Skip to main content
Log in

A distributed low tree-depth decomposition algorithm for bounded expansion classes

  • Published:
Distributed Computing Aims and scope Submit manuscript

Abstract

We study the distributed low tree-depth decomposition problem for graphs restricted to a bounded expansion class. Low tree-depth decomposition have been introduced in 2006 and have found quite a few applications. For example it yields a linear-time model checking algorithm for graphs in a bounded expansion class. Recall that bounded expansion classes cover classes of graphs of bounded degree, of planar graphs, of graphs of bounded genus, of graphs of bounded treewidth, of graphs that exclude a fixed minor, and many other graphs. There is a sequential algorithm to compute low tree-depth decomposition (with bounded number of colors) in linear time. In this paper, we give the first efficient distributed algorithm for this problem. As it is usual for a symmetry breaking problem, we consider a synchronous model, and as we are interested in a deterministic algorithm, we use the usual assumption that each vertex has a distinct identity number. We consider the distributed message-passing \(\mathcal {CONGEST}_\mathrm{BC}\) model, in which messages have logarithmic length and only local broadcast are allowed. In this model, we present a logarithmic time distributed algorithm for computing a low tree-depth decomposition of graphs in a fixed bounded expansion class. In the sequential centralized case low tree-depth decomposition linear time algorithm are used as a core procedure in several non-trivial linear time algorithms. We believe that, similarly, low tree-depth decomposition could be at the heart of several non-trivial logarithmic time algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. that is half of a positive integer, like 5 / 2.

References

  1. Barenboim, L., Elkin, M.: Sublogarithmic distributed MIS algorithm for sparse graphs using Nash-Williams decomposition. Distrib. Comput. 22, 363–379 (2010)

    Article  MATH  Google Scholar 

  2. Barenboim, L., Elkin, M., Kuhn, F.: Distributed \((\Delta +1)\)-coloring in linear (in \(\Delta \)) time. SIAM J. Comput. 43, 72–95 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bodlaender, H., Deogun, J., Jansen, K., Kloks, T., Kratsch, D., Müller, H., Tuza, Z. (1995) Rankings of graphs. In: Graph-Theoretic Concepts in Computer Science (Lecture notes in computer science), vol. 903/1995. Springer, pp. 292–304

  4. Deogun, J., Kloks, T., Kratsch, D., Müller, H. (1994) On vertex ranking for permutation and other graphs. In: Enjalbert, P., Mayr, E., Wagner, K. (eds.), Proceedings of the 11th Annual Symposium on Theoretical Aspects of Computer Science (Lecture notes in computer science), vol. 775. Springer, pp. 747–758

  5. Dvořák, Z.: Asymptotical structure of combinatorial objects, PhD thesis, Charles University, Faculty of Mathematics and Physics (2007)

  6. Dvořák, Z.: Constant-factor approximation of domination number in sparse graphs. Eur. J. Combin. 34, 833–840 (2013)

    Article  MATH  Google Scholar 

  7. Dvořák, Z., Kráľ, D.: Algorithms for classes of graphs with bounded expansion, Lecture Notes in Computer Science, 5911 LNCS, pp. 17–32 (2010)

  8. Dvořák, Z., Kráľ, D., Thomas, R.: Deciding first-order properties for sparse graphs. In: 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS 2010), pp. 133–142. (2010)

  9. Dvořák, Z., Kráľ, D., Thomas, R.: Testing first-order properties for subclasses of sparse graphs, J. ACM, 60:5 Article 36 (2013)

  10. Dvořák, Z., Kupec, M., Tůma, V.: Dynamic data structure for tree-depth decomposition. arXiv:1307.2863 [cs.DS]. July 2013

  11. Gajarský, J., Hliněný, P., Obdržálek, J., Ordyniak, S., Reidl, F., Rossmanith, P., Sánchez Villamil, F., Sikdar, S.: Kernelization using structural parameters on sparse graph classes In: ESA 2013. Lecture Notes in Computer Science, vol. 8125, pp. 529–540. Springer, Heidelberg (2013)

  12. Goldberg, A.V., Plotkin, S.A.: Parallel \((\Delta +1)\)-coloring of constant-degree graphs. Inf. Process. Lett. 25, 241–245 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Grohe, M., Kreutzer, S.: Methods for algorithmic meta theorems. In: Model Theoretic Methods in Finite Combinatorics, Contemporary Mathematics, pp. 181–206. (2011)

  14. Grohe, M., Kreutzer, S., Siebertz, S.: Deciding first-order properties of nowhere dense graphs. In: Proceedings of the 46th Annual ACM Symposium on Theory of Computing, STOC ’14, New York, NY, USA, 2014, ACM, pp. 89–98 (2014)

  15. Herlihy, M., Kozlov, D., Rajsbaum, S.: Distributed Computing Through Combinatorial Topology. Morgan Kaufmann Publishers Inc, San Francisc, USA (2013)

    Google Scholar 

  16. Kazana, W., Segoufin, L.: Enumeration of first-order queries on classes of structures with bounded expansion. In: Proceedings of the 16th International Conference on Database Theory, pp. 10–20 (2013)

  17. Kuhn, F., Wattenhofer, R.: On the complexity of distributed graph coloring. In: Proceedings of the Twenty-fifth Annual ACM Symposium on Principles of Distributed Computing, pp. 7–15 (2006)

  18. Lenzen, C., Wattenhofer, R. (2010) Minimum dominating set approximation in graphs of bounded arboricity. In: Lynch, N., Shvartsman, A. (eds.) Distributed Computing (Lecture notes in computer science) vol. 6343. Springer, Berlin Heidelberg, pp. 510–524

  19. Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21, 193–201 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nešetřil, J., Ossona de Mendez, P. (2005) The grad of a graph and classes with bounded expansion. In: Raspaud, A., Delmas, O. (eds.), 7th International Colloquium on Graph Theory (Electronic notes in discrete mathematics), vol. 22. Elsevier, pp. 101–106

  21. Nešetřil, J., Ossona de Mendez, P. (2006) Linear time low tree-width partitions and algorithmic consequences. In: STOC’06. Proceedings of the 38th Annual ACM Symposium on Theory of Computing. ACM Press, pp. 391–400

  22. Nešetřil, J., Ossona de Mendez, P.: Tree depth, subgraph coloring and homomorphism bounds. Eur. J. Comb. 27, 1022–1041 (2006)

    Article  MATH  Google Scholar 

  23. Nešetřil, J., Ossona de Mendez, P.: Grad and classes with bounded expansion I. decompositions. Eur. J. Comb. 29, 760–776 (2008)

  24. Nešetřil, J., Ossona de Mendez, P.: Grad and classes with bounded expansion II. algorithmic aspects. Eur. J. Comb. 29, 777–791 (2008)

    Article  MATH  Google Scholar 

  25. Nešetřil, J.: Ossona de Mendez, P.: How many F’s are there in G? Eur. J. Comb. 32, 1126–1141 (2011)

    Article  MATH  Google Scholar 

  26. Nešetřil, J., Ossona de Mendez, P.: Sparsity (Graphs, Structures, and Algorithms), vol. 28 of Algorithms and Combinatorics. Springer, Berlin (2012)

    Google Scholar 

  27. Nešetřil, J., Ossona de Mendez, P. (2015) On first-order definable colorings. In: Nešetřil, J., Pellegrini, M. (eds.), Geometry, Structure and Randomness in Combinatorics, vol. 18 of Publications of the Scuola Normale Superiore, CRM Series, Edizioni della Normale, pp. 99–122

  28. Nešetřil, J., Ossona de Mendez, P.: On low tree-depth decompositions. Graphs Comb. 31, 1–23 (2015)

    Article  Google Scholar 

  29. Nešetřil, J., Ossona de Mendez, P., Wood, D.: Characterizations and examples of graph classes with bounded expansion. Eur. J. Comb. 33, 350–373 (2012)

    Article  MATH  Google Scholar 

  30. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM, Philadelphia (2000)

    Book  Google Scholar 

  31. Schäffer, A.: Optimal node ranking of trees in linear time. Inf. Process. Lett. 33, 91–96 (1989/90)

  32. Szegedy, M., Vishwanathan, S. (1993) Locality based graph coloring. In: Proceedings 25th ACM Symposium on Theory of Computing, pp. 201–207

  33. Yang, D.: Generalization of transitive fraternal augmentations for directed graphs and its applications. Discrete Math. 309, 4614–4623 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhu, X.: Colouring graphs with bounded generalized colouring number. Discrete Math. 309, 5562–5568 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the referees for their many remarks, which allowed to improve the quality of the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ossona de Mendez.

Additional information

Supported by grant ERCCZ LL-1201 of the Czech Ministry of Education and LEA STRUCO.

J. Nešetřil: Supported by grant CE-ITI P202/12/G061 of GAČR.

P. Ossona de Mendez: Supported by ANR STINT.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nešetřil, J., de Mendez, P.O. A distributed low tree-depth decomposition algorithm for bounded expansion classes. Distrib. Comput. 29, 39–49 (2016). https://doi.org/10.1007/s00446-015-0251-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00446-015-0251-x

Keywords

Mathematical Subject Classifications

Navigation