, we summarize our work and discuss future extensions
in section 10.

2 Model

The DFSMs in our system execute on separate distributed
processes. We assume loss-less FIFO communication links
with a strict upper bound on the time taken for message de-
livery. Clients of the state machines issue the events (or com-
mands) to the concerned primaries and backups.For simplic-
ity, we assume that there is a single client issuing the events
to the machines. This along with FIFO links ensures that all
machines act on the events in the same relative order. This
can be extended to multiple clients using standard total order
broadcast mechanisms present in the literature [9,20].

The execution stateof a machine is the current state in
which it is executing. Faults in our system are of two types:
crash faults, resulting in a loss of the execution state of the
machines and Byzantine faults resulting in an arbitrary ex-
ecution state. We assume that the given set of primary ma-
chines cannot correct a single crash fault amongst themselves.
When faults are detected by a trusted recovery agent using
timeouts (crash faults) or a detection algorithm (Byzantine
faults) no further events are sent by any client to these ma-
chines. Assuming the machines have acted on the same se-
quence of events, the recovery agent obtains their states, and
recovers the correct execution states of all faulty machines.

3 Framework for Fault Tolerance in DFSMs

In this section, we describe the framework using which we
can specify the exact number of crash or Byzantine faults
that any set of machines can correct. Further, we introduce

4 Bharath Balasubramanian, Vijay K. Garg

Table 1 Symbols/Notation used in the paper

P Set of primaries n Number of primaries
RCP Reachable Cross Product N Number of states in the RCP

f No. of crash faults s Maximum number of states among primaries
F Set of fusions/backups ρ Average State Reduction in fusion
Σ Union of primary event-sets β Average Event Reduction in fusion

Table 2 Replication vs. Fusion (Columns 2 and 3 forf crash faults, 4 and 5 forf Byzantine faults)

Rep-Crash Fusion-Crash Rep-Byz Fusion-Byz
Number of Backups n f f 2n f 2 f
Backup State Space sn f (sn/ρ) f s2n f (sn/ρ)2 f

Average Events/Backup |Σ|/n |Σ|/β |Σ|/n |Σ|/β

Fault Detection Time O(1) O(1) O(n f) O(n f) (on avg.)
Fault Correction Time O(f) O(nρ f) w.h.p O(n f) O(nρ f) w.h.p

Fault Detection Messages O(1) O(1) 2n f n+ f
Fault Correction Messages f n n+ 2 f n+ f

Backup Generation Time Complexity O(ns f) O(sn|Σ| f /ρn) O(ns f) O(sn|Σ| f /ρn)

the concept of an (f , m)-fusion for a set of primaries that
is a set of machines that can correctf crash faults, detectf
Byzantine faults and correct⌊ f /2⌋ Byzantine faults.

3.1 DFSMs and their Reachable Cross Product

A DFSM, denoted byA, consists of a set of statesXA, set
of eventsΣA, transition functionαA : XA × ΣA → XA and
initial statea0. The size ofA, denoted by|A| is the number
of states inXA. A state,s ∈ XA, is reachableiff there exists
a sequence of events, which, when applied on the initial state
a0, takes the machine to states. Consider any two machines,
A (XA, ΣA, αA, a0) andB (XB, ΣB, αB, b0). Now construct
another machine which consists of all the states in the product
set ofXA andXB with the transition functionα′({a, b}, σ) =
{αA(a, σ), αB(b, σ)} for all {a, b} ∈ XA × XB andσ ∈ ΣA ∪

ΣB. This machine (XA × XB, ΣA ∪ ΣB, α
′, {a0, b0}) may have

states that are not reachable from the initial state{a0, b0}. If
all such unreachable states are pruned, we get thereachable
cross productof A andB. In Fig. 1,R is the reachable cross
product ofA, B andC. Throughout the paper, when we just
sayRCP, we refer to the reachable cross product of the set
of primary machines. Given a set of primaries, the number of
states in itsRCP is denoted byN and its event set, which is
the union of the event sets of the primaries is denoted byΣ.

As seen in section 1, given the state of theRCP, we can
determine the state of each of the primary machines and vice
versa. However, theRCPhas states exponential inn and an
event set that is the union of all primary event sets.Can we
generate machines that contains fewer states and events than
the RCP?In the following section, we first define the notion
of order and the ‘less than or equal to’ (≤) relation among
machines.

3.2 Order Among Machines and their Closed Partition
Lattice

Consider a DFSM,A = (XA, Σ, αA, x0
A). A partition P, on the

state setXA of A is the set{B1, . . . , Bk}, of disjoint subsets of
the state setXA, such that

⋃k
i=1 Bi = XA andBi ∩ B j = φ for

i , j [19]. An elementBi of a partition is called ablock.
A partition, P, is said to be closed if each event,σ ∈ Σ,
maps a block ofP into another block. A closed partitionP,
corresponds to a distinct machine. Given any machineA, we
can partition its state space such that the transition function
αA, maps each block of the partition to another block for all
events inΣA [14,19].

In other words, we combine the states ofA to generate
machines that are consistent with the transition function.We
refer to the set of all such closed partitions as the closed par-
tition set ofA. In this paper, we discuss the closed partitions
corresponding to theRCPof the primaries. In Fig. 2, we show
the closed partition set of theRCPof {A, B,C} (labeledR).
Consider machineM2 in Fig. 2, generated by combining the
statesr0 andr2 of R. Note that, on event 1,r0 transitions tor1

andr2 transitions tor3. Hence, we need to combine the states
r1 andr3. Continuing this procedure, we obtain the combined
states inM2. Hence, we havereducedtheRCPto generateM.
By combining different pairs of states and by further reducing
the machines thus formed, we can construct the entire closed
partition set ofR.

We can define an order (≤) among any two machinesP
andQ in this set as follows:P ≤ Q, if each block ofQ is
contained in a block ofP (shown by an arrow fromP to Q).
Intuitively, given the state ofQ we can determine the state of
P. MachinesP andQ are incomparable, i.e.,P||Q, if P ≮ Q
and Q ≮ P. In Fig. 2, F1 < M2, while M1||M2. It can be
seen that the set of all closed partitions corresponding to a
machine, form a lattice under the≤ relation [14]. We saw
in section 3.1 that given the state of the primaries, we can

Fault Tolerance in Distributed Systems using Fused State Machines 5

r0..r7 R⊥

F1C B

a1b0c0

M2

r6, r7

r4, r5

2

2

1

1

2 1
1

r0, r2 r1, r3

2

r5, r7

r4, r6

r1, r2
2

2

2

r0, r3

2 0, 1

0, 1

0, 1

0, 1

F2

f 0

2

f 3

2

f 1

2
f 2

2

r6

0

0

0

0

0

0

2 2

1

1

1

1

2 2

1

1

2 2 2 2

0 1

1

r7 r5

0

R

r0 r2 r3r1

r0, r2, r4, r5
1

1

r1, r3, r6, r7r0, r1, r5, r6 r2, r3, r4, r7
0, 2

0, 2
r2, r3, r6, r5 r1, r3, r4, r5r0, r1, r4, r7

0

0

r0, r2, r6, r7
1, 2

1, 2

a0 a1 c0 c1 b0 b1

A

f 0

1
f 1

1

r4

r2, r5

r3, r6

r0, r4
0

0

1

1

0 1
1

r1, r7

0

M1

r0 r2 r3 r4 r5 r6 r7r1
a1b1c1a0b0c0 a0b1c0 a1b0c1 a0b0c1a1b1c0 a0b1c1

Fig. 2 Set of machines less thanR (all machines not shown due to space constraints).

determine the state of theRCP and vice versa. Hence, the
primary machines are always part of the closed partition set
of theRCP(seeA, B andC in Fig. 2).

Among the machines shown in Fig. 2, some of them, like
F2 (4 states, 3 events) have reduced states, while some like
M1 (4 states, 2 events) andF1 (2 states, 1 event) have both re-
duced states and events as compared toR (8 states, 3 events).
Which among these machines can act as backups?In the fol-
lowing section, we describe the concept of fault graphs and
their Hamming distances to answer this question.

3.3 Fault Graphs and Hamming Distances

We begin with the idea of afault graphof a set of machines
M, for a machineT, where all machines inM are less than
or equal toT. This is a weighted graph and is denoted by
G(T,M). The fault graph is an indicator of the capability of
the set of machines inM to correctly identify the current
state ofT. As described in the previous section, since all the
machines inM are less than or equal toT, the set of states of
any machine inM corresponds to a closed partition of the set
of states ofT. Hence, given the state ofT, we can determine
the state of all the machines inM and vice versa.

Definition 1 (Fault Graph) Given a set of machinesM and
a machineT = (XT , ΣT , αT , t0) such that∀M ∈ M : M ≤ T,
the fault graphG(T,M) is a fully connected weighted graph
where,

– Every node of the graph corresponds to a state inXT

– The weight of the edge (ti , t j) between two nodes, where
ti , t j ∈ XT , is the number of machines inM that have
statesti andt j in distinct blocks

We construct the fault graphG(R, {A}), referring to Fig. 2.
A has two states,a0 = {r0, r1, r5, r6} anda1 = {r2, r3, r4, r7}.

Given just the current state ofA, it is possible to determine if
R is in stater0 or r2 (exact) or one ofr0 andr1 (ambiguity).
Here, A distinguishes between the (r0, r2) but not between
(r0, r1). Hence, in the fault graphG(R, {A}) in Fig. 3 (i), the
edge (r0, r2) has weight one, while (r0, r1) has weight zero.
A machineM ∈ M, is said tocoveran edge (ti , t j) if ti and
t j lie in separate blocks ofM, i.e., M separatesthe statesti

and t j . In Fig. 2, A covers (r0, r2). In Fig. 9 and 10 of the
Appendix, we show an example of the closed partition set
and fault graphs for a different set of primaries.

Given the states of|M| − x machines in|M|, it is always
possible to determine ifT is in stateti or t j iff the weight of
the edge (ti , t j) is greater thanx. Consider the graph shown in
Fig. 3 (ii). Given the state of any two machines in{A, B,C},
we can determine ifR is in stater0 or r2, since the weight
of that edge is greater than one, but cannot do the same for
the edge (r0, r1), since the weight of the edge is one. In cod-
ing theory [7,24], the concept of Hamming distance [13] is
widely used to specify the fault tolerance of an erasure code.
If an erasure code has minimum Hamming distance greater
thand, then it can correctd erasures or⌊d/2⌋ errors. To un-
derstand the fault tolerance of a set of machines, we define a
similar notion of distances for the fault graph.

Definition 2 (distance) Given a set of machinesM and their
reachable cross productT (XT , ΣT , αT , t0), the distance be-
tween any two statesti , t j ∈ XT , denoted byd(ti, t j), is the
weight of the edge (ti , t j) in the fault graphG(T,M). The
least distance inG(T,M) is denoted bydmin(T,M).

Given a fault graph,G(T,M), the smallest distance be-
tween the nodes in the fault graph specifies the fault tolerance
of M. Consider the graph,G(R, {A, B,C, F1, F2}), shown in
Fig. 3 (v). Since the smallest distance in the graph is three,
we can remove any two machines from{A, B,C, F1, F2} and

6 Bharath Balasubramanian, Vijay K. Garg

(iv) G({A,B,C, F1})

r3 r1

r0

r2

0

1

1

(i) G({A})

r3 r1

r0

r2

2

3

r3 r1

r0

r2

2

3 r3 r1

r2

2

r0

r1

r0

r2

3

3

(iii) G({A,B,C,R})(ii) G({A,B,C}) (v) G({A,B,C, F1, F2})

1
2

13

1

1

0
2

4

3
4 2 4

2

24

r3

3 4
3

4

Fig. 3 Fault Graphs,G(R,M), for sets of machines shown in Fig. 2. For notational convenience, we just label the graphs withG(M). All eight nodes
r0-r7 with their edges have not been shown due to space constraints.

still regenerate the current state ofR. As seen before, given
the state ofR, we can determine the state of any machine less
thanR. Therefore, the set of machines{A, B,C, F1, F2} can
correct two crash faults.

Theorem 1 A set of machinesM, can correct up to f crash
faults iff dmin(T,M) > f , where T is the reachable cross-
product of all machines inM.

Proof (⇒) Given thatdmin(T,M) > f , we show that any
M− f machines fromM can accurately determine the cur-
rent state ofT, thereby recovering the state of the crashed
machines. Sincedmin(T,M) > f , by definition, at leastf + 1
machines separate any two states ofXT . Hence, for any pair
of states (ti , t j) ∈ XT , even afterf crash failures inM, at least
one machine remains that can distinguish betweenti andt j .
This implies that it is possible to accurately determine the
current state ofT by using anyM− f machines fromM.

(⇐) Given thatdmin(T,M) ≤ f , we show that the system
cannot correctf crash faults. The conditiondmin(T,M) ≤ f
implies that there exists statesti andt j in G(T,M) separated
by distancek, wherek ≤ f . Hence there exist exactlyk ma-
chines inM that can distinguish between statesti , t j ∈ XT .
Assume that all thesek machines crash (sincek ≤ f) whenT
is in eitherti or t j . Using the states of the remaining machines
inM, it is not possible to determine whetherT was in state
ti or t j . Therefore, it is not possible to exactly regenerate the
state of any machine inM using the remaining machines.

Byzantine faults may include machines which lie about
their state. Consider the machines{A, B,C, F1, F2} shown in
Fig. 2. From Fig. 3 (v), Let the execution states of the ma-
chinesA, B, C, F1 andF2 be

a0 = {r0, r1, r5, r6}, b1 = {r1, r3, r4, r5}, c0 = {r0, r1, r4, r7}

f 0
1 = {r

0, r2, r4, r5}, f 0
2 = {r

0, r3},

respectively. Sincer0 appears four times (greater than ma-
jority) among these states, even if there is one liar we can
determine thatR is in stater0. But if R is in stater0, thenB
must have been in stateb0 which containsr0. So clearly,B is
lying and its correct state isb1. Here, we can determine the
correct state of the liar, sincedmin(R, {A, B,C, F1, F2}) = 3,
and the majority of machines distinguish between all pairs of
states.

Theorem 2 A set of machinesM, can correct up to f Byzan-
tine faults iff dmin(T,M) > 2 f , where T is the reachable
cross-product of all machines inM.

Proof (⇒) Given thatdmin(T,M) > 2 f , we show that any
M− f correct machines fromM can accurately determine the
current state ofT in spite of f liars. Sincedmin(T,M) > 2 f ,
at least 2f +1 machines separate any two states ofXT . Hence,
for any pair of statesti , t j ∈ XT , after f Byzantine failures in
M, there will always be at leastf + 1 correct machines that
can distinguish betweenti andt j . This implies that it is pos-
sible to accurately determine the current state ofT by simply
taking a majority vote.

(⇐) Given thatdmin(T,M) ≤ 2 f , we show that the system
cannot correctf Byzantine faults.dmin(T,M) ≤ 2 f implies
that there exists statesti , t j ∈ XT separated by distancek,
wherek ≤ 2 f . If f among thesek machines lie about their
state, we have onlyk− f correct machines remaining. Since,
k − f ≤ f , it is impossible to distinguish the liars from the
truthful machines and regenerate the correct state ofT.

In this paper, we are concerned only with the fault graph
of machines w.r.t theRCPof the primariesP. For notational
convenience, we useG(M) instead ofG(RCP,M) anddmin(M)
instead ofdmin(RCP,M). From theorems 1 and 2, it is clear
that a set ofn machinesP, can correct (dmin(P) − 1) crash
faults and⌊(dmin(P)−1)/2⌋ Byzantine faults. Henceforth, we
only consider backup machines less than or equal to theRCP
of the primaries. In the following section, we describe the
theory of such backup machines.

3.4 Theory of (f , m)-fusion

To correct faults in a given set of machines, we need to add
backup machines so that the fault tolerance of the system
(original set of machines along with the backups) increasesto
the desired value. To simplify the discussion, in the remain-
der of this paper, unless specified otherwise, we mean crash
faults when we simply say faults. Given a set ofn machines
P, we addm backup machinesF , each less than or equal to
theRCP, such that the set of machines inP ∪ F can correct
f faults. We call the set ofmmachines inF , an (f , m)-fusion
of P. From theorem 1, we know that,dmin(P ∪ F) > f .

Fault Tolerance in Distributed Systems using Fused State Machines 7

Definition 3 (Fusion) Given a set ofn machinesP, we re-
fer to the set ofm machinesF , as an(f , m)-fusionof P, if
dmin(P ∪ F) > f .

Any machine belonging toF is referred to as afused
backupor just afusion. Consider the set of machines,P =
{A, B,C}, shown in Fig. 1. From Fig. 3 (ii), dmin({A, B,C}) =
1. Hence the set of machinesP, cannot correct a single fault.
To generate a set of machinesF , such that,P ∪ F can correct
two faults, consider Fig. 3 (v). Sincedmin({A, B,C, F1, F2}) =
3, {A, B,C, F1, F2} can correct two faults. Hence,{F1, F2} is
a (2, 2)-fusion of{A, B,C}. Note that the set of machines in
{A,A, B, B,C,C}, i.e., replication, is a (2, 6)-fusion of{A, B,C}.

Any machine in the set{A, B,C, F1, F2} can at most con-
tribute a value of one to the weight of any edge in the graph
G({A, B,C, F1, F2}). Hence, even if we remove one of the ma-
chines, sayF2, from this set,dmin({A, B,C, F1}) is greater than
one. So{F1} is an (1, 1)-fusion of{A, B,C}.

Theorem 3 (Subset of a Fusion) Given a set of n machines
P, and an (f , m)-fusionF , corresponding to it, any subset
F ′ ⊆ F such that|F ′| = m− t is a (f − t, m− t)-fusion when
t ≤ min(f ,m).

Proof Since,F is an (f , m)-fusion ofP, dmin(P ∪ F) > f .
Any machine,F ∈ F , can at most contribute a value of one
to the weight of any edge of the graph,G(P ∪ F). Therefore,
even if we removet machines from the set of machines inF ,
dmin(P ∪ F) > f − t. Hence, for any subsetF ′ ⊆ F , of size
m− t, dmin(P ∪ F ′) > f − t. This implies thatF ′ is an (f − t,
m− t)-fusion ofP.

It is important to note that the converse of this theorem
is not true. In Fig. 2, while{M2} and{F1} are (1, 1)-fusions
of {A, B,C}, sincedmin({A, B,C,M2, F1}) = 2, {M2, F1} is not
a (2, 2)-fusion of{A, B,C}. We now consider the existence
of an (f , m)-fusion for a given set of machinesP. Consider
the existence of a (2, 1)-fusion for{A, B,C} in Fig. 2. From
Fig. 3 (ii), dmin({A, B,C}) = 1. Clearly,R covers each pair of
edges in the fault graph. Even if we addR to this set, from
Fig. 3 (iii), dmin({A, B,C,R}) < 3. Hence, there cannot exist a
(2, 1)-fusion for{A, B,C}.

Theorem 4 (Existence of Fusions) Given a set of n machines
P, there exists an (f , m)-fusion ofP iff m+ dmin(P) > f .

Proof (⇒) Assume that there exists an (f , m)-fusionF for
the given set of machinesP. Since,F is an (f , m)-fusion
fusion ofP, dmin(P ∪ F) > f . Them machines inF , can at
most contribute a value ofm to the weight of each edge in
G(P ∪ F). Hence,m+ dmin(P) has to be greater thanf .

(⇐) Assume thatm+ dmin(P) > f . Consider a set ofm
machinesF , containingm copies of theRCP. These copies
contribute exactlym to the weight of each edge inG(P ∪ F).
Since,dmin(P) > f −m, dmin(P ∪ F) > f . Hence,F is an (f ,
m)-fusion ofP.

Given a set of machines, we now define an order among
(f , m)-fusions corresponding to them.

Definition 4 (Order among (f , m)-fusions) Given a set ofn
machinesP, an (f , m)-fusionF = {F1, ..Fm}, is less than
another (f , m)-fusionG, i.e,F < G, iff the machines inG
can be ordered as{G1,G2, ..Gm} such that∀1 ≤ i ≤ m : (Fi ≤

Gi) ∧ (∃ j : F j < G j).

An (f , m)-fusionF is minimal, if there exists no (f , m)-
fusionF ′, such that,F ′ < F . It can be seen that,

dmin({A, B,C,M2, F2}) = 3,

and hence,F ′ = {M2, F2} is a (2, 2)-fusion of{A, B,C}. We
have seen thatF = {F1, F2}, is a (2, 2)-fusion of{A, B,C}.
From Fig. 2, sinceF1 < M2, F < F ′. In Fig. 2, sinceR⊥
cannot be a fusion for{A, B,C}, there exists no (2, 2)-fusion
less than{F1, F2}. Hence,{F1, F2} is a minimal (2, 2)-fusion
of {A, B,C}.

We now prove a property of the fusion machines that is
crucial for practical applications. Consider a set of primaries
P and an (f , m)-fusion F corresponding to it. The client
sends updates addressed to the primaries to all the backups
as well. We show that events or inputs that belong to distinct
set of primaries, can be received in any order at each of the
fused backups. This eliminates the need for synchrony at the
backups.

Consider a fusionF ∈ F . Since the states ofF are es-
sentially partitions of the state set of theRCP, the state tran-
sitions ofF are defined by the state transitions of theRCP.
For example, machineM1 in Fig. 2 transitions from{r0, r2}

to {r1, r3} on event 1, becauser0 andr2 transition tor1 and
r3 respectively on event 1. Hence, if we show that the state
of the RCP is independent of the order in which it receives
events addressed to different primaries, then the same applies
to the fusions.

Theorem 5 (Commutativity) The state of a fused backup af-
ter acting on a sequence of events, is independent of the order
in which the events are received, as long as the events belong
to distinct sets of primaries.

Proof We first prove the theorem for theRCP, which is also a
valid fused backup. Let the set of primaries beP = {P1 . . .Pn}.
Consider an eventei that belongs to the set of primariesSi ⊆

P. If the RCPis in stater, its next state transition on eventei

depends only on the transition functions of the primaries in
Si . Hence, the state of theRCPafter acting on two eventsea

andeb is independent of the order in which these events are
received by theRCP, as long asSa ∪ Sb = φ. The proof of
the theorem follows directly from this.

So far, we have presented the framework to understand
fault tolerance among machines. Given a set of machines,
we can determine if they are a valid set of backups by con-
structing the fault graph of those machines. In the following

8 Bharath Balasubramanian, Vijay K. Garg

section, we present a technique to generate such backups au-
tomatically.

4 Algorithm to Generate Fused Backup Machines

Given a set ofn primariesP, we present an algorithm to gen-
erate an (f , f)-fusionF of P. The number of faults to be
corrected,f , is an input parameter based on the system’s re-
quirements. The algorithm also takes as input two parameters
△s and△e and ensures (if possible) that each machine inF
has at most (N−△s) states and at most (|Σ|−△e) events, where
N andΣ are the number of states and events in theRCP. Fur-
ther, we show thatF is a minimal fusion ofP. The algorithm
has time complexity polynomial inN.

ThegenFusionalgorithm executesf iterations and in each
iteration adds a machine toF that increasesdmin(P ∪ F) (re-
ferred to asdmin) by one. At the end off iterations,dmin in-
creases tof + 1 and henceP ∪ F can correctf faults. The
algorithm ensures that the backup selected in each iteration is
optimized for states and events. In the following paragraphs,
we explain thegenFusionalgorithm in detail, followed by an
example to illustrate its working.

In each iteration of thegenFusionalgorithm (Outer Loop),
we first identify the set of weakest edges inP ∪ F and then
find a machine that covers these edges, thereby increasing
dmin by one. We start with theRCP, since it always increases
dmin. The ‘State Reduction Loop’ and the ‘Event Reduction
Loop’ successively reduce the states and events of theRCP.
Finally the ‘Minimality Loop’ searches as deep into the closed
partition set of theRCPas possible for a reduced state ma-
chine, without explicitly constructing the lattice.

State Reduction Loop: This loop uses thereduceStateal-
gorithm in Fig. 4 to iteratively generate machines with fewer
states than theRCPthat increasedmin by one. ThereduceS-
tatealgorithm, takes as input, a machineP and generates a set
of machines in which at least two states ofP are combined.
For each pair of statessi , sj in XP, thereduceStatealgorithm,
first creates a partition of blocks in which (si , sj) are com-
bined and then constructs the largest machine consistent with
this partition. Note that, ‘largest’ is based on the order spec-
ified in section 3.2. This procedure is repeated for all pairs
in XP and the largest incomparable machines among them
are returned. At the end of△s iterations of the state reduc-
tion loop, we generate a set of machinesM each of which
increasesdmin by one and contains at most (N − △s) states, if
such machines exist.

Event Reduction Loop: Starting with the state reduced
machines inM, the event reduction loop uses thereduceEvent
algorithm in Fig. 4 to generate reduced event machines that
increasedmin by one. ThereduceEventalgorithm, takes as
input, a machineP and generates a set of machines that con-
tain at least one event less thanΣP. To generate a machine
less than any given input machineP, that does not contain an

eventσ in its event set, thereduceEventalgorithm combines
the states such that they loop onto themselves onσ. The algo-
rithm then constructs the largest machine that contains these
states in the combined form. This machine, in effect, ignores
σ. This procedure is repeated for all events inΣP and the
largest incomparable machines among them are returned. At
the end of△e iterations of the event reduction loop, we gener-
ate a set of machinesM each of which increasesdmin by one
and contains at most (N − △s) states and at most (|Σ| − △e)
events, if such machines exist.1

Minimality Loop: This loop picks any machineM among
the state and event reduced machines inM and uses there-
duceStatealgorithm iteratively to generate a machine less
thanM that increasesdmin by one until no further state reduc-
tion is possible i.e., all the states ofM have been combined.
Unlike the state reduction loop (which also uses thereduceS-
tatealgorithm), in the minimality loop we never exhaustively
explore all state reduced machines. After each iteration of
the minimality loop, we only pickonemachine that increases
dmin by one.

Note that, in all three of these inner loops, if in any iter-
ation, no reduction is achieved, then we simply exit the loop
with the machines generated in the previous iteration. We use
the example in Fig. 2 withP = {A, B,C}, f = 2,△s = 1 and
△e = 1, to explain thegenFusionalgorithm. Sincef = 2,
there are two iterations of the outer loop and in each itera-
tion we generate one machine. Consider the first iteration of
the outer loop. Initially,F is empty and we need to add a
machine that covers the weakest edges inG({A, B,C}).

To identify the weakest edges, we need to identify the
mapping between the states of theRCPand the states of the
primaries. For example, in Fig. 2, we need to map the states of
theRCPto A. The starting states are always mapped to each
other and hencer0 is mapped toa0. Now r0 on event 0 tran-
sitions tor2, while a0 on event 0 transitions toa1. Hence,r2

is mapped toa1. Continuing this procedure for all states and
events, we obtain the mapping shown, i.e,a0 = {r0, r1, r5, r6}

anda1 = {r2, r3, r4, r7}. Following this procedure for all pri-
maries, we can identify the weakest edges inG({A, B,C})
(Fig. 3 (ii)). In Fig. 2,M1, M2 andF2 are some of the largest
incomparable machines that contain at least one state less
than theRCP (the entire set is too large to be enumerated
here). All three of these machines increasedmin and at the
end of the one and only iteration of the state reduction loop,
M will contain at least these three machines.

The event reduction loop tries to find machines with fewer
events than the machines inM. For example, to generate a
machine less thanM2 that does not contain, say event 2, the
reduceEventalgorithm combines the blocks ofM2 such that
they do not transition on event 2. Hence,{r0, r2} in M2 is
combined with{r4, r5} and{r1, r3} is combined with{r6, r7}

1 In Appendix A, we present the concept of the event-based decom-
position of machines to replace a given machineA with a set of ma-
chines that contain fewer events thanΣA.

Fault Tolerance in Distributed Systems using Fused State Machines 9

genFusion

Input : PrimariesP, faults f , state-reduction parameter△s,

event-reduction parameter△e;

Output : (f , f)-fusion ofP;

F ← {};

//Outer Loop

for (i = 1 to f)

Identify weakest edges in fault graphG(P ∪ F);

M← {RCP(P)};

//State Reduction Loop

for (j = 1 to△s)

S ← {};

for (M ∈ M)

S = S ∪ reduceState(M);

M = All machines inS that incrementdmin(P ∪ F);

//Event Reduction Loop

for (j = 1 to△e)

E ← {};

for (M ∈ M)

E = E ∪ reduceEvent(M);

M = All machines inE that incrementdmin(P ∪ F);

//Minimality Loop

M ← Any machine inM;

while (all states ofM have not been combined)

C ← reduceState(M);

M= Any machine inC that incrementsdmin(P ∪ F);

F ← {M}
⋃
F ;

return F ;

reduceState

Input : MachineP with state setXP, event setΣP

and transition functionαP;

Output : Largest Machines< P with ≤ |XP| − 1 states;

B = {};

for (si , sj ∈ XP)

//combine statessi andsj

Set of states,XB = XP with (si , sj) combined;

B = B ∪ {Largest machine consistent withXB};

return largest incomparable machines inB;

reduceEvent

Input : MachineP with state setXP, event setΣP

and transition functionαP;

Output : Largest Machines< P with ≤ |ΣP| − 1 events;

B = {};

for (σ ∈ ΣP)

Set of states,XB = XP;

//combine states to self-loop onσ

for (s ∈ XB)

s= s∪ αP(s, σ);

B = B ∪ {Largest machine consistent withXB};

return largest incomparable machines inB;

Fig. 4 Algorithm to generate an (f , f)-fusion for a given set of primariesP. Note that, we use the termslargest, incomparablew.r.t the order defined
in section 3.2.

to generate machineF1 that does not act on event 2. The only
machine less thanM2 that does not act on event 1 isR⊥. Since
the reduceEventalgorithm returns the largest incomparable
machines, onlyF1 is returned whenM2 is the input. Sim-
ilarly, with M1 as input, thereduceEventalgorithm returns
{C, F1} and withF2 as input it returnsR⊥. Among these ma-
chines onlyF1 increasesdmin. For example,C does not cover
the weakest edge (r0, r1) of G(P). Hence, at the end of the
one and only iteration of the event reduction loop,M = {F1}.

As there exists no machine less thanF1, that increases
dmin, at the end of the minimality loop,M = F1. Similarly,
in the second iteration of the outer loopM = F2 and the
genFusionalgorithm returns{F1, F2} as the fusion machines
that increasesdmin to three. Hence, using thegenFusionalgo-
rithm, we have automatically generated the backupsF1 and
F2 shown in Fig. 1. Note that, in the worst case, there may ex-
ist no efficient backups and thegenFusionalgorithm will just
return a set off copies of theRCP. However, our results in
section 7 indicate that for many examples, efficient backups
do exist.

4.1 Properties of thegenFusionAlgorithm

In this section, we prove properties of thegenFusionalgo-
rithm with respect to: (i) the number of fusion/backup ma-
chines (ii) the number of states in each fusion machine, (iii)
the number of events in each fusion machine and (iv) the min-
imality of the set of fusion machinesF . We first introduce
concepts that are relevant to the proof of these properties.

Lemma 1 Given a set of primary machinesP, dmin(P) = 1.

Proof Given the state of all the primary machines, the state
of the RCPcan be uniquely determined. Hence, there is at
least one machine among the primaries that distinguishes be-
tween each pair of states in theRCP and so,dmin(P) ≥ 1.
In section 2, we assume that the set of machines inP can-
not correct a single fault and this implies that,dmin(P) ≤ 1.
Hence,dmin(P) = 1.

Lemma 2 Given a set of primary machinesP, let F ′ be an
(f , f)-fusion ofP. Each fusion machine F∈ F ′ has to cover
the weakest edges in G(P).

10 Bharath Balasubramanian, Vijay K. Garg

Proof From lemma 1, the weakest edges ofG(P) have weight
equal to one. SinceF ′ is an (f , f)-fusion ofP, dmin(P∪F ′) >
f . Also, each machine inF ′ can increase the weight of any
edge by at most one. Hence, all thef machines inF ′ have to
cover the weakest edges inG(P).

Let the weakest edges ofG(P ∪ F) at the start of theith

iteration of the outer loop of thegenFusionalgorithm be de-
notedEi . In the following lemma, we show that the set of
weakest edges only increases with each iteration.

Lemma 3 In thegenFusionalgorithm, for any two iterations
i and j, if i < j, then Ei ⊆ E j .

Proof Let the value ofdmin for the ith iteration bed and the
edges with this weight beEi . Any machine added toF can
at most increase the weight of each edge by one and it has
to increase the weight of all the edges inEi by one. So,dmin

for the (i + 1)th iteration isd + 1 and the weight of the edges
in Ei will increase tod + 1. Hence,Ei will be among the
weakest edges in the (i + 1)th iteration, or in other words,
Ei ⊆ Ei+1. This trivially extends to the result: for any two
iterations numberedi and j of the genFusionalgorithm, if
i < j, thenEi ⊆ E j .

We now prove one of the main theorems of this paper.

Theorem 6 (Fusion Algorithm) Given a set of n machinesP,
thegenFusionalgorithm generates a set of machinesF such
that:

1. (Correctness)F is an (f , f)-fusion ofP.
2. (State&Event Efficiency) If each machine inF has greater

than(N−△s) states and(|Σ| − △e) events, then no (f , f)-
fusion ofP contains a machine with less than or equal to
(N − △s) states and(|Σ| − △e) events.

3. (Minimality)F is a minimal (f , f)-fusion ofP.

Proof 1. From lemma 1,dmin(P) = 1. Starting with the
RCP, which always increasesdmin by one, we add one
machine in each iteration toF that increases bydmin(P∪
F) by one. Hence, at the end off iterations of thegen-
Fusionalgorithm, we add exactlyf machines toF that
increasedmin to f + 1. Hence,F is an (f , f)-fusion ofP.

2. Assume that each machine inF has greater than (N−△s)
states and (|Σ| − △e) events. Let there be another (f , f)-
fusion ofP that contains a machineF′ with less than or
equal to (N−△s) states and (|Σ|−△e) events. From lemma
2, F′ covers the weakest edges inG(P). However, in the
first iteration of the outer loop, thegenFusionalgorithm
searches exhaustively for a fusion with less than or equal
to (N − △s) states and (|Σ| − △e) events that covers the
weakest edges inG(P). Hence, if such a machineF′ ex-
isted, then the algorithm would have chosen it.

3. Let there be an (f , f)-fusionG = {G1, ..G f } of P, such
that G is less than (f , f)-fusion F = {F2, F1, ..., F f }.

Hence∀ j : G j ≤ F j . Let Gi < Fi and letEi be the set
of edges that needed to be covered byFi . It follows from
the genFusionalgorithm, thatGi does not cover at least
one edge saye in Ei (otherwise the algorithm would have
returnedGi instead ofFi). From lemma 3, it follows that
if e is covered byk machines inF , thene has to be cov-
ered byk machines inG. We know that there is a pair
of machinesFi ,Gi such thatFi coverse andGi does not
covere. For all other pairsF j,G j if G j coverse thenF j

coverse (sinceG j ≤ F j). Hencee can be covered by no
more thank− 1 machines inG. This implies thatG is not
(f , f)-fusion.

4.2 Time Complexity of thegenFusionAlgorithm

The time complexity of thegenFusionalgorithm is the sum
of the time complexities of the inner loops multiplied by the
number of iterations,f . We analyze the time complexity of
each of the inner loops. Let the set of machines inM at the
start of theith iteration of the outer loop be denotedMi .

State Reduction Loop: The time complexity of the state
reduction loop for theith iteration of the outer loop isT1+T2,
whereT1 is the time complexity to reduce the states of the
machines inMi andT2 is the time complexity to find the ma-
chines amongS that incrementdmin. First, let us considerT1.
Note that, initiallyM, i.e,M1, contains only theRCPwith
O(N) states and for any iteration of the state reduction loop,
each of the machines inMi hasO(N) states. Given a machine
M with O(N) states, thereduceStatealgorithm generates ma-
chines with fewer states thanM. For each pair of states in
M, the time complexity to generate the largest closed par-
tition that contains these states in a combined block is just
O(N|Σ|). Since there areO(N2) pairs of states inM, the time
complexity of thereduceStatealgorithm isO(N3|Σ|). Hence,
T1 = O(|Mi |N3|Σ|).

Now, we considerT2. Since, there areO(N2) pairs of
states in each machine inMi , the reduceStatealgorithm re-
turnsO(N2) machines. So,|S| = O(N2|Mi |). Since there are
O(N2) nodes in the fault graph ofG(P ∪ F), given any ma-
chine inS, the time complexity to check if it incrementsdmin

is O(N2). Hence,T2 = O(|S|N2) = O(N4|Mi |). So, the time
complexity of each iteration of the state reduction loop is
T1 + T2 = O(|Mi |N3|Σ| + N4|Mi |).

Since thereduceStatealgorithm generatesO(N2) machines
per machine inMi , |Mi+1| = N2|Mi |. In the first iterationM
just contains theRCPand |M1| = 1. Hence, the time com-
plexity of the state reduction loop is,O((N3|Σ|+N4)(1+N2+

N4 . . . + N2(△s−1))) = O((N3|Σ| + N4)(N2△s−1
N2−1) (the series is a

geometric progression). This reduces toO(N△s+1|Σ|+N△s+2).
Also,M containsO(N2△s) machines at the end of the state
reduction loop.

Event Reduction Loop: The time complexity analysis for
the event reduction loop is similar, except for the fact thatthe

Fault Tolerance in Distributed Systems using Fused State Machines 11

reduceEventalgorithm iterates through|Σ| events of the each
machine inM and returnsO(|Σ|) machines per machine in
M. Also, while the state reduction loop starts with just one
machine inM, the event reduction loop starts withO(N2△s)
machines inM. Hence, the time complexity of each iteration
of the event reduction loop isO((N|Σ|2 + N2|Σ|)(N2△s)(1 +
|Σ|+ |Σ|2 . . .+ |Σ|△e−1)) = O((N|Σ|2+N2|Σ|)(N2△s)(|Σ |

△e−1
|Σ |−1)) =

O(N△s+1|Σ|△e+1 + N△s+2|Σ|△e).
Minimality Loop: In the minimality loop, we use there-

duceStatealgorithm, but only select one machine per itera-
tion. Also, in each iteration of the minimality loop, the num-
ber of states inM is at least one less than than the number
of states inM for the previous iteration. Hence, the minimal-
ity loop executesO(N) iterations with total time complexity,
O((N3|Σ| + N4)(N)) = O(N4|Σ| + N5).

Since there aref iterations of the outer loop, the time
complexity of thegenFusionalgorithm is,

O(f N△s+1|Σ| + f N△s+2+

f N△s+1|Σ|△e+1 + f N△s+2|Σ|△e+ f N4|Σ| + f N5)

This reduces to,

O(f N△s+1|Σ|△e+1 + f N△s+2|Σ|△e+ f N4|Σ| + f N5)

Observation 1 For parameters△s= 0 and△e= 0, thegen-
Fusionalgorithm generates a minimal (f , f)-fusion ofP with
time complexity O(f N4|Σ|+ f N5), i.e., the time complexity is
polynomial in the number of states of the RCP.

If there aren primaries each withO(s) states, thenN is
O(sn). Hence, the time complexity of thegenFusionalgo-
rithm reduces toO(sn|Σ| f). Even though the time complexity
of generating the fusions is exponential inn, note that the fu-
sions have to be generated only once. Further, in Appendix
B, we present an incremental approach for the generation
of fusions that improves the time complexity by a factor of
O(ρn) for constant values ofρ, whereρ is the average state
reduction achieved by fusion, i.e., (Number of states in the
RCP/Average number of states in each fusion machine).

5 Detection and Correction of Faults

In this section, we provide algorithms to detect Byzantine
faults with time complexityO(n f), on average, and correct
crash/Byzantine faults with time complexityO(nρ f), with
high probability, wheren is the number of primaries,f is the
number of crash faults andρ is the average state reduction
achieved by fusion. Throughout this section, we refer to Fig.
2, with primaries,P = {A, B,C} and backupsF = {F1, F2},
that can correct two crash faults. The execution state of the
primaries is represented collectively as an-tuple (referred to
as theprimary tuple) while the state of each backup/fusion
is represented as the set of primary tuples it corresponds to

(referred to as thetuple-set). In Fig. 2, if A, B, C andF1 are
in their initial states, then the primary tuple isa0b0c0 and the
state ofF1 is f 0

1 = {a
0b0c0, a1b0c1, a1b1c0, a0b1c1} (which

corresponds to{r0, r2, r4, r5}).

5.1 Detection of Byzantine Faults

Given the primary tuple and the tuple-sets corresponding to
the fusion states, thedetectByzalgorithm in Fig. 5 detects
up to f Byzantine faults (liars). Assuming that the tuple-set
of each fusion state is stored in a permanent hash table at
the recovery agent, thedetectByzalgorithm simply checks
if the primary tupler is present in each backup tuple-setb.
In Fig. 2, if the states of machinesA, B, C, F1 and F2 are
a1, b1, c0, f 1

1 and f 1
2 respectively, then the algorithm flags

a Byzantine fault, sincea1b1c0 is not present in eitherf 1
1 =

{a0b1c0, a1b1c1, a0b0c1, a1b0c0} or f 1
2 = {a

0b1c0, a1b0c1}.
To show thatr is not present in at least one of the backup

tuple-sets inB when there are liars, we make two observa-
tions. First, we are only concerned about machines that lie
within their state set. For example, in Fig. 2, suppose the true
state ofF2 is f 0

2 . To lie, if F2 says it state is any number apart
from f 1

2 , f 2
2 and f 3

2 , then that can be detected easily.
Second, like the fusion states, each primary state can be

expressed as a tuple-set that contains theRCP states it be-
longs to. Immaterial of whetherr is correct or incorrect (with
liars), it will be present in all the truthful primary states. For
example, in Fig. 2, if the correct primary tuple isa0b0c0 then
a0 = {a0b0c0, a0b1c0, a0b1c1, a0b0c1} containsa0b0c0. If B
lies, then the primary tuple will bea0b1c0, which is incorrect.
Clearly,a0 contains this incorrect primary tuple as well.

Theorem 7 Given a set of n machinesP and an (f , f)-fusion
F corresponding to it, thedetectByzalgorithm detects up to
f Byzantine faults among them.

Proof Let r be the correct primary tuple. Each primary tuple
is present in exactly one fusion state (the fusion states parti-
tion theRCPstates), i.e, the correct fusion state. Hence, the
incorrect fusion states (liars) will not containr and the fault
will be detected. Ifr is incorrect (with liars), then for the fault
to go undetected,r must be present in all the fusion states.

If rc is the correct primary tuple, then the truthful fusion
states have to containrc as well, which implies that they con-
tain{r, rc} in the same tuple-set. As observed above, the truth-
ful primaries will also contain{r, rc} in the same tuple-set. So
the execution state of all the truthful machines contain{r, rc}

in the same tuple-set. Hence less than or equal tof machines,
i.e, the liars, can containr andrc in distinct tuple-sets. This
contradicts the fact thatF is a (f , f)-fusion with greater than
f machines separating each pair ofRCPstates.

We consider the space complexity for maintaining the
hash tables at the recovery agent. Note that, the space com-
plexity to maintain a hash table is simply the number of points

12 Bharath Balasubramanian, Vijay K. Garg

detectByz

Input : set of f fusion statesB, primary tupler;

Output : true if there is a Byzantine fault andfalseif not;

for (b ∈ B)

if ¬(hashtable(b) · contains(r))

return true;

return false;

correctCrash

Input : set of available fusion statesB, primary tupler,

faults among primariest;

Output : corrected primaryn-tuple;

D← {} //list of tuple-sets

//find tuples inb within Hamming distancet of r

for (b ∈ B)

S← lsh tables(b) · search(r, t);

D · add(S);

return Intersection of sets inD;

correctByz

Input : set of f fusion statesB, primary tupler;

Output : corrected primaryn-tuple;

D← {} //list of tuple-sets

//find tuples inb within Hamming distance⌊ f /2⌋ of r

for (b ∈ B)

S← lsh tables(b) · search(r, ⌊ f /2⌋);

D · add(S);

G← Set of tuples that appear inD;

V← Vote array of size|G|;

for (g ∈ G)

// get votes from fusions

V[g] ← Number of timesg appears inD;

// get votes from primaries

for (i = 1 to n)

if (r[i] ∈ g)

V[g] + +;

return Tupleg such thatV[g] ≥ n+ ⌊ f /2⌋;

Fig. 5 Detection and correction of faults.

in the hash table multiplied by the size of each point. In our
solution we hash the tuples belonging to the fusion states. In
each fusion machine, there areN such tuples, since the fusion
states partition the states of theRCP. Each tuple containsn
primary states each of size logs, wheres is the maximum
number of states in any primary. For example,a0b1c0 in f 1

1
contains three primary states (n = 3) and since there are two
states inA (s = 2) we need just one bit to represent it. Since
there aref fusion machines, we hash a total ofN f points,
each of sizeO(n log s). Hence, the space complexity at the
recovery agent isO(N f nlog s).

Since each fusion state is maintained as a hash table, it
will take O(n) time (on average) to check if a primary tu-
ple with n primary states is present in the fusion state. Since
there aref fusion states, the time complexity for thedetect-
Byzalgorithm isO(n f) on average. Even for replication, the
recovery agent needs to compare the state ofn primaries with
the state of each of itsf copies, with time complexityO(n f).
In terms of message complexity, in fusion, we need to ac-
quire the state ofn + f machines to detect the faults, while
for replication, we need to acquire the state of 2n f machines.

5.2 Correction of Faults

Given a primary tupler and the tuple-set of a fusion state,
say b, consider the problem of finding the tuples inb that
are within Hamming distancef of r. This is the key con-
cept that we use for the correction of faults, as explained
in sections 5.2.1 and 5.2.2. In Fig. 2, the tuples inf 0

1 =

{a0b0c0, a1b0c1, a1b1c0, a0b1c1} that are within Hamming dis-
tance one of a primary tuplea0b0c1 area0b0c0, a1b0c1 and

a0b1c1. An efficient solution to finding the points among a
large set within a certain Hamming distance of a query point
is locality sensitive hashing(LSH) [1,12]. Based on this, we
first selectL hash functions{g1 . . .gL} and for eachg j we
associate an ordered set (increasing order) ofk numbersC j

picked uniformly at random from{0 . . .n}. The hash function
g j takes as input ann-tuple, selects the coordinates from them
as specified by the numbers inC j and returns the concate-
nated bit representation of these coordinates. At the recovery
agent, for each fusion state we maintainL hash tables, with
the functions selected above, and hash each tuple in the fu-
sion state. In Fig. 6 (i), g1 andg2 are associated with the sets
C1 = {0, 1} andC2 = {0, 2} respectively. Hence, the tuple
a1b0c1 of f 0

1 , is hashed into the 2nd bucket ofg1 and the 3rd

bucket ofg2.

Given a primary tupler and a fusion stateb, to find the
tuples amongb that are within a Hamming distancef of r,
we obtain the points found in the bucketsg j(r) for j = 1 . . . L
maintained forb and return those that are within distance of
f from r. In Fig. 6 (i), let r = a0b1c0, f = 2, andb = f 0

1 . The
primary tupler hashes into the 1st bucket ofg1 and the 0th

bucket ofg2 which contains the pointsa0b1c1 anda0b0c0 re-
spectively. Since both of them are withing Hamming distance
two of r, both the points are returned. If we setL = log1−γk δ,
whereγ = 1 − f /n, such that (1− γk)L ≤ δ, then anyf -
neighbor of a pointq is returned with probability at least 1−δ
[1,12]. In the following sections, we present algorithms for
the correction of crash and Byzantine faults based on these
LSH functions.

Fault Tolerance in Distributed Systems using Fused State Machines 13

3
2 (a1b0c1)

1
0 (a0b0c0)

(a0b1c1)

oordinates 0 and 1

are 01

3
2 (a1b1c0)

1
0 (a0b0c0)

(a0b1c1)

(a1b1c0) 3
2
1
0 (a0b0c0)

3 (a1b1c1)

2
1
0 (a0b0c0)

(a1b1c1)(a1b0c1)

(i) Fusion State f 0

1
= {a0b0c0, a1b0c1, a1b1c0, a0b1c1} (ii) Fusion State f 0

2
= {a0b0c0, a1b1c1}

g1 (Coordinates 0 and 1)

g2 (Coordinates 0 and 2) g1 (Coordinates 0 and 1)

g2 (Coordinates 0 and 2)

Fig. 6 LSH example for fusion states in Fig. 2 withk = 2, L = 2.

5.2.1 Crash Correction

Given the primary tuple (with possible gaps due to faults) and
the tuple-sets of the available fusion states, thecorrectCrash
algorithm in Fig. 5 corrects up tof crash faults. The algo-
rithm finds the set of tuple-setsS in each fusion stateb, where
each tuple belonging toS is within a Hamming distancet of
the primary tupler. Here, t is the number of faults among
the primaries. To do this efficiently, we use the LSH tables
of each fusion state. The setS returned for each fusion state
is stored in a listD. If the intersection of the sets inD is
singleton, then we return that as the correct primary tuple.
If the intersection is empty, we need to exhaustively search
each fusion state for points within distancet of r (LSH has
not returned all of them), but this happens with a very low
probability [1,12].

In Fig. 2, assume crash faults inB andC. Given the states
of A, F1 and F2 as a0, f 0

1 and f 0
2 respectively, the tuples

within Hamming distance two ofr = a0.{empty}.{empty}
among statesf 0

1 = {a
0b0c0, a1b0c1, a1b1c0, a0b1c1} and f 0

2 =

{a0b0c0, a1b1c1} are{a0b0c0, a0b1c1} and{a0b0c0} respectively.
The algorithm returns their intersection,a0b0c0 as the cor-
rected primary tuple. In the following theorem, we prove that
thecorrectCrashalgorithm returns a unique primary tuple.

Theorem 8 Given a set of n machinesP and an (f , f)-fusion
F corresponding to it, thecorrectCrashalgorithm corrects
up to f crash faults among them.

Proof Since there aret gaps due tot faults in the primary tu-
ple r, the tuples among the backup tuple-sets within a Ham-
ming distancet of r, are the tuples that containr (definition
of Hamming distance). Let us assume that the intersection
of the tuple-sets among the fusion states containingr is not
singleton. Hence all the available fusion states have at least
two RCPstates,{r i , r j}, that containr. Similar to the proof in
theorem 7, since bothr i andr j containr, these states will be
present in the same tuple-sets of all the available primaries as
well. Hence less than or equal tof machines, i.e, the failed
machines, can containr i and r j in distinct tuple-sets. This
contradicts the fact thatF is an (f , f)-fusion with greater
than f machines separating each pair ofRCPstates.

The space complexity analysis is similar to that for Byzan-
tine detection since we maintain hash tables for each fusion
state and hash all the tuples belonging to them. AssumingL

is a constant, the space complexity of storage at the recovery
agent isO(N f nlog s).

Letρ be the average state reduction achieved by our fusion-
based technique. Each fusion machine partitions the statesof
theRCPand the average size of each fusion machine isN/ρ.
Hence, the number of tuples (or points) in each fusion state
is ρ. This implies that there can beO(ρ) tuples in each fusion
state that are within distancef of r. So, the cost of hashing
r and retrievingO(ρ) n-dimensional points fromO(f) fusion
states inB is O(nρ f) w.h.p (assumingk, L for the LSH tables
are constants). So, the cost of generatingD is O(nρ f) w.h.p.
Also, the number of tuple sets inD is O(ρ f).

In order to find the intersection of the tuple-sets inD in
linear time, we can hash the elements of the smallest tuple-set
and check if the elements of the other tuple-sets are part of
this set. The time complexity to find the intersection among
theO(ρ f) points inD, each of sizen is simplyO(nρ f). Hence,
the overall time complexity of thecorrectCrashalgorithm is
O(nρ f) w.h.p. Crash correction in replication involves copy-
ing the state of the copies of thef failed primaries which
has time complexityθ(f). In terms of message complexity,
in fusion, we need to acquire the state of alln machines that
remain afterf faults. In replication we just need to acquire
the copies of thef failed primaries.

5.2.2 Byzantine Correction

Given the primary tuple and the tuple-sets of the fusion states,
thecorrectByzalgorithm in Fig. 5 corrects up to⌊ f /2⌋Byzan-
tine faults. The algorithm finds the set of tuples among the
tuple-sets of each fusion state that are within Hamming dis-
tance⌊ f /2⌋ of the primary tupler using the LSH tables and
stores them in listD. It then constructs a vote vectorV for
each unique tuple in this list. The votes for each tupleg ∈ V
is the number of times it appears inD plus the number of
primary states ofr that appear ing. The tuple with greater
than or equal ton + ⌊ f /2⌋ votes is the correct primary tu-
ple. When there is no such tuple, we need to exhaustively
search each fusion state for points within distance⌊ f /2⌋ of
r (LSH has not returned all of them). In Fig. 2, let the states
of machinesA, B, C F1 andF2 area0, b1, c0, f 0

1 and f 0
2 re-

spectively, with one liar among them (⌊ f /2⌋ = 1). The tuples
within Hamming distance one ofr = a0b1c0 among f 0

1 =

{a0b0c0, a1b0c1, a1b1c0, a0b1c1} and f 0
2 = {a

0b0c0, a1b1c1} are
{a0b0c0, a1b1c0, a0b1c1} and {a0b0c0} respectively. Here, tu-
ple a0b0c0 wins a vote each fromF1 andF2 sincea0b0c0 is

14 Bharath Balasubramanian, Vijay K. Garg

present inf 0
1 and f 0

2 . It also wins a vote each fromA andC,
since the current states ofA andC, a0 andc0, are present in
a0b0c0. The algorithm returnsa0b0c0 as the true primary tu-
ple, sincen+ ⌊ f /2⌋ = 3+ 1 = 4. We show in the following
theorem that the true primary tuple will always get sufficient
votes.

Theorem 9 Given a set of n machinesP and an (f , f)-fusion
F corresponding to it, thecorrectByzalgorithm corrects up
to ⌊ f /2⌋ Byzantine faults among them.

Proof We prove that the true primary tuple,rc will uniquely
get greater than or equal to (n+ ⌊ f /2⌋) votes. Since there are
less than or equal to⌊ f /2⌋ liars,rc will be present in the tuple-
sets of greater than or equal ton + ⌊ f /2⌋ machines. Hence
the number of votes torc, V[rc] is greater than or equal to
(n+ ⌊ f /2⌋). An incorrect primary tuplerw can get votes from
less than or equal to⌊ f /2⌋ machines (i.e, the liars) and the
truthful machines that contain bothrc and rw in the same
tuple-set. SinceF is an (f , f)-fusion of P, among all the
n + f machines, less thann of them contain{rc, rw} in the
same tuple-set. Hence, the number of votes torw, V[rw] is
less than (n+ ⌊ f /2⌋) which is less thanV[rc].

The space complexity analysis is similar to crash correc-
tion. The time complexity to generateD, same as that for
crash fault correction isO(nρ f) w.h.p. If we maintainG as
a hash table (standard hash functions), to obtain votes from
the fusions, we just need to iterate through thef sets inD,
each containingO(ρ) points of sizen each and check for
their presence inG in constant time. Hence the time com-
plexity to obtain votes from the backups isO(nρ f). Since
the size ofG is O(ρ f), the time complexity to obtain votes
from the primaries is againO(nρ f), giving over all time com-
plexity O(nρ f) w.h.p. In the case of replication, we just need
to obtain the majority acrossf copies of each primary with
time complexityO(n f). The message complexity analysis is
the same as Byzantine detection, because correction can take
place only after acquiring the state of all machines and de-
tecting the fault.

6 Practical use of Fusion in the MapReduce Framework

To motivate the practical use of fusion, we discuss its poten-
tial application to the MapReduce framework which is used
to model large scale distributed computations. Typically,the
MapReduce framework is built using the master-worker con-
figuration where the master assigns the map and reduce tasks
to various workers. While the map tasks perform the actual
computation on the data files received by it as<key, value>
pairs, the reducer tasks aggregate the results according tothe
keys and writes it to the output file.

Note that, in batch processing application for MapRe-
duce, fault tolerance is based on passive replication. So, a

task that failed would simply be restarted on another worker
node. However, our work is targetted towards applications
such as distributed stream processing, with strict deadlines.
Here, active replication is often used for fault tolerance [27,
6]. Hence, tasks are replicated at the beginning of the com-
putation, to ensure that despite failures there are sufficient
workers remaining.

In this paper, we focus on thedistributed grepapplica-
tion based on the MapReduce framework. Given a continu-
ous stream of data files, the grep application checks if every
line of the file matches patterns defined by regular expres-
sions (modeled as DFSMs). Specifically, we assume that the
expressions are ((0+ 1)(0+ 1))*, ((0+ 2)(0+ 2))* and (00)*
modeled byA, B, C shown in Fig. 1. We show using a sim-
ple case study that the current replication based solution re-
quires 1.8 million map tasks while our solution that combines
fusion with replication requires only 1.4 million map tasks.
This results in considerable savings in space and other com-
putational resources.

(i) Replication: 18 Map Tasks

mA mB mC

mA mB mC

mA mB mC

mA mB mC

mA mB mC

mA mB mC

P
ar

ti
ti
on

1
P
ar

ti
ti
on

0

P
ar

ti
ti
on

1
P
ar

ti
ti
on

0

In
p
u
t

F
il
e

P
ar

ti
ti
on

s/
S
tr

ea
m

s

Map Tasks

mA mB mC

mA mB mC

mA mB mC

mF

mF

mA mB mC

(ii) Hybrid: 14 Map Tasks

Fig. 7 Replication vs. Fusion forgrep using the MapReduce frame-
work.

6.1 Existing Replication-based Solution

We first outline a simplified version of a pure replication
based solution to correct two crash faults in Fig. 7 (i). Given
an input file stream, the master splits the file into smaller
partitions (or streams) and breaks these partitions into<file
name, file content> tuples. For each partition, we maintain
three primary map tasksmA, mB andmC that output the lines
that match the regular expressions modeled byA, B andC
respectively. To correct two crash faults, we maintain two ad-
ditional copies of each primary map task for every partition.
The master sends tuples belonging to each partition to the pri-
maries and the copies. The reduce phase just collects all lines
from these map task and passes them to the user. Note that,
the reducer receives inputs from the primaries and its copies
and simply discards duplicate inputs. Hence, the copies help
in both fault tolerance and load-balancing.

Fault Tolerance in Distributed Systems using Fused State Machines 15

When map tasks fail, the state of the failed tasks can be
recovered from one of the remaining copies. From Fig. 7 (ii),
it is clear that each file partition requires nine map tasks. In
such systems, typically, the input files are large enough to
be partitioned into 200,000 partitions [8]. Hence, replication
requires 1.8 million map tasks.

6.2 Hybrid Fusion-based Solution

In this section, we outline an alternate solution based on a
combination of replication and fusion, as shown in Fig. 7
(ii). For each partition, we maintain just one additional copy
of each primary and also maintain one fused map task, de-
notedmF for the entire set of primaries. The fused map task
searches for the regular expression (11)* modeled byF1 in
Fig. 1. Clearly, this solution can correct two crash faults among
the primary map tasks, identical to the replication-based so-
lution. The reducer operation remains identical. The output
of the fused map task is relevant only for fault tolerance and
hence it does not send its output to the reducer. Note that
since there is only one additional copy of each primary, we
compromise on the load balancing as compared to pure repli-
cation. However, we require only seven map tasks as com-
pared to the nine map tasks required by pure replication.

When only one fault occurs among the map tasks, the
state of the failed map task can be recovered from the remain-
ing copy with very little overhead. Similarly, if two faultsoc-
cur acrossthe primary map tasks, i.e.,mA andmB fail, then
their state can be recovered from the remaining copies. Only
in the relatively rare event that two faults occur among the
copies of the same primary, that the fused map task has to be
used for recovery. For example, if both copies ofmA fail, then
mF needs to acquire the state ofmB andmC (any of the copies)
and perform the algorithm for crash correction in 5.2.1 to re-
cover the state ofmA. Considering 200,000 partitions, the hy-
brid approach needs only 1.4 million map tasks which is 22%
lesser map tasks than replication, even for this simple exam-
ple. Note that asn increases, the savings in the number of
map tasks increases even further. This results in considerable
savings in terms of (i) the state space required by these map
tasks (ii) resources such as the power consumed by them.

7 Experimental Evaluation

In this section, we evaluate fusion using the MCNC’91 bench-
marks [30] for DFSMs, widely used for research in the fields
of logic synthesis and finite state machine synthesis [21,31].
In Table 3, we specify the number of states and number of
events/inputs for the benchmark machines presented in our
results. We implemented an incremental version of thegen-
Fusion algorithm (Appendix B) in Java 1.6 and compared
the performance of fusion with replication for 100 different

Table 3 MCNC’ 91 Benchmark Machines

Machines States Events
dk15 4 8
bbara 10 16
mc 4 8
lion 4 4

bbtas 6 4
tav 4 16

modulo12 12 2
beecount 7 8
shiftreg 8 2

combinations of the benchmark machines, withn = 3, f = 2,
△e= 3 and present some of the results in Table 4. The imple-
mentation with detailed results are available in [3].

Let the primaries be denotedP1, P2 andP3 and the fused-
backupsF1 andF2. Column 1 of Table 4 specifies the names
of three primary DFSMs. Column 2 specifies the backup space
required for replication (

∏1=3
i=1 |Pi |

f) , column 3 specifies the
backup space for fusion (

∏i=2
i=1 |Fi |) and column 4 specifies

the percentage state space savings ((column 2-column 3)*
100/column 2). Column 5 specifies the total number of pri-
mary events, column 6 specifies the average number of events
acrossF1 andF2 and the last column specifies the percentage
reduction in events ((column 5-column 6)*100/column 5).

For example, consider the first row of Table 4. The pri-
mary machines are the ones named dk15, bbara and mc. Since
the machines have 4, 10 and 4 states respectively (Table 3),
the replication state space forf = 2, is the state space for
two additional copies of each of these machines, which is
(4∗10∗4)2 = 25600. The two fusion machines generated for
this set of primary machines each had 140 states and hence,
the total state space for fusion as a solution is 19600. For the
benchmark machines, the events are binary inputs. For ex-
ample, as seen in Table 3, dk15 contains eight events. Hence,
the event set of dk15= {0, 1, . . . , 7}. The event sets of the pri-
maries is the union of the event set of each primary. So, for
the first row of Table 4, the primary event set is{0, 1, . . .15}.
In this example, both fusion machines had 10 events and
hence, the average number of fusion events is 10.

The average state space savings in fusion (over replica-
tion) is 38% (with range 0-99%) over the 100 combination
of benchmark machines, while the average event-reduction
is 4% (with range 0-45%). We also present results in [3] that
show that the average savings in time by the incremental ap-
proach for generating the fusions (over the non-incremental
approach) is 8%. Hence, fusion achieves significant savings
in space for standard benchmarks, while the event-reduction
indicates that for many cases, the backups will not contain a
large number of events.

16 Bharath Balasubramanian, Vijay K. Garg

Table 4 Evaluation of Fusion on the MCNC’91 Benchmarks

Machines Replication
State Space

Fusion State
Space

% Savings
State Space

Primary
Events

Fusion
Events

% Reduction
Events

dk15, bbara, mc 25600 19600 23.44 16 10 37.5
lion, bbtas, mc 9216 8464 8.16 8 7 12.5

lion, tav, modulo12 36864 9216 75 16 16 0
lion, bbara, mc 25600 25600 0 16 9 43.75

tav, beecount, lion 12544 10816 13.78 16 16 0
mc, bbtas, shiftreg 36864 26896 27.04 8 7 12.5

tav, bbara, mc 25600 25600 0 16 16 0
dk15, modulo12, mc 36864 28224 23.44 8 8 0
modulo12, lion, mc 36864 36864 0 8 7 12.5

8 Discussion: Backups Outside the Closed Partition Set

So far in this paper, we have only considered machines that
belong to the closed partition set. In other words, given a
set of primariesP, our search for backup machines was re-
stricted to those that are less than theRCPof P, denoted by
R. However, it is possible that efficient backup machines ex-
ist outsidethe lattice, i.e., among machines that are not less
than or equal toR. In this section, we present a technique to
detect if a machine outside the closed partition set ofR can
correct faults among the primaries. Given a set of machines
in F each less than or equal toR, we can determine ifP ∪ F
can correct faults based on thedmin ofP ∪ F (section 3.3). To
find dmin, we first determine the mapping between the states
of R to the states of each of the machines inF . However,
given a set of machines inG that are not less than or equal to
R, how do we generate this mapping?

To determine the mapping between the states ofR to the
states of the machines inG, we first generate theRCP of
{R} ∪ G, denotedB, which is be greater than all the machines
in {R} ∪ G. Hence, we can determine the mapping between
the states ofB and the states of all the machines in{R} ∪ G.
Given this mapping, we can determine the (non-unique) map-
ping between the states ofR and the states of the machines
in G. This enables us to determinedmin(R, {R} ∪ G). If this
dmin is greater thanf , thenG can correctf crash or⌊ f /2⌋
Byzantine faults among the machines inP.

Consider the example shown in Fig. 8. Given the set of
primaries{A, B,C} shown in Fig. 1, we want to determine if
G can correct one crash fault among{A, B,C}. SinceG is out-
side the closed partition set ofR, we first constructB, which
is theRCPof G andR. SinceB is greater than bothR andG,
we can determine how its states are mapped to the states ofR
andG (similar to Fig. 2). For example,b0 andb8 are mapped
to r0 in R, while b0 and b9 are mapped tog0 in G. Using
this information, we can determine the mapping between the
states ofR andG. For example, sinceb0 andb9 are mapped
to r0 andr2 respectively,g0 = {r0, r2}. Extending this idea,
we get:

g1 = {r1, r3}; g2 = {r6, r7}; g3 = {r4, r5}; g4 = {r0, r2}

2

b8

00

b9

b6

0

0

0

0

0

b4
0

2 2

1

1

1

1

2 2

1

1

2 2 2

0 1

1

b7 b5

0

b3b1

R

b0, b8 b2, b9

b6, b7

b4, b5

2

2

1

1

1
1

b0, b9 b1, b3

2

b2, b8

0

g2

g3

g4

g10 1

g0

2

2

B

r2 r3

r5r7

r1

r4 r6

r0

G

2

0

0

0

0

b4
0

2 2

1

1

1

1

2

1

1

2 2

0 1

1

b7 b5

0

b0 b2b1

b6

22

b3
1

1

0

1

2

2

Fig. 8 Machine outside the closed partition set ofR in Fig. 2.

In Fig. 3 (ii), the weakest edges ofG({A, B,C}) are (r0, r1)
and (r2, r3) (the other weakest edges not shown). SinceG sep-
arates all these edges, it can correct one crash fault among
the machines in{A, B,C}. However, note that, the machines
in {A, B,C} cannot correct a fault inG. For example, ifG
crashes andR is in stater0, we cannot determine ifG was in
stateg0 or g4. This is clearly different from the case of the
fusion machines presented in this paper, where faults could
be corrected amongbothprimaries and backups.

9 Related Work

Our work in [5] introduces the concept of the fusion of DF-
SMs, and presents an algorithm to generate a backup to cor-
rect one crash fault among a given set of machines. This
paper is based on our work in [22,4]. The work presented
in [11,2,10] explores fault tolerance in distributed systems
with programs hosting large data structures. The key idea
there is to use erasure/error correcting codes [7] to reduce the
space overhead of replication. Even in this paper, we exploit
the similarity between fault tolerance in DFSMs and fault
tolerance in a block of bits using erasure codes in section
3.3. However, there is one important difference between era-
sure codes involving bits and the DFSM problem. In erasure

Fault Tolerance in Distributed Systems using Fused State Machines 17

codes, the value of the redundant bits depend on the data bits.
In the case of DFSMs, it is not feasible to transmit the state
of all the machines after each event transition to calculatethe
state of the backup machines. Further, recovery in such an
approach is costly due to the cost of decoding. In our solu-
tion, the backup machines act on the same inputs as the orig-
inal machines and independently transition to suitable states.
Extensive work has been done [16,15] on the minimization
of completely specified DFSMs, but the minimized machines
are equivalent to the original machines. In our approach, we
reduce theRCP to generate efficient backup machines that
are lesser than theRCP. Finally, since we assume a trusted
recovery agent, the work on consensus in the presence of
Byzantine faults [18,23], does not apply to our paper.

10 Conclusion

We present a fusion-based solution to correctf crash or⌊ f /2⌋
Byzantine faults amongn DFSMs using justf backups as
compared to the traditional approach of replication that re-
quiresn f backups. In table 2, we summarize our results and
compare the various parameters for replication and fusion.In
this paper, we present a framework to understand fault tol-
erance in machines and provide an algorithm that generates
backups that are optimized for states as well as events. Fur-
ther, we present algorithms for detection and the correction
of faults with minimal overhead over replication.

Our evaluation of fusion over standard benchmarks shows
that efficient backups exist for many examples. To illustrate
the practical use of fusion, we describe a fusion-based design
of a distributed application in the MapReduce framework.
While the current replication-based solution may require 1.8
million map tasks, a fusion-based solution requires just 1.4
million map tasks with minimal overhead in terms of time
as compared to replication. This can result in considerable
savings in space and other computational resources such as
power.

In the future, we wish to implement the design presented
in section 6 using the Hadoop framework [29] and compare
the end-to-end performance of replication and our fusion-
based solution. In particular we wish to focus on the space
incurred by both solutions, the time and computation power
taken for a set of tasks to complete with and without faults.
Further, we wish to explore the existence of efficient back-
ups if we allow information exchange among the primaries.
Finally, we wish to design efficient algorithms to generate
backups both inside and outside the closed partition set of
theRCP.

References

1. Alexandr Andoni and Piotr Indyk. Near-optimal hashing algo-
rithms for approximate nearest neighbor in high dimensions. Com-

mun. ACM, 51(1):117–122, 2008.
2. Bharath Balasubramanian and Vijay K. Garg. Fused data structures

for handling multiple faults in distributed systems. InProceedings
of the 2011 31st International Conference on Distributed Comput-
ing Systems, ICDCS ’11, pages 677–688, Washington, DC, USA,
2011. IEEE Computer Society.

3. Bharath Balasubramanian and Vijay K. Garg. Fused fsm design
tool (implemented in java 1.6). InParallel and Distributed Systems
Laboratory, http://maple.ece.utexas.edu, 2011.

4. Bharath Balasubramanian and Vijay K. Garg. Fused state ma-
chines for fault tolerance in distributed systems. InPrinciples
of Distributed Systems - 15th International Conference, OPODIS
2011, Toulouse, France, December 13-16, 2011. Proceedings, vol-
ume 7109 ofLecture Notes in Computer Science, pages 266–282.
Springer, 2011.

5. Bharath Balasubramanian, Vinit Ogale, and Vijay K. Garg.Fault
tolerance in finite state machines using fusion. InProceedings of In-
ternational Conference on Distributed Computing and Networking
(ICDCN) 2008, Kolkata, volume 4904 ofLecture Notes in Com-
puter Science, pages 124–134. Springer, 2008.

6. Magdalena Balazinska, Hari Balakrishnan, Samuel Madden, and
Mike Stonebraker. Fault-Tolerance in the Borealis Distributed
Stream Processing System. InACM SIGMOD Conf., Baltimore,
MD, June 2005.

7. E. R. Berlekamp.Algebraic Coding Theory. McGraw-Hill, New
York, 1968.

8. Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data
processing on large clusters.Commun. ACM, 51:107–113, January
2008.

9. Xavier Défago, André Schiper, and Péter Urbán. Totalorder broad-
cast and multicast algorithms: Taxonomy and survey.ACM Com-
put. Surv., 36(4):372–421, December 2004.

10. Vijay K. Garg. Implementing fault-tolerant services using state ma-
chines: beyond replication. InProceedings of the 24th international
conference on Distributed computing, DISC’10, pages 450–464,
Berlin, Heidelberg, 2010. Springer-Verlag.

11. Vijay K. Garg and Vinit Ogale. Fusible data structures for fault
tolerance. InICDCS 2007: Proceedings of the 27th International
Conference on Distributed Computing Systems, June 2007.

12. Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity
search in high dimensions via hashing. InVLDB ’99: Proceedings
of the 25th International Conference on Very Large Data Bases,
pages 518–529, San Francisco, CA, USA, 1999. Morgan Kaufmann
Publishers Inc.

13. Richard Hamming. Error-detecting and error-correcting codes.
In Bell System Technical Journal, volume 29(2), pages 147–160,
1950.

14. J. Hartmanis and R. E. Stearns.Algebraic structure theory of se-
quential machines (Prentice-Hall international series inapplied
mathematics). Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1966.

15. John E. Hopcroft. An n log n algorithm for minimizing states in a
finite automaton. Technical report, Stanford, CA, USA, 1971.

16. David A. Huffman. The synthesis of sequential switching circuits.
Technical report, Massachusetts, USA, 1954.

17. Leslie Lamport. The implementation of reliable distributed multi-
process systems.Computer networks, 2:95–114, 1978.

18. Leslie Lamport, Robert Shostak, and Marshall Pease. TheByzan-
tine generals problem.ACM Transactions on Programming Lan-
guages and Systems, 4:382–401, 1982.

19. David Lee and Mihalis Yannakakis. Closed partition lattice and ma-
chine decomposition.IEEE Trans. Comput., 51(2):216–228, 2002.

20. P. M. Melliar-Smith, L. E. Moser, and V. Agrawala. Broadcast pro-
tocols for distributed systems.IEEE Trans. Parallel Distrib. Syst.,
1(1):17–25, January 1990.

21. Alan Mishchenko, Satrajit Chatterjee, and Robert Brayton. Dag-
aware aig rewriting: A fresh look at combinational logic synthesis.

18 Bharath Balasubramanian, Vijay K. Garg

In In DAC 06: Proceedings of the 43rd annual conference on De-
sign automation, pages 532–536. ACM Press, 2006.

22. Vinit Ogale, Bharath Balasubramanian, and Vijay K. Garg. A
fusion-based approach for tolerating faults in finite statemachines.
In Proceedings of the 2009 IEEE International Symposium on Par-
allel & Distributed Processing, IPDPS ’09, pages 1–11, Washing-
ton, DC, USA, 2009. IEEE Computer Society.

23. M. Pease and L. Lamport. Reaching agreement in the presence of
faults. Journal of the ACM, 27:228–234, 1980.

24. Wesley W. Peterson and E. J. Weldon.Error-Correcting Codes -
Revised, 2nd Edition. The MIT Press, 2 edition, March 1972.

25. Fred B. Schneider. Byzantine generals in action: implementing fail-
stop processors.ACM Trans. Comput. Syst., 2(2):145–154, 1984.

26. Fred B. Schneider. Implementing fault-tolerant services using the
state machine approach: A tutorial.ACM Computing Surveys,
22(4):299–319, 1990.

27. Mehul A. Shah, Joseph M. Hellerstein, and Eric Brewer. Highly
available, fault-tolerant, parallel dataflows. InProceedings of the
2004 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’04, pages 827–838, New York, NY, USA, 2004.
ACM.

28. Fathi Tenzakhti, Khaled Day, and M. Ould-Khaoua. Replication
algorithms for the world-wide web.J. Syst. Archit., 50(10):591–
605, 2004.

29. Tom White.Hadoop: The Definitive Guide. O’Reilly Media, Inc.,
1st edition, 2009.

30. Saeyang Yang. Logic synthesis and optimization benchmarks user
guide version 3.0, 1991.

31. Hiroshi Youra, Tomoo Inoue, Toshimitsu Masuzawa, and Hideo Fu-
jiwara. On the synthesis of synchronizable finite state machines
with partial scan.Systems and Computers in Japan, 29(1):53–62,
1998.

Fault Tolerance in Distributed Systems using Fused State Machines 19

A Event-Based Decomposition of Machines

0 0

1

0 0

1

1

m0

1

m1

m3 m2

M (Dual Parity Cheker)

1

1
p0

p1

0

0
q0

q1

P (Parity of 1s)

Q (Parity of 0s)

Fig. 11 Event-based decomposition of a machine.

In this section, we ask a question that is fundamental to the under-
standing of DFSMs, independent of fault-tolerance: Given amachine
M, can it bereplacedby two or more machines executing in parallel,
each containing fewer events thanM? In other words, given the state
of these fewer-event machines, can we uniquely determine the state of
M? In Fig. 11, the 2-event machineM (it contains events 0 and 1 in
its event set), checks for the parity of 0sand 1s. M can be replaced by
two 1-event machinesP andQ, that check for the parity of just 1s or 0s
respectively. Given the state ofP andQ, we can determine the state of
M. In this section, we explore the problem of replacing a givenmachine
M with two or more machines, each containing fewer events thanM.
We present an algorithm to generate such event-reduced machines with
time complexity polynomial in the size ofM. This is important for ap-
plications with limits on the number of events each individual process
running a DFSM can service. We first define the notion of event-based
decomposition.

Definition 5 A (k,e)-event decompositionof a machineM (XM , αM,
ΣM , m0) is a set ofk machinesE, each less thanM, such thatdmin(M,E) >
0 and∀P(XP, αP, ΣP, p0) ∈ E, |ΣP| ≤ |ΣM | − e.

As dmin(M,E) > 0, given the state of the machines inE, the state of
M can be determined. So, the machines inE, each containing at most
|ΣM | − e events, can effectively replaceM. In Fig. 12, we present the
eventDecomposealgorithm that takes as input, machineM, parameter
e, and returns a (k,e)-event decomposition ofM (if it exists) for some
k ≤ |XM |

2.
In each iteration, Loop 1 generates machines that contain atleast

one event less than the machines of the previous iteration. So, starting
with M in the first iteration, at the end ofe iterations,M contains the set
of largest machines less thanM, each containing at most|ΣM |−eevents.

Loop 2, iterates through each machineP generated in the previ-
ous iteration, and uses thereduceEventalgorithm (same as the algo-
rithm presented in Fig. 4) to generate the set of largest machines less
than P containing at least one event less thanΣP. To generate a ma-
chine less thanP, that does not contain an eventσ in its event set,
thereduceEventalgorithm combines the states such that they loop onto
themselves onσ. The algorithm then constructs the largest machine that
contains these states in the combined form. This machine, ineffect, ig-
noresσ. This procedure is repeated for all events inΣP and the largest
incomparable machines among them are returned. Loop 3 constructs
an event-decompositionE of M, by iteratively adding at least one ma-
chine fromM to separate each pair of states inM, thereby ensuring that
dmin(E) > 0. Since each machine added toE can separate more than one
pair of states, an efficient way to implement Loop 3 is to check for the
pairs that still need to be separated in each iteration and add machines
till no pair remains.

Let the 4-event machineM shown in Fig. 12 be the input to the
eventDecomposealgorithm withe = 1. In the first and only iteration
of Loop 1, P = M and thereduceEventalgorithm generates the set
of largest 3-event machines less thanM, by successively eliminating
each event. To eliminate event 0, sincem0 transitions tom3 on event
0, these two states are combined. This is repeated for all states and the
largest machine containing all the combined states self looping on event
0 is M1. Similarly, the largest machines not acting on events 3,1 and
2 areM2, M3 andM⊥ respectively. ThereduceEventalgorithm returns
M1 and M2 as the only largest incomparable machines in this set. The
eventDecomposealgorithm returnsE = {M1, M2}, since each pair of
states inM are separated byM1 or M2. Hence, the 4-eventM can be
replaced by the 3-eventM1 andM2, i.e.,E = {M1,M2} is a (2,1)-event
decomposition ofM.

Theorem 1 Given machine M(XM , αM , ΣM ,m0), theeventDecompose
algorithm generates a (k,e)-event decomposition of M (if itexists) for
some k≤ |XM |

2.

Proof ThereduceEventalgorithm exhaustively generates the largest in-
comparable machines that ignore at least one event inΣM . After e such
reduction in events, Loop 3 selects one machine (if it exists) amongM
to separate each pair of states inXM. This ensures that at the end of
Loop 3, eitherdmin(E) > 0 or the algorithm has returned{} (no (k,e)-
event decomposition exists). Since there are at most|XM |

2 pairs of states
in XM, there are at most|XM |

2 iterations of Loop 3, in which we pick
one machine per iteration. Hence,k ≤ |XM |

2.

The reduceEventalgorithm visits each state of machineM to cre-
ate blocks of states which loop to the same block on eventσ ∈ ΣM .
This has time complexityO(|XM |) per event. The cost of generating the
largest closed partition corresponding to this block isO(|XM ||ΣM |) per
event. Since we need to do this for all events inΣM , the time complex-
ity to reduce at least one event isO(|XM ||ΣM |

2). In theeventDecompose
algorithm, the first iteration generates at most|ΣM | machines, the sec-
ond iteration at most|ΣM |

2 machines and theeth iteration will contain
O(|ΣM |

e) machines. The rest of the analysis is similar to the one pre-
sented in section 4.2 and the time complexity of thereduceEventalgo-
rithm isO(|XM ||ΣM |

e+1).
To generate the (k,e)-event decomposition from the set of machines

in M, we find a machine inM to separate each pair of states inXM .
Since there areO(|XM |

2) such pairs, the number of iterations of Loop 3
is O(|XM |

2). In each iteration of Loop 3, we find a machine among the
O(|ΣM |

e) machines ofM that separates a pairmi ,mj ∈ XM . To check
if a machine separates a pair of states just takesO(|XM |) time. Hence
the time complexity of Loop 3 isO(|XM |

3|ΣM |
e). So, the overall time

complexity of theeventDecomposealgorithm is the sum of the time
complexities of Loop 1 and 3, which isO(|XM ||ΣM |

e+1 + |XM |
3|Σ|e).

B Incremental Approach to Generate Fusions

In Fig. 13, we present an incremental approach to generate the fusions,
referred to as theincFusionalgorithm, in which we may never have
to reduce theRCPof all the primaries. In each iteration, we generate
the fusion corresponding to a new primary and theRCPof the (possibly
small) fusions generated for the set of primaries in the previous iteration.

In Fig. 14, rather than generate a fusion by reducing the 8-stateRCP
of {A, B,C}, we can reduce the 4-stateRCPof {A, B} to generate fusion
F′ and then reduce the 4-stateRCP of {C, F′} to generate fusionF.
In the following paragraph, we present the proof of correctness for the
incremental approach and show that it has time complexityO(ρn) times
better than that of thegenFusionalgorithm, whereρ is the average state
reduction achieved by fusion.

Theorem 2 Given a set of n machinesP, theincFusionalgorithm gen-
erates an (f , f)-fusion ofP.

20 Bharath Balasubramanian, Vijay K. Garg

t0, t1t1, t2
t3

⊤

t3

t1t0

⊥

t0 t1t1 t2 t0 t3

A B M1 M2

M3 M4 M5 M6

t2

t3t1 t1, t2t0, t3

t1 t0, t3

t0, t2t2, t3

, t3
t0, t2 t0

, t2

t1, t2

, t3

Fig. 9 Closed partition set for theRCPof {A, B}.

3

t3 t1

t0

t2

1

1

1

(i) G({A})

t3 t1

t0

t2

2

2

t3 t1

t0

t2

4

4 t3 t1

t2

4

t0

t1

t0

t2

3

4

(iv) G({A, B,M1,⊤})(iii) G({A, B, M1, M2})(ii) G({A, B}) (v) G({A, B,M6,⊤})

1
2

21

1

0

1
3

3

3
3 3 4

3

43

t3

3 3
3

Fig. 10 Fault Graphs for sets of machines shown in Fig. 9.

incFusion

Input : PrimariesP = {P1, P2, . . .Pn}, faults f ,

state-reduction parameter△s, event-reduction parameter△e;

Output : (f , f)-fusion ofP;

F ← {P1};

for (i = 2 ton)

N ← {Pi } ∪ RCP(F);

F ← genFusion(N , f ,△s,△e);

return F ;

Fig. 13 Incremental fusion algorithm.

Proof We prove the theorem using induction on the variablei in the al-
gorithm. For the base case, i.e.,i = 2,N = {P1, P2} (sinceRCP({P1}) =

P1). Let the (f , f)-fusion generated by thegenFusionalgorithm for
N = {P1, P2} be denotedF 1. For i = 3, let the (f , f)-fusion gener-
ated forN = {P3,RCP(F 1)} be denotedF 2. We show thatF 2 is an (f ,
f)-fusion of{P1, P2, P3}. Assumef crash faults among{P1P2, P3}∪F

2.
Clearly, less than or equal tof machines in{P3}∪F

2 have crashed. Since
F 2 is an (f , f)-fusion of{P3,RCP(F 1)}, we can generate the state of all
the machines inRCP(F 1) and the state of the crashed machines among
{P3} ∪ F

2. Similarly, less than or equal tof machines have crashed
among{P1, P2}. Hence, using the state of the available machines among
{P1, P2} and the states of all the machines inF 1 we can generate the
state of the crashed machines among{P1, P2}.

Induction Hypothesis: Assume that the set of machinesF i , gen-
erated in iterationi, is an (f , f)-fusion of {P1 . . .Pi+1}. Let the (f , f)-
fusion of {Pi+2,RCP(F i)} generated in iterationi + 1 be denotedF i+1.
To prove:F i+1 is an (f , f)-fusion of {P1 . . .Pi+2}. The proof is similar
to that for the base case. Using the state of the available machines in
{Pi+2} ∪ F

i+1, we can generate the state of all the machines inF i and

Fault Tolerance in Distributed Systems using Fused State Machines 21

m0, m3

0,1,2

m0 m1, m2, m3

M2 (No event 3)

3

1 1

m1

2

2

m0

m2

m3

M

M3 (No events 0,1)

M⊥ (self-loops on all events)

states self-loop on event 0

1

1

2

2

m1 m2

3

M1 (No event 0)

m2m0, m1, m3

2

3

0

21

eventDecompose
Input : MachineM with state setXM , event setΣM

and transition functionαM;
Output : (k,e)-event decomposition ofM for
somek ≤ |XM |

2;
M = {M};
for (j = 1 toe) //Loop 1
G ← {};
for (P ∈ M) //Loop 2
G = G ∪ reduceEvent(P);

M = G;
E ← {};
for (mi ,mj ∈ XM) //Loop 3

if (∃E ∈ M : E separatesmi ,mj)
E ← E ∪ {E};

else
return {};

return E;

reduceEvent
Input : MachineP with state setXP, event setΣP

and transition functionαP;
Output : Largest Machines< P with ≤ |ΣP| − 1 events;
B = {};
for (σ ∈ ΣP)

Set of states,XB = XP;
//combine states to self-loop onσ
for (s ∈ XB)

s= s∪ αP(s, σ);
B = B ∪ {Largest machine consistent withXB};

return largest incomparable machines inB;

Fig. 12 Algorithm for the event-based decomposition of a machine.

a0
a1

A (Parity of 0s,2s)

0, 2

0, 2

F ′

f ′0
f ′1

F ′

f ′0
f ′1

B (Parity of 1s,2s)

1

1
f 0

f 1

0
c0

c1

C (Parity of 0s)

0

0, 1

0, 1

0, 1

0, 1

F
b0

b1

1, 2

1, 2

Fig. 14 Incremental Approach: first generateF′ and thenF.

{Pi+2} ∪ F
i+1. Subsequently, we can generate the state of the crashed

machines in{P1 . . .Pi+1}.

From observation 1, thegenfusionalgorithm has time complexity,
O(f N4|Σ| + f N5) (assuming△s= 0 and△e= 0 for simplicity). Hence,
if the size ofN in the i th iteration of theincFusionalgorithm is denoted
by Ni , then the time complexity of theincFusionalgorithm,Tinc is given
by the expressionΣ i=n

i=2O(f N4
i |Σ| + f N5

i).
Let the number of states in each primary bes. For i = 2, the

primaries are{P1, P2} and N1 = O(s2). For i = 3, the primaries are
{RCP(F 1), P3}. Note thatRCP(F 1) is also a fusion machine. Since we
assume an average reduction ofρ (size of RCP of primaries/average
size of each fusion), the number of states inRCP(F 1) is O(s2/ρ). So ,
N2 = O(s3/ρ). Similarly, N3 = O(s4/ρ2) andNi = O(si+1/ρi−1). So,

Tinc = O(|Σ| fΣ i=n
i=2 s4i+4/ρ4i−4 + fΣ i=n

i=2 s5i+5/ρ5i−5)

= O(|Σ| f s4ρ4Σ i=n
i=2(s/ρ)4i + f s5ρ5Σ i=n

i=2(s/ρ)5i)

This is the sum of a geometric progression and hence,

Tinc = O(|Σ| f s4ρ4(s/ρ)4n + f s5ρ5(s/ρ)5n)

Assumingρ andsare constants,Tinc = O(f |Σ|sn/ρn+ f sn/ρn). Note that,
the time complexity of thegenFusionalgorithm in Fig. 4 isO(f |Σ|sn +

f sn). Hence, theincFusionalgorithm achievesO(ρn) savings in time
complexity over thegenFusionalgorithm.

	1 Introduction
	2 Model
	3 Framework for Fault Tolerance in DFSMs
	4 Algorithm to Generate Fused Backup Machines
	5 Detection and Correction of Faults
	6 Practical use of Fusion in the MapReduce Framework
	7 Experimental Evaluation
	8 Discussion: Backups Outside the Closed Partition Set
	9 Related Work
	10 Conclusion
	A Event-Based Decomposition of Machines
	B Incremental Approach to Generate Fusions

